Effects of Age and Muscle Type on the Chemical Composition and Quality Characteristics of Bactrian Camel (Camelus bactrianus) Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Meat Samples
2.2. Chemical Analysis
- Yi represents the percentage of a certain fatty acid in the sample to the total fatty acid, %;
- ASi represents the peak area of each fatty acid methyl ester in the sample measurement solution;
- FFAMEi-FAi represents fatty acid methyl ester i conversion coefficient to fatty acid;
- ∑ASi represents the sum of the peak area of each fatty acid methyl ester in the sample measurement solution.
2.3. Meat-Quality Evaluation
2.4. Statistical Analysis
3. Results
3.1. Effects of Age and Muscle Type on Meat Chemical Composition
3.2. Effects of Age and Muscle Type on Meat Amino Acids
3.3. Effects of Age and Muscle Type on Minerals in Meat
3.4. Effects of Age and Muscle Type on Fatty Acids in Meat
3.5. Effects of Age and Muscle Type on Meat Quality Characteristics
3.5.1. Effects of Age and Muscle Type on Meat Ultimate pH and Color Components
3.5.2. Effects on Shear Force and Cooking Loss
4. Discussion
4.1. Effects of Age and Muscle Type on Meat Chemical Composition
4.2. Effects of Age and Muscle Type on Meat Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskandari, M.H.; Majlesi, M.; Gheisari, H.R.; Farahnaky, A.; Khaksar, Z. Comparison of some physicochemical properties and toughness of camel meat and beef. J. Appl. Anim. Res. 2013, 41, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Dawood, A.A. Physical and sensory characteristics of Najdi-camel meat. Meat Sci. 1995, 39, 59–69. [Google Scholar] [CrossRef]
- Raiymbek, G.; Faye, B.; Kadim, I.T.; Serikbaeva, A.; Konuspayeva, G. Comparative fatty acids composition and cholesterol content in Bactrian (Camelus bactrianus) and dromedary camel (Camelus dromedarius) meat. Trop. Anim. Health Prod. 2019, 51, 2025–2035. [Google Scholar] [CrossRef]
- Burger, P.A.; Ciani, E.; Faye, B. Old World camels in a modern world78A balancing act between conservation and genetic improvement. Anim. Genet. 2019, 50, 598–612. [Google Scholar] [CrossRef]
- Dalai, S.; Qi, Y.Z.; Li, Y.; Liang, M.; Rimutu, J. Quality characteristics of bactrian camel (Camelus bactrianus) meat burger and evaluating its stability during the storage. J. Camel Pract. Res. 2021, 28, 211–218. [Google Scholar]
- Jirimutu, Z.W.; Ding, G.; Chen, G.; Sun, Y.; Sun, Z.; Zhang, H.; Wang, L.; Hasi, S.; Zhang, Y.; Li, J.J.; et al. Genome sequences of wild and domestic bactrian camels. Nat. Commun. 2012, 3, 1202. [Google Scholar]
- Kadim, I.; Mahgoub, O.; Al-Marzooqi, W.; Al-Zadjali, S.; Annamalai, K.; Mansour, M. Effects of age on composition and quality of muscle Longissimus thoracis of the Omani Arabian camel (Camelus dromedaries). Meat Sci. 2006, 73, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.T.; Al-Amri, I.S.; Abdulaziz, Y.A.K.; Msafiri, M. Camel meat production and quality: A Review. J. Camel Pract. Res. 2018, 25, 9–23. [Google Scholar] [CrossRef]
- Abdelhadi, O.; Babiker, S.; Picard, B.; Jurie, C.; Jailler, R.; Hocquette, J.; Faye, B. Effect of season on contractile and metabolic properties of desert camel muscle (Camelus dromedarius). Meat Sci. 2012, 90, 139–144. [Google Scholar] [CrossRef]
- Kurtu, M.Y. An assessment of the productivity for meat and the carcass yield of camels (Camelus dromedarius) and of the consumption of camel meat in the eastern region of Ethiopia. Trop. Anim. Health Prod. 2004, 36, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.; Al-Karousi, A.; Mahgoub, O.; Al-Marzooqi, W.; Khalaf, S.; Al-Maqbali, R.; Al-Sinani, S.; Raiymbek, G. Chemical composition, quality and histochemical characteristics of individual dromedary camel (Camelus dromedarius) muscles. Meat Sci. 2013, 93, 564–571. [Google Scholar] [CrossRef]
- Suliman, G.; Al-Owaimer, A.N.; Hussein, E.; Abuelfatah, K.; Othman, M.B. Meat quality characteristics of the Arabian camel (Camelus dromedarius) at different ages and post-mortem ageing periods. Asian-Australas. J. Anim. Sci. 2020, 33, 1332–1338. [Google Scholar] [CrossRef] [Green Version]
- Suliman, G.M.; Alowaimer, A.N.; Hussein, E.O.; Ali, H.S.; Abdelnour, S.A.; El-Hack, M.E.A.; Swelum, A.A. Chemical Composition and Quality Characteristics of Meat in Three One-Humped Camel (Camelus dromedarius) Breeds as Affected by Muscle Type and Post-Mortem Storage Period. Animals 2019, 9, 834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Owaimer, A.; Suliman, G.; Sami, A.; Picard, B.; Hocquette, J. Chemical composition and structural characteristics of Arabian camel (Camelus dromedarius) m. longissimus thoracis. Meat Sci. 2014, 96, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-X.; Ma, X.-M.; Xiong, L.; Wu, X.-Y.; Liang, C.-N.; Bao, P.-J.; Yu, Q.-L.; Yan, P. Effects of Intensive Fattening with Total Mixed Rations on Carcass Characteristics, Meat Quality, and Meat Chemical Composition of Yak and Mechanism Based on Serum and Transcriptomic Profiles. Front. Veter. Sci. 2021, 7, 599418. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Liu, Y.; Quek, S.Y. Systematic evaluation of nutritional and safety characteristics of Hengshan goat leg meat affected by multiple thermal processing methods. J. Food Sci. 2020, 85, 1344–1352. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, Z.; Jia, S.; Wu, G. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J. Chromatogr. B 2014, 964, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wu, J.-P.; Lei, Z.-M.; Zhang, M.; Gong, X.-Y.; Cheng, S.-R.; Liang, Y.; Wang, J.-F. Fatty Acid Profile of Muscles from Crossbred Angus-Simmental, Wagyu-Simmental, and Chinese Simmental Cattles. Korean J. Food Sci. Anim. Resour. 2020, 40, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Čobanović, N.; Stajković, S.; Blagojević, B.; Betić, N.; Dimitrijević, M.; Vasilev, D.; Karabasil, N. The effects of season on health, welfare, and carcass and meat quality of slaughter pigs. Int. J. Biometeorol. 2020, 64, 1899–1909. [Google Scholar] [CrossRef]
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Morris, S.; Hopkins, D.L. The effect of whole carcase medium voltage electrical stimulation, tenderstretching and longissimus infusion with actinidin on alpaca meat quality. Meat Sci. 2020, 164, 108107. [Google Scholar] [CrossRef] [PubMed]
- Kadim, I.T.; Mahgoub, O.; Al-Marzooqi, W.; Khalaf, S.K. Effect of low voltage electrical stimulation and splitting carcass on histochemical and meat quality characteristics of the one-humped camel (Camelus dromedarius) Longissimus thoracis muscle. J. Camelid Sci. 2009, 2, 30–40. [Google Scholar]
- Zhuang, H.; Savage, E.M. Comparison of cook loss, shear force, and sensory descriptive profiles of boneless skinless white meat cooked from a frozen or thawed state. Poult. Sci. 2013, 92, 3003–3009. [Google Scholar] [CrossRef]
- Mohammed, H.H.H.; Jin, G.; Ma, M.; Khalifa, I.; Shukat, R.; Elkhedir, A.E.; Zeng, Q.; Noman, A.E. Comparative characterization of proximate nutritional compositions, microbial quality and safety of camel meat in relation to mutton, beef, and chicken. LWT 2019, 118, 108714. [Google Scholar] [CrossRef]
- Al-Bachir, M.; Zeinou, R. Effect of gamma irradiation on microbial load and quality characteristics of minced camel meat. Meat Sci. 2009, 82, 119–124. [Google Scholar] [CrossRef]
- Kadim, I.; Mahgoub, O.; Khalaf, S.; Mansour, M.; Al-Marzooqi, W.; Al-Sinani, S.; Al-Amri, I. Effects of Electrical Stimulation on Histochemical Muscle Fiber Staining, Quality, and Composition of Camel and Cattle Longissimus thoracis Muscles. J. Food Sci. 2009, 74, S44–S52. [Google Scholar] [CrossRef]
- Raiymbek, G.; Faye, B.; Konuspayeva, G.; Kadim, I.T. Chemical composition of infraspinatus, triceps brachii, longissimus tho-races, biceps femoris, semitendinosus, and semimembranosus of bactrian (Camelus bactrianus) camel muscles. Emir. J. Food Agric. 2013, 25, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Pérez, P.; Maino, M.; Guzmán, R.; Vaquero, A.; Köbrich, C.; Pokniak, J. Carcass characteristics of llamas (Lama glama) reared in Central Chile. Small Rumin. Res. 2000, 37, 93–97. [Google Scholar] [CrossRef]
- Ying, X.U.; Wen, P.C.; Liang, Q.; Zhang, Y.; Yang, Q.N. Changing cule of meat quality of Yak in different ages. Sci. Technol. Food Ind. 2014, 35, 121–124. (In Chinese) [Google Scholar]
- Sinclair, A.J.; Slattery, W.J.; O’Dea, K. The analysis of polyunsaturated fatty acids in meat by capillary gas-liquid chromatography. J. Sci. Food Agric. 1982, 33, 771–776. [Google Scholar] [CrossRef]
- Or-Rashid, M.M.; Odongo, N.E.; Subedi, B.; Karki, P.; McBride, B.W. Fatty Acid Composition of Yak (Bos grunniens) Cheese Including Conjugated Linoleic Acid and trans-18:1 Fatty Acids. J. Agric. Food Chem. 2008, 56, 1654–1660. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Chizzolini, R.; Zanardi, E.; Dorigoni, V.; Ghidini, S. Calorific value and cholesterol content of normal and low-fat meat and meat products. Trends Food Sci. Technol. 1999, 10, 119–128. [Google Scholar] [CrossRef]
- Mensink, R.P.; Katan, M.B. Effect of a Diet Enriched with Monounsaturated or Polyunsaturated Fatty Acids on Levels of Low-Density and High-Density Lipoprotein Cholesterol in Healthy Women and Men. N. Engl. J. Med. 1989, 321, 436–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elgasim, E.; Alkanhal, M. Proximate composition, amino acids and inorganic mineral content of Arabian Camel meat: Comparative study. Food Chem. 1992, 45, 1–4. [Google Scholar] [CrossRef]
- Silva, J.A.; Patarata, L.; Martins, C. Influence of ultimate pH on bovine meat tenderness during ageing. Meat Sci. 1999, 52, 453–459. [Google Scholar] [CrossRef]
- Kannan, G.; Kouakou, B.; Terrill, T.H.; Gelaye, S. Endocrine, blood metabolite, and meat quality changes in goats as influenced by short-term, preslaughter stress. J. Anim. Sci. 2003, 81, 1499–1507. [Google Scholar] [CrossRef]
- Soltanizadeh, N.; Kadivar, M.; Keramat, J.; Fazilati, M. Comparison of fresh beef and camel meat proteolysis during cold storage. Meat Sci. 2008, 80, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Ashmore, C.R.; Carroll, F.; Doerr, L.; Tompkins, G.; Stokes, H.; Parker, W. Experimental Prevention of Dark-Cutting Meat. J. Anim. Sci. 1973, 36, 33–36. [Google Scholar] [CrossRef]
- Gerald, O. Modelling of the formation of pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis. Meat Sci. 1991, 30, 157–184. [Google Scholar]
- Cristofanelli, S.; Antonini, M.; Torres, D.; Polidori, P.; Renieri, C. Meat and carcass quality from Peruvian llama (Lama glama) and alpaca (Lama pacos). Meat Sci. 2004, 66, 589–593. [Google Scholar] [CrossRef]
- Abhijith, A.; Warner, R.D.; Ha, M.; Dunshea, F.R.; Leury, B.J.; Zhang, M.; Joy, A.; Osei-Amponsah, R.; Chauhan, S.S. Effect of slaughter age and post-mortem days on meat quality of longissimus and semimembranosus muscles of Boer goats. Meat Sci. 2021, 175, 108466. [Google Scholar] [CrossRef]
- Ijaz, M.; Jaspal, M.H.; Hayat, Z.; Yar, M.K.; Badar, I.H.; Ullah, S.; Hussain, Z.; Ali, S.; Farid, M.U.; Farooq, M.Z.; et al. Effect of animal age, postmortem chilling rate, and aging time on meat quality attributes of water buffalo and humped cattle bulls. Anim. Sci. J. 2020, 91. [Google Scholar] [CrossRef] [PubMed]
- Sha, L.N.; Jin, Y.; Xiao-Bo, L.I.; Gao, J.L. Effect of variation of collagen in muscle on tenderness of Sonite sheep. Sci. Technol. Food Ind. 2009, 30, 105–108. (In Chinese) [Google Scholar]
- Purchas, R.W.; Hartley, D.G.; Xun, Y.; Grant, D.A. An evaluation of the growth performance, carcass characteristics, and meat quality of Sahiwal-Friesian cross bulls. N. Zeal. J. Agric. Res. 1997, 40, 497–506. [Google Scholar] [CrossRef]
- McCormick, R. Extracellular modifications to muscle collagen: Implications for meat quality. Poult. Sci. 1999, 78, 785–791. [Google Scholar] [CrossRef]
- Lu, G.S.; Wang, F.L.; Zhu, Y.; Wan, K.H.; Peng, Z.Q. Study on the relationships between Pyridinoline cross-links and solubility of collagen and shear force of qinchuan marbling beef. Sci. Agric. Sin. 2013, 46, 130–135. (In Chinese) [Google Scholar]
- Belew, J.B.; Brooks, J.C.; McKenna, D.R.; Savell, J.W. Warner–Bratzler shear evaluations of 40 bovine muscles. Meat Sci. 2003, 64, 507–512. [Google Scholar] [CrossRef]
Chemical Composition% | Age(Year) | Muscle | ||
---|---|---|---|---|
PM | LT | ST | ||
Moisture | 3–4 | 73.92 ± 0.77 ax | 74.52 ± 1.31 ax | 75.75 ± 1.33 ax |
6–7 | 73.15 ± 0.85 ax | 71.23 ± 3.28 aby | 73.38 ± 1.40 bx | |
9–10 | 72.45 ± 1.02 ax | 70.89 ± 3.53 by | 73.10 ± 1.96 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.16 | |
Protein | 3–4 | 19.60 ± 1.44 bx | 19.78 ± 2.14 bx | 20.56 ± 0.91 bx |
6–7 | 21.28 ± 0.26 abx | 21.15 ± 0.79 abx | 21.90 ± 0.91 ax | |
9–10 | 21.45 ± 1.18 ax | 22.42 ± 1.12 ax | 22.33 ± 0.45 ax | |
Effect | Page < 0.05 | Pmuscle = 0.26 | Page×muscle = 0.73 | |
Crude fat | 3–4 | 1.22 ± 0.23 by | 3.66 ± 1.22 bx | 0.40 ± 0.12 bz |
6–7 | 1.93 ± 0.89 by | 4.20 ± 0.55 bx | 1.40 ± 1.03 abz | |
9–10 | 4.38 ± 2.78 ay | 7.78 ± 2.49 ax | 2.23 ± 1.55 az | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.33 | |
Ash | 3–4 | 1.11 ± 0.09 ax | 1.13 ± 0.02 ax | 1.15 ± 0.03 ax |
6–7 | 1.19 ± 0.02 ax | 1.19 ± 0.25 ax | 1.14 ± 0.12 ax | |
9–10 | 1.14 ± 0.03 ax | 1.39 ± 0.29 ax | 1.23 ± 0.28 ax | |
Effect | Page = 0.16 | Pmuscle = 0.32 | Page×muscle = 0.45 | |
Moisture: protein ratio | 3–4 | 3.62 ± 0.26 ax | 3.80 ± 0.44 ax | 3.69 ± 0.14 ax |
6–7 | 3.44 ± 0.05 ax | 3.27 ± 0.27 bx | 3.35 ± 0.15 abx | |
9–10 | 3.46 ± 0.19 ax | 3.10 ± 0.26 bx | 3.31 ± 0.25 bx | |
Effect | Page < 0.05 | Pmuscle = 0.41 | Page×muscle = 0.22 |
Amino Acids (g/100 g) | Age (Year) | Muscle | ||
---|---|---|---|---|
PM | LT | ST | ||
Asp | 3–4 | 1.91 ± 0.07 ax | 1.81 ± 0.15 bx | 1.88 ± 0.13 ax |
6–7 | 1.97 ± 0.10 ax | 1.89 ± 0.14 abx | 1.94 ± 0.15 ax | |
9–10 | 1.95 ± 0.14 ax | 2.05 ± 0.11 ax | 2.05 ± 0.15 ax | |
Effect | Page < 0.05 | Pmuscle = 0.67 | Page×muscle = 0.50 | |
Thr | 3–4 | 0.94 ± 0.03 ax | 0.89 ± 0.08 ax | 0.92 ± 0.06 ax |
6–7 | 0.97 ± 0.04 ax | 0.91 ± 0.07 ax | 0.94 ± 0.07 ax | |
9–10 | 0.95 ± 0.06 ax | 0.99 ± 0.06 ax | 0.99 ± 0.08 ax | |
Effect | Page < 0.05 | Pmuscle = 0.50 | Page×muscle = 0.46 | |
Ser | 3–4 | 0.81 ± 0.03 ax | 0.77 ± 0.07 ax | 0.79 ± 0.05 ax |
6–7 | 0.82 ± 0.05 ax | 0.78 ± 0.07 ax | 0.82 ± 0.06 ax | |
9–10 | 0.82 ± 0.04 ax | 0.85 ± 0.05 ax | 0.86 ± 0.07 ax | |
Effect | Page = 0.05 | Pmuscle = 0.55 | Page×muscle = 0.48 | |
Glu | 3–4 | 3.09 ± 0.13 ax | 2.95 ± 0.26 ax | 3.08 ± 0.18 ax |
6–7 | 3.17 ± 0.16 ax | 2.99 ± 0.26 ax | 3.11 ± 0.25 ax | |
9–10 | 3.15 ± 0.18 ax | 3.29 ± 0.17 ax | 3.34 ± 0.22 ax | |
Effect | Page < 0.05 | Pmuscle = 0.40 | Page×muscle = 0.46 | |
Gly | 3–4 | 0.81 ± 0.04 ax | 0.77 ± 0.06 ax | 0.83 ± 0.07 bx |
6–7 | 0.86 ± 0.04 ax | 0.83 ± 0.10 ax | 0.86 ± 0.05 bx | |
9–10 | 0.84 ± 0.05 ax | 0.89 ± 0.06 ax | 0.96 ± 0.05 ax | |
Effect | Page < 0.05 | Pmuscle = 0.19 | Page×muscle = 0.53 | |
Ala | 3–4 | 1.13 ± 0.05 ax | 1.07 ± 0.09 bx | 1.11 ± 0.07 bx |
6–7 | 1.16 ± 0.05 ax | 1.12 ± 0.11 abx | 1.15 ± 0.08 abx | |
9–10 | 1.15 ± 0.07 ax | 1.21 ± 0.07 ax | 1.26 ± 0.04 ax | |
Effect | Page < 0.05 | Pmuscle = 0.56 | Page×muscle = 0.52 | |
Val | 3–4 | 0.95 ± 0.05 ax | 0.90 ± 0.08 bx | 0.94 ± 0.08 ax |
6–7 | 1.00 ± 0.04 ax | 0.96 ± 0.07 abx | 0.99 ± 0.06 ax | |
9–10 | 0.99 ± 0.05 ax | 1.05 ± 0.05 ax | 1.04 ± 0.09 ax | |
Effect | Page < 0.05 | Pmuscle = 0.78 | Page×muscle = 0.37 | |
Met | 3–4 | 0.55 ± 0.03 ax | 0.52 ± 0.05 bx | 0.54 ± 0.04 ax |
6–7 | 0.56 ± 0.04 ax | 0.53 ± 0.05 abx | 0.54 ± 0.04 ax | |
9–10 | 0.54 ± 0.07 ax | 0.59 ± 0.03 ax | 0.56 ± 0.07 ax | |
Effect | Page = 0.38 | Pmuscle = 0.98 | Page×muscle = 0.42 | |
Ileu | 3–4 | 0.88 ± 0.04 ax | 0.84 ± 0.08 bx | 0.88 ± 0.07 ax |
6–7 | 0.93 ± 0.04 ax | 0.87 ± 0.07 bx | 0.91 ± 0.08 ax | |
9–10 | 0.91 ± 0.39 ax | 0.97 ± 0.04 ax | 0.96 ± 0.09 ax | |
Effect | Page < 0.05 | Pmuscle = 0.55 | Page×muscle = 0.36 | |
Leu | 3–4 | 1.67 ± 0.07 ax | 1.58 ± 0.13 bx | 1.64 ± 0.11 ax |
6–7 | 1.75 ± 0.09 ax | 1.64 ± 0.14 abx | 1.71 ± 0.13 ax | |
9–10 | 1.72 ± 0.11 ax | 1.79 ± 0.09 ax | 1.81 ± 0.13 ax | |
Effect | Page < 0.05 | Pmuscle = 0.43 | Page×muscle = 0.48 | |
Tyr | 3–4 | 0.73 ± 0.03 ax | 0.68 ± 0.06 bx | 0.71 ± 0.05 ax |
6–7 | 0.75 ± 0.04 ax | 0.70 ± 0.06 abx | 0.74 ± 0.07 ax | |
9–10 | 0.73 ± 0.06 ax | 0.78 ± 0.03 ax | 0.78 ± 0.07 ax | |
Effect | Page < 0.05 | Pmuscle = 0.55 | Page×muscle = 0.36 | |
Phe | 3–4 | 0.8 ± 0.04 ax | 0.75 ± 0.07 bx | 0.77 ± 0.05 bx |
6–7 | 0.81 ± 0.04 ax | 0.79 ± 0.06 abx | 0.83 ± 0.07 abx | |
9–10 | 0.82 ± 0.05 ax | 0.86 ± 0.03 ax | 0.87 ± 0.05 ax | |
Effect | Page < 0.05 | Pmuscle = 0.45 | Page×muscle = 0.46 | |
His | 3–4 | 1.06 ± 0.09 ax | 1.03 ± 0.09 bx | 1.03 ± 0.06 ax |
6–7 | 1.13 ± 0.03 ax | 1.10 ± 0.06 abx | 1.12 ± 0.05 ax | |
9–10 | 1.06 ± 0.09 ax | 1.13 ± 0.03 ax | 1.06 ± 0.16 ax | |
Effect | Page < 0.05 | Pmuscle = 0.88 | Page×muscle = 0.53 | |
Lys | 3–4 | 1.81 ± 0.08 ax | 1.72 ± 0.14 bx | 1.79 ± 0.12 ax |
6–7 | 1.85 ± 0.08 ax | 1.79 ± 0.16 abx | 1.84 ± 0.14 ax | |
9–10 | 1.84 ± 0.11 ax | 1.95 ± 0.11 ax | 1.93 ± 0.14 ax | |
Effect | Page < 0.05 | Pmuscle = 0.69 | Page×muscle = 0.51 | |
Arg | 3–4 | 1.24 ± 0.05 ax | 1.17 ± 0.12 bx | 1.24 ± 0.09 ax |
6–7 | 1.27 ± 0.04 ax | 1.22 ± 0.11 abx | 1.25 ± 0.10 ax | |
9–10 | 1.28 ± 0.08 ax | 1.36 ± 0.10 ax | 1.35 ± 0.10 ax | |
Effect | Page < 0.05 | Pmuscle = 0.66 | Page×muscle = 0.47 | |
Pro | 3–4 | 0.67 ± 0.06 ax | 0.64 ± 0.06 bx | 0.66 ± 0.03 bx |
6–7 | 0.71 ± 0.08 ax | 0.65 ± 0.05 bx | 0.69 ± 0.03 abx | |
9–10 | 0.71 ± 0.04 ax | 0.75 ± 0.06 ax | 0.74 ± 0.06 ax | |
Effect | Page < 0.05 | Pmuscle = 0.69 | Page×muscle = 0.41 | |
TAA | 3–4 | 19.03 ± 0.81 ax | 18.09 ± 1.57 bx | 18.35 ± 0.53 bx |
6–7 | 19.69 ± 0.88 ax | 18.79 ± 1.51 abx | 19.46 ± 1.38 bx | |
9–10 | 19.48 ± 1.17 ax | 20.50 ± 1.07 ax | 21.19 ± 0.44 ax | |
Effect | Page < 0.05 | Pmuscle = 0.59 | Page×muscle = 0.44 | |
EAA | 3–4 | 7.59 ± 0.33 ax | 7.20 ± 0.63 bx | 7.27 ± 0.18 bx |
6–7 | 7.86 ± 0.35 ax | 7.49 ± 0.62 abx | 7.77 ± 0.57 bx | |
9–10 | 7.78 ± 0.47 ax | 8.19 ± 0.39 ax | 8.45 ± 0.18 ax | |
Effect | Page < 0.05 | Pmuscle = 0.62 | Page×muscle = 0.44 | |
NEAA | 3–4 | 11.44 ± 0.48 ax | 10.90 ± 0.95 ax | 11.08 ± 0.36 bx |
6–7 | 11.83 ± 0.53 ax | 11.30 ± 0.91 ax | 11.69 ± 0.81 bx | |
9–10 | 11.69 ± 0.70 ax | 12.31 ± 0.68 ax | 12.75 ± 0.29 ax | |
Effect | Page < 0.05 | Pmuscle = 0.58 | Page×muscle = 0.44 | |
EAA/TAA | 3–4 | 39.88 ± 0.06 ax | 39.77 ± 0.15 ax | 39.61 ± 0.28 ax |
6–7 | 39.92 ± 0.25 ax | 39.87 ± 0.45 ax | 39.92 ± 0.24 ax | |
9–10 | 39.97 ± 0.20 ax | 39.95 ± 0.28 ax | 39.86 ± 0.36 ax | |
Effect | Page = 0.45 | Pmuscle = 0.65 | Page×muscle = 0.96 | |
EAA/NEAA | 3–4 | 66.33 ± 0.17 ax | 66.03 ± 0.43 ax | 65.59 ± 0.76 ax |
6–7 | 66.47 ± 0.69 ax | 66.32 ± 1.25 ax | 66.46 ± 0.66 ax | |
9–10 | 66.58 ± 0.56 ax | 66.53 ± 0.79 ax | 66.28 ± 1.00 ax | |
Effect | Page = 0.44 | Pmuscle = 0.67 | Page×muscle = 0.96 |
Component | Age Group (Year) | Muscle | ||
---|---|---|---|---|
PM | LT | ST | ||
Calcium (Ca) | 3–4 | 4.33 ± 0.55 ax | 3.69 ± 0.17 bx | 4.59 ± 0.19 ax |
6–7 | 4.40 ± 0.37 ax | 4.62 ± 0.61 ax | 4.37 ± 0.42 ax | |
9–10 | 4.89 ± 0.38 ax | 4.53 ± 0.69 abx | 4.33 ± 0.23 ax | |
Effect | Page = 0.49 | Pmuscle = 0.84 | Page×muscle = 0.75 | |
Phosphorus (P) | 3–4 | 219.00 ± 5.87 ax | 204.50 ± 6.856 bx | 204.40 ± 13.334 bx |
6–7 | 232.25 ± 9.81 ax | 226.00 ± 10.668 ax | 230.60 ± 14.673 ax | |
9–10 | 230.80 ± 9.78 ax | 202.00 ± 7.563 abx | 227.00 ± 17.720 abx | |
Effect | Page < 0.05 | Pmuscle= 0.17 | Page×muscle = 0.87 | |
Sodium (Na) | 3–4 | 54.45 ± 4.69 ax | 52.68 ± 5.41 ax | 55.56 ± 6.11 ax |
6–7 | 52.38 ± 8.99 ax | 50.20 ± 4.95 ax | 46.48 ± 6.48 ax | |
9–10 | 57.72 ± 6.68 ax | 45.74 ± 5.35 ay | 48.05 ± 7.54 ay | |
Effect | Page = 0.27 | Pmuscle = 0.25 | Page×muscle = 0.34 | |
Magnesium (Mg) | 3–4 | 23.82 ± 1.89 ax | 22.33 ± 0.98 ax | 22.98 ± 1.20 ax |
6–7 | 25.08 ± 1.35 ax | 24.12 ± 1.72 ay | 25.26 ± 2.02 ax | |
9–10 | 25.18 ± 1.02 ax | 23.12 ± 1.01 ax | 24.73 ± 1.53 ax | |
Effect | Page = 0.06 | Pmuscle = 0.14 | Page×muscle = 0.81 | |
Potassium (K) | 3–4 | 381.20 ± 10.14 bx | 358.25 ± 11.50 bx | 368.40 ± 12.43 ax |
6–7 | 412.75 ± 11.01 axy | 402.60 ± 12.47 ay | 422.80 ± 15.29 ax | |
9–10 | 401.20 ± 7.33 abx | 377.40 ± 11.22 abx | 425.25 ± 13.82 ax | |
Effect | Page < 0.05 | Pmuscle = 0.47 | Page×muscle = 0.93 | |
Zinc (Zn) | 3–4 | 2.521 ± 0.588 ax | 3.032 ± 0.252 ax | 2.731 ± 0.588 bx |
6–7 | 2.653 ± 0.697 ay | 3.113 ± 0.200 axy | 3.443 ± 0.391 ax | |
9–10 | 2.644 ± 0.470 ax | 2.942 ± 0.141 ax | 2.691 ± 0.155 bx | |
Effect | Page = 0.54 | Pmuscle= 0.08 | Page×muscle = 0.67 | |
Iron (Fe) | 3–4 | 1.442 ± 0.264 bx | 1.202 ± 0.102 bx | 1.282 ± 0.427 bx |
6–7 | 1.851 ± 0.596 abx | 1.844 ± 0.473 ax | 2.351 ± 0.649 ax | |
9–10 | 2.201 ± 0.384 ax | 1.823 ± 0.341 ax | 1.674 ± 0.272 abx | |
Effect | Page < 0.05 | Pmuscle= 0.51 | Page×muscle = 0.36 | |
Lead (Pb) | 3–4 | 0.003 ± 0.001 ax | 0.003 ± 0.000 ax | 0.001 ± 0.000 ax |
6–7 | 0.001 ± 0.000 ax | 0.002 ± 0.000 ax | 0.002 ± 0.000 ax | |
9–10 | 0.002 ± 0.000 ax | 0.002 ± 0.000 ax | 0.003 ± 0.001 ax | |
Effect | Page < 0.05 | Pmuscle= 0.39 | Page×muscle = 0.78 | |
Selenium (Se) | 3–4 | 0.008 ± 0.001 ax | 0.009 ± 0.001 ax | 0.008 ± 0.001 ax |
6–7 | 0.009 ± 0.000 ax | 0.010 ± 0.001 ax | 0.010 ± 0.000 ax | |
9–10 | 0.009 ± 0.001 ax | 0.010 ± 0.011 ax | 0.009 ± 0.001 ax | |
Effect | Page < 0.05 | Pmuscle = 0.28 | Page×muscle = 0.86 | |
Copper (Cu) | 3–4 | 0.187 ± 0.024 ax | 0.175 ± 0.013 ax | 0.145 ± 0.071 ax |
6–7 | 0.086 ± 0.003 ax | 0.081 ± 0.009 abx | 0.123 ± 0.067 ax | |
9–10 | 0.105 ± 0.059 ax | 0.056 ± 0.009 bx | 0.071 ± 0.002 ax | |
Effect | Page < 0.05 | Pmuscle = 0.48 | Page×muscle = 0.79 |
Fatty Acid | Age (Year) | Muscle | ||
---|---|---|---|---|
PM | LT | ST | ||
Saturated fatty acid | ||||
C4:0 | 3–4 | 0.06 ± 0.01 ay | 0.03 ± 0.01 ay | 0.18 ± 0.12 ax |
6–7 | 0.03 ± 0.01 ax | 0.01 ± 0.00 ax | 0.05 ± 0.04 bx | |
9–10 | 0.06 ± 0.05 ax | 0.02 ± 0.01 ax | 0.07 ± 0.05 abx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
C6:0 | 3–4 | 0.01 ± 0.00 | ND | 0.02 ± 0.01 |
6–7 | 0.01 ± 0.00 | ND | 0.01 ± 0.00 | |
9–10 | 0.02 ± 0.03 | ND | 0.24 ± 0.02 | |
Effect | Page = 0.28 | Pmuscle = 0.14 | Page×muscle = 0.67 | |
C8:0 | 3–4 | 0.02 ± 0.01 ax | 0.05 ± 0.03 ax | 0.02 ± 0.01 ax |
6–7 | 0.03 ± 0.01 ax | 0.03 ± 0.00 ax | 0.02 ± 0.01 ax | |
9–10 | 0.03 ± 0.02 ax | 0.03 ± 0.01 ax | 0.02 ± 0.01 ax | |
Effect | Page = 0.39 | Pmuscle < 0.05 | Page×muscle = 0.47 | |
C10:0 | 3–4 | 0.15 ± 0.04 ax | 0.18 ± 0.09 ax | 0.26 ± 0.12 ax |
6–7 | 0.12 ± 0.04 ax | 0.14 ± 0.04 ax | 0.12 ± 0.03 bx | |
9–10 | 0.15 ± 0.09 ax | 0.12 ± 0.05 ax | 0.14 ± 0.02 bx | |
Effect | Page < 0.05 | Pmuscle = 0.18 | Page×muscle = 0.11 | |
C11:0 | 3–4 | ND | ND | ND |
6–7 | ND | ND | ND | |
9–10 | ND | ND | ND | |
C12:0 | 3–4 | 0.28 ± 0.03 ax | 0.42 ± 0.20 ax | 0.25 ± 0.03 ax |
6–7 | 0.38 ± 0.15 ax | 0.37 ± 0.06 ax | 0.27 ± 0.04 ax | |
9–10 | 0.43 ± 0.24 ax | 0.42 ± 0.14 ax | 0.36 ± 0.15 ax | |
Effect | Page = 0.21 | Pmuscle = 0.12 | Page×muscle = 0.72 | |
C13:0 | 3–4 | 0.02 ± 0.01 axy | 0.03 ± 0.02 ax | 0.01 ± 0.00 ay |
6–7 | 0.03 ± 0.01 ax | 0.03 ± 0.01 ax | 0.01 ± 0.00 ax | |
9–10 | 0.03 ± 0.01 ax | 0.02 ± 0.01 ax | 0.02 ± 0.01 ax | |
Effect | Page = 0.65 | Pmuscle < 0.05 | Page×muscle = 0.43 | |
C14:0 | 3–4 | 5.50 ± 0.56 ay | 7.54 ± 1.59 ax | 4.84 ± 1.29 by |
6–7 | 7.34 ± 1.93 ax | 7.75 ± 0.57 ax | 6.56 ± 1.09 abx | |
9–10 | 7.77 ± 2.12 ax | 9.08 ± 2.17 ax | 7.87 ± 2.00 ax | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.73 | |
C15:0 | 3–4 | 0.61 ± 0.12 axy | 0.71 ± 0.21 ax | 0.42 ± 0.06 ay |
6–7 | 0.75 ± 0.09 ax | 0.68 ± 0.19 axy | 0.50 ± 0.05 ay | |
9–10 | 0.68 ± 0.22 ax | 0.65 ± 0.19 ax | 0.54 ± 0.26 ax | |
Effect | Page = 0.45 | Pmuscle < 0.05 | Page×muscle = 0.62 | |
C16:0 | 3–4 | 25.10 ± 1.15 bx | 26.40 ± 0.95 cx | 22.22 ± 1.96 by |
6–7 | 30.99 ± 2.35 ax | 30.33 ± 1.07 bx | 28.16 ± 4.21 ax | |
9–10 | 32.46 ± 2.07 ax | 34.03 ± 1.4 ax | 29.66 ± 4.27 ax | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.82 | |
C17:0 | 3–4 | 0.80 ± 0.12 ax | 0.88 ± 0.18 ax | 0.57 ± 0.05 ay |
6–7 | 0.84 ± 0.11 ax | 0.73 ± 0.15 axy | 0.57 ± 0.11 ay | |
9–10 | 0.76 ± 0.18 ax | 0.69 ± 0.16 ax | 0.53 ± 0.17 ax | |
Effect | Page = 0.26 | Pmuscle < 0.05 | Page×muscle = 0.61 | |
C18:0 | 3–4 | 20.59 ± 2.11 ax | 21.12 ± 3.79 ax | 14.25 ± 1.84 ay |
6–7 | 17.29 ± 5.46 abx | 16.14 ± 4.80 abx | 12.52 ± 1.67 abx | |
9–10 | 13.67 ± 3.14 bx | 13.43 ± 2.93 bx | 9.89 ± 1.98 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.76 | |
C20:0 | 3–4 | 0.28 ± 0.03 ax | 0.26 ± 0.06 ax | 0.18 ± 0.02 ay |
6–7 | 0.24 ± 0.08 ax | 0.23 ± 0.06 ax | 0.18 ± 0.02 ax | |
9–10 | 0.19 ± 0.06 ax | 0.19 ± 0.05 ax | 0.13 ± 0.02 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.82 | |
C21:0 | 3–4 | 0.55 ± 0.06 ax | 0.66 ± 0.07 ax | 0.59 ± 0.16 ax |
6–7 | 0.77 ± 0.25 ax | 0.92 ± 0.29 ax | 0.84 ± 0.27 ax | |
9–10 | 0.68 ± 0.22 ax | 0.67 ± 0.17 ax | 0.62 ± 0.13 ax | |
Effect | Page < 0.05 | Pmuscle = 0.53 | Page×muscle = 0.92 | |
C22:0 | 3–4 | 0.11 ± 0.02 axy | 0.06 ± 0.02 ay | 0.15 ± 0.05 ax |
6–7 | 0.06 ± 0.02 bx | 0.05 ± 0.006 ax | 0.08 ± 0.04 bx | |
9–10 | 0.05 ± 0.02 bx | 0.36 ± 0.02 ax | 0.05 ± 0.03 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
C23:0 | 3–4 | 1.65 ± 0.40 ay | 0.52 ± 0.14 az | 3.06 ± 1.11 ax |
6–7 | 0.68 ± 0.03 bxy | 0.49 ± 0.33 ay | 1.56 ± 0.86 abx | |
9–10 | 0.85 ± 0.39 bxy | 0.34 ± 0.08 ay | 1.41 ± 0.93 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.06 | |
C24:0 | 3–4 | 0.07 ± 0.01 ay | 0.03 ± 0.01 ay | 0.12 ± 0.03 ax |
6–7 | 0.03 ± 0.02 bx | 0.03 ± 0.01 ax | 0.06 ± 0.04 abx | |
9–10 | 0.03 ± 0.02 bx | 0.02 ± 0.01 ax | 0.03 ± 0.02 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
Mono-unsaturated fatty acids | ||||
C14:1 | 3–4 | 0.09 ± 0.03 ax | 0.14 ± 0.06 ax | 0.14 ± 0.07 bx |
6–7 | 0.12 ± 0.05 ax | 0.15 ± 0.03 ax | 0.22 ± 0.05 abx | |
9–10 | 0.15 ± 0.16 ax | 0.23 ± 0.11 ax | 0.31 ± 0.09 ax | |
Effect | Page < 0.05 | Pmuscle = 0.09 | Page×muscle = 0.85 | |
C15:1 | 3–4 | ND | ND | ND |
6–7 | ND | ND | ND | |
9–10 | ND | ND | ND | |
C16:1 | 3–4 | 2.47 ± 0.39 bx | 2.81 ± 0.52 ax | 2.98 ± 0.79 bx |
6–7 | 3.54 ± 0.77 ax | 4.20 ± 1.79 ax | 4.12 ± 0.33 ax | |
9–10 | 3.95 ± 0.64 ax | 4.11 ± 0.81 ax | 4.83 ± 0.91 ax | |
Effect | Page < 0.05 | Pmuscle = 0.15 | Page×muscle = 0.88 | |
C17:1 | 3–4 | 0.41 ± 0.02 bx | 0.45 ± 0.07 ax | 0.45 ± 0.07 ax |
6–7 | 0.50 ± 0.05 abx | 0.49 ± 0.05 ax | 0.52 ± 0.05 ax | |
9–10 | 0.51 ± 0.07 ax | 0.48 ± 0.06 ax | 0.53 ± 0.11 ax | |
Effect | Page < 0.05 | Pmuscle = 0.56 | Page×muscle = 0.87 | |
C18:1n9t | 3–4 | 0.31 ± 0.02 ax | 0.28 ± 0.11 ax | 0.37 ± 0.13 ax |
6–7 | 0.35 ± 0.06 ax | 0.23 ± 0.13 ax | 0.29 ± 0.04 ax | |
9–10 | 0.29 ± 0.08 axy | 0.19 ± 0.07 ay | 0.31 ± 0.04 ax | |
Effect | Page = 0.24 | Pmuscle < 0.05 | Page×muscle = 0.67 | |
C18:1n9c | 3–4 | 30.67 ± 1.25 ax | 31.12 ± 1.59 ax | 31.58 ± 3.25 ax |
6–7 | 29.97 ± 0.91 ay | 32.25 ± 2.17 axy | 34.30 ± 2.26 ax | |
9–10 | 29.99 ± 1.91 ax | 31.05 ± 2.83 ax | 34.10 ± 4.63 ax | |
Effect | Page = 0.56 | Pmuscle < 0.05 | Page×muscle = 0.56 | |
C20:1 | 3–4 | 0.22 ± 0.03 ax | 0.21 ± 0.05 ax | 0.26 ± 0.04 ax |
6–7 | 0.21 ± 0.04 ay | 0.26 ± 0.06 axy | 0.31 ± 0.05 ax | |
9–10 | 0.25 ± 0.05 ax | 0.26 ± 0.04 ax | 0.32 ± 0.09 ax | |
Effect | Page = 0.08 | Pmuscle < 0.05 | Page×muscle = 0.75 | |
C22:1 | 3–4 | 0.07 ± 0.17 ay | 0.04 ± 0.01 ay | 0.27 ± 0.12 ax |
6–7 | 0.05 ± 0.17 bx | 0.04 ± 0.01 ax | 0.06 ± 0.04 bx | |
9–10 | 0.38 ± 0.16 bx | 0.02 ± 0.01 ax | 0.06 ± 0.05 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
C24:1 | 3–4 | 0.03 ± 0.01 ax | 0.02 ± 0.01 abx | 0.03 ± 0.01 ax |
6–7 | 0.04 ± 0.02 ax | 0.04 ± 0.01 ax | 0.05 ± 0.02 ax | |
9–10 | 0.02 ± 0.01 ax | 0.02 ± 0.01 bx | 0.02 ± 0.01 ax | |
Effect | Page < 0.05 | Pmuscle = 0.70 | Page×muscle = 0.96 | |
Poly-unsaturated fatty acids | ||||
C18:2n6t | 3–4 | 0.06 ± 0.01 ax | 0.03 ± 0.02 ax | ND |
6–7 | 0.05 ± 0.02 ax | 0.03 ± 0.01 axy | 0.01 ± 0.00 ay | |
9–10 | 0.06 ± 0.05 ax | 0.02 ± 0.01 ax | 0.02 ± 0.01 ax | |
Effect | Page = 0.93 | Pmuscle = 0.05 | Page×muscle = 0.93 | |
C18:2n6c | 3–4 | 7.44 ± 0.64 ay | 4.14 ± 0.69 az | 13.71 ± 3.12 ax |
6–7 | 3.89 ± 0.33 bxy | 2.98 ± 0.99 aby | 6.51 ± 2.66 bx | |
9–10 | 4.80 ± 2.02 bxy | 2.66 ± 0.44 by | 6.21 ± 3.29 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
C18:3n6 | 3–4 | 0.06 ± 0.01 axy | 0.04 ± 0.01 ay | 0.08 ± 0.03 ax |
6–7 | 0.05 ± 0.01 ax | 0.04 ± 0.01 ax | 0.06 ± 0.02 ax | |
9–10 | 0.05 ± 0.01 axy | 0.04 ± 0.01 ay | 0.06 ± 0.01 ax | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.48 | |
C18:3n3 | 3–4 | 1.38 ± 0.18 ax | 1.38 ± 0.28 ax | 1.45 ± 0.34 ax |
6–7 | 1.05 ± 0.34 ax | 0.82 ± 0.24 bx | 1.06 ± 0.18 bx | |
9–10 | 1.09 ± 0.18 ax | 0.83 ± 0.10 by | 1.02 ± 0.21 bxy | |
Effect | Page < 0.05 | Pmuscle = 0.13 | Page×muscle = 0.76 | |
C20:2 | 3–4 | 0.08 ± 0.01 ay | 0.05 ± 0.01 az | 0.12 ± 0.03 ax |
6–7 | 0.03 ± 0.01 bx | 0.03 ± 0.01 ax | 0.05 ± 0.02 bx | |
9–10 | 0.05 ± 0.03 abx | 0.03 ± 0.01 ax | 0.05 ± 0.03 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.06 | |
C20:3n6 | 3–4 | 0.23 ± 0.03 ay | 0.09 ± 0.03 az | 0.46 ± 1.38 ax |
6–7 | 0.11 ± 0.01 bxy | 0.08 ± 0.04 ay | 0.24 ± 0.13 bx | |
9–10 | 0.12 ± 0.05 bxy | 0.06 ± 0.11 ay | 0.18 ± 0.11 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
C20:3n3 | 3–4 | 0.05 ± 0.01 ax | 0.05 ± 0.01 ax | 0.04 ± 0.02 ax |
6–7 | 0.04 ± 0.01 ax | 0.03 ± 0.01 bx | 0.04 ± 0.00 ax | |
9–10 | 0.38 ± 0.01 ax | 0.03 ± 0.00 bx | 0.04 ± 0.02 ax | |
Effect | Page < 0.05 | Pmuscle = 0.68 | Page×muscle = 0.36 | |
C20:4 | 3–4 | 0.03 ± 0.01 ay | 0.01 ± 0.01 ay | 0.06 ± 0.02 ax |
6–7 | 0.01 ± 0.00 bx | 0.01 ± 0.00 ax | 0.02 ± 0.01 bx | |
9–10 | 0.01 ± 0.00 bx | 0.01 ± 0.00 ax | 0.01 ± 0.01 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
C22:2n6 | 3–4 | 0.05 ± 0.02 ax | 0.03 ± 0.01 ax | 0.05 ± 0.03 ax |
6–7 | 0.04 ± 0.02 ax | 0.03 ± 0.01 ax | 0.04 ± 0.01 ax | |
9–10 | 0.04 ± 0.13 ax | 0.26 ± 0.08 ax | 0.04 ± 0.02 ax | |
Effect | Page = 0.15 | Pmuscle < 0.05 | Page×muscle = 0.92 | |
C20:5n3 | 3–4 | 0.46 ± 0.08 ax | 0.15 ± 0.03 ay | 0.67 ± 0.31 ax |
6–7 | 0.27 ± 0.03 bxy | 0.19 ± 0.13 ay | 0.53 ± 0.26 ax | |
9–10 | 0.27 ± 0.09 bxy | 0.11 ± 0.03 ay | 0.38 ± 0.18 ax | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.36 | |
C22:6n3 | 3–4 | 0.08 ± 0.01 ax | 0.03 ± 0.01 ax | 0.09 ± 0.08 ax |
6–7 | 0.07 ± 0.04 ax | 0.04 ± 0.02 ax | 0.09 ± 0.05 ax | |
9–10 | 0.05 ± 0.03 ax | 0.04 ± 0.00 ax | 0.11 ± 0.06 ax | |
Effect | Page = 0.98 | Pmuscle < 0.05 | Page×muscle = 0.83 | |
SFA | 3–4 | 55.76 ± 1.55 ay | 58.90 ± 2.08 ax | 47.17 ± 1.89 az |
6–7 | 59.58 ± 1.56 ax | 57.96 ± 5.41 axy | 51.53 ± 5.65 ay | |
9–10 | 58.15 ± 3.97 axy | 59.77 ± 2.97 ax | 51.42 ± 7.57 ay | |
Effect | Page = 0.20 | Pmuscle < 0.05 | Page×muscle = 0.63 | |
UFA | 3–4 | 44.23 ± 4.53 ay | 41.10 ± 2.07 az | 52.83 ± 1.90 ax |
6–7 | 40.42 ± 1.56 ay | 42.03 ± 5.41 axy | 48.47 ± 5.66 ax | |
9–10 | 41.85 ± 3.97 axy | 40.23 ± 2.97 ay | 48.58 ± 7.57 ax | |
Effect | Page = 0.20 | Pmuscle < 0.05 | Page×muscle = 0.64 | |
MUFA | 3–4 | 34.30 ± 1.51 ax | 35.09 ± 1.86 ax | 36.09 ± 3.85 ax |
6–7 | 34.81 ± 1.03 ay | 37.74 ± 4.17 axy | 39.86 ± 2.68 ax | |
9–10 | 35.26 ± 2.01 ax | 36.37 ± 2.87 ax | 40.48 ± 5.25 ax | |
Effect | Page = 0.09 | Pmuscle < 0.05 | Page×muscle = 0.65 | |
PUFA | 3–4 | 9.94 ± 0.89 ay | 6.02 ± 0.90 az | 16.75 ± 3.95 ax |
6–7 | 5.61 ± 0.59 by | 4.30 ± 1.32 bxy | 8.61 ± 3.14 bx | |
9–10 | 6.59 ± 2.29 bxy | 3.85 ± 0.44 by | 8.11 ± 3.76 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
UFA/SFA | 3–4 | 0.18 ± 0.19 ay | 0.10 ± 0.01 ay | 0.36 ± 0.09 ax |
6–7 | 0.10 ± 0.01 by | 0.08 ± 0.03 ay | 0.17 ± 0.07 bx | |
9–10 | 0.12 ± 0.48 bxy | 0.07 ± 0.01 ay | 0.17 ± 0.09 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
n-6/n-3 PUFA | 3–4 | 3.93 ± 0.29 ay | 2.71 ± 0.47 az | 6.30 ± 0.87 ax |
6–7 | 2.98 ± 0.70 ax | 2.94 ± 0.54 ax | 3.89 ± 1.17 bx | |
9–10 | 3.33 ± 0.98 ax | 2.79 ± 0.65 ax | 3.98 ± 1.48 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
n-6 PUFA | 3–4 | 7.53 ± 0.66 ay | 4.18 ± 0.69 az | 13.77 ± 3.13 ax |
6–7 | 3.95 ± 0.32 bxy | 3.03 ± 0.99 aby | 6.55 ± 2.66 bx | |
9–10 | 4.87 ± 2.01 bxy | 2.69 ± 0.45 by | 6.24 ± 3.27 bx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
n-3 PUFA | 3–4 | 1.92 ± 0.21 ax | 1.57 ± 0.31 ax | 2.00 ± 0.65 ax |
6–7 | 1.39 ± 0.35 bxy | 1.05 ± 0.33 by | 1.63 ± 0.38 ax | |
9–10 | 1.42 ± 0.22 bx | 0.98 ± 0.12 by | 1.50 ± 0.39 ax | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.97 |
Measurement | Age (Year) | Muscle | ||
---|---|---|---|---|
PM | LT | ST | ||
Ultimate pH | 3–4 | 5.55 ± 0.12 ay | 6.08 ± 0.29 ax | 6.12 ± 0.33 ax |
6–7 | 5.52 ± 0.15 ay | 5.75 ± 0.12 abx | 5.67 ± 0.11 bx | |
9–10 | 5.61 ± 0.18 ax | 5.49 ± 0.10 bx | 5.84 ± 0.34 abx | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle < 0.05 | |
Cooking loss% | 3–4 | 30.90 ± 1.27 ax | 28.93 ± 1.24 ay | 27.64 ± 0.62 ay |
6–7 | 28.83 ± 0.70 bx | 27.66 ± 1.10 abxy | 26.76 ± 0.65 ay | |
9–10 | 27.51 ± 1.40 bx | 26.53 ± 1.31 bx | 24.64 ± 0.81 by | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.64 | |
Shear value (N) | 3–4 | 84.57 ± 3.32 cy | 80.74 ± 1.65 cy | 93.52 ± 2.53 cx |
6–7 | 102.51 ± 6.64 by | 93.66 ± 2.81 by | 112.36 ± 7.88 bx | |
9–10 | 121.27 ± 6.29 ay | 115.80 ± 4.17 ay | 132.49 ± 4.95 ax | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.67 | |
Color parameters | ||||
L* (lightness) | 3–4 | 39.78 ± 1.02 ax | 38.77 ± 1.87 axy | 36.75 ± 2.28 ay |
6–7 | 37.04 ± 1.45 bxy | 38.06 ± 2.01 ax | 35.34 ± 3.25 aby | |
9–10 | 36.14 ± 1.73 bxy | 37.61 ± 3.05 ax | 34.72 ± 2.79 by | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.82 | |
a* (redness) | 3–4 | 17.13 ± 0.88 bx | 17.74 ± 1.91 bx | 17.29 ± 0.99 ax |
6–7 | 19.31 ± 1.06 abx | 18.92 ± 3.79 bx | 17.36 ± 1.56 ax | |
9–10 | 20.01 ± 2.43 axy | 23.08 ± 0.99 ax | 17.99 ± 1.72 ay | |
Effect | Page < 0.05 | Pmuscle < 0.05 | Page×muscle = 0.16 | |
b* (yellowness) | 3–4 | 8.12 ± 0.47 bx | 9.71 ± 2.68 ax | 8.32 ± 1.25 ax |
6–7 | 9.22 ± 0.73 bxy | 10.10 ± 1.72 ax | 7.40 ± 0.82 ay | |
9–10 | 10.62 ± 0.98 ax | 10.59 ± 1.07 ax | 8.42 ± 1.43 ax | |
Effect | Page= 0.13 | Pmuscle < 0.05 | Page×muscle = 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, R.; Na, Q.; Wu, D.; Wu, X.; Ming, L.; Ji, R. Effects of Age and Muscle Type on the Chemical Composition and Quality Characteristics of Bactrian Camel (Camelus bactrianus) Meat. Foods 2022, 11, 1021. https://doi.org/10.3390/foods11071021
Si R, Na Q, Wu D, Wu X, Ming L, Ji R. Effects of Age and Muscle Type on the Chemical Composition and Quality Characteristics of Bactrian Camel (Camelus bactrianus) Meat. Foods. 2022; 11(7):1021. https://doi.org/10.3390/foods11071021
Chicago/Turabian StyleSi, Rendalai, Qin Na, Dandan Wu, Xiaoyun Wu, Liang Ming, and Rimutu Ji. 2022. "Effects of Age and Muscle Type on the Chemical Composition and Quality Characteristics of Bactrian Camel (Camelus bactrianus) Meat" Foods 11, no. 7: 1021. https://doi.org/10.3390/foods11071021
APA StyleSi, R., Na, Q., Wu, D., Wu, X., Ming, L., & Ji, R. (2022). Effects of Age and Muscle Type on the Chemical Composition and Quality Characteristics of Bactrian Camel (Camelus bactrianus) Meat. Foods, 11(7), 1021. https://doi.org/10.3390/foods11071021