Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food
Abstract
:1. Introduction
2. Sensory-Based Flavor Characteristics
3. Key Processing Steps Associated with Flavors
3.1. Microbial Diversity Involved in Saccharification and Fermentation
3.2. Distillation and Aging
4. Volatile Compositions of Baijiu and Whisky
4.1. Alcohols, Esters, Aldehydes
4.2. Acids
4.3. Sulfur Compounds
5. Instrumental Analysis Methods
6. Health Potentials
6.1. Within the Spirits
6.1.1. Acids and Esters
6.1.2. Phenolic Compounds
6.1.3. Other Compounds
6.2. Overall Effects
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistics of People’s Republic of China. National Data. 2021. Available online: https://data.stats.gov.cn/easyquery.htm?cn=A01&zb=A020909&sj=202306 (accessed on 26 November 2022).
- Sun, J.; Wang, Z.; Sun, B. Low Quantity but Critical Contribution to Flavor: Review of The Current Understanding of Volatile Sulfur-containing Compounds in Baijiu. J. Food Compos. Anal. 2021, 103, 104079. [Google Scholar] [CrossRef]
- Liu, H.; Sun, B. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Cao, X.; Cheng, J.; Li, L.; Zhang, T.; Wu, Q.; Xiang, P.; Shen, C.; Li, Q. Chinese Baijiu: The Perfect Works of Microorganisms. Front. Microbiol. 2022, 13, 919044. [Google Scholar] [CrossRef]
- Wang, L.; Fan, S.; Yan, Y.; Yang, L.; Chen, S.; Xu, Y. Characterization of Potent Odorants Causing a Pickle-like Off-Odor in Moutai-Aroma Type Baijiu by Comparative Aroma Extract Dilution Analysis, Quantitative Measurements, Aroma Addition, and Omission Studies. J. Agric. Food Chem. 2020, 68, 1666–1677. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Quantitative Analysis of Pyrazines and Their Perceptual Interactions in Soy Sauce Aroma Type Baijiu. Foods 2021, 10, 441. [Google Scholar] [CrossRef]
- Wei, Y.; Zou, W.; Shen, C.H.; Yang, J.G. Basic flavor types and component characteristics of Chinese traditional liquors: A review. J. Food Sci. 2020, 85, 4096–4107. [Google Scholar] [CrossRef]
- Zhao, D.; Shi, D.-m.; Sun, J.; Li, A.; Sun, B.; Zhao, M.; Chen, F.; Sun, X.; Li, H.; Huang, M.; et al. Characterization of key aroma compounds in Gujinggong Chinese Baijiu by gas chromatography-olfactometry, quantitative measurements, and sensory evaluation. Food Res. Int. 2018, 105, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Palmer, G.H. BEVERAGES | Distilled. In Encyclopedia of Grain Science; Academic Press: Cambridge, MA, USA, 2004; pp. 96–108. [Google Scholar]
- Daute, M.; Jack, F.; Harrison, B.; Walker, G. Experimental Whisky Fermentations: Influence of Wort Pretreatments. Foods 2021, 10, 2755. [Google Scholar] [CrossRef] [PubMed]
- Waymark, C.; Hill, A.E. The Influence of Yeast Strain on Whisky New Make Spirit Aroma. Fermentation 2021, 7, 311. [Google Scholar] [CrossRef]
- Reid, S.J.; Speers, R.A.; Willoughby, N.; Lumsden, W.B.; Maskell, D.L. Pre-fermentation of malt whisky wort using Lactobacillus plantarum and its influence on new-make spirit character. Food Chem. 2020, 320, 126605. [Google Scholar] [CrossRef]
- Dolan, T. Some aspects of the impact of brewing science on Scotch malt whisky production. J. Inst. Brew. 1976, 82, 177–181. [Google Scholar] [CrossRef]
- Graeme, W.; Annie, H. Saccharomyces cerevisiae in the Production of Whisk(e)y. Beverages 2016, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Wilson; Nicholas, R. The Effect of Lactic Acid Bacteria on Congener Composition and Sensory Characteristics of Scotch Malt Whisky. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2008. [Google Scholar]
- Buglass, A.J. Whiskeys. In Handbook of Alcoholic Beverages; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 515–534. [Google Scholar]
- Fan, W.; Qian, M.C. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors. J. Agric. Food Chem. 2005, 53, 7931–7938. [Google Scholar] [CrossRef]
- Jia, W.; Fan, Z.; Du, A.; Shi, L.; Ren, J. Characterisation of key odorants causing honey aroma in Feng-flavour Baijiu during the 17-year ageing process by multivariate analysis combined with foodomics. Food Chem. 2022, 374, 131764. [Google Scholar] [CrossRef]
- Deng, Y.; Xiong, A.; Zhao, K.; Hu, Y.; Kuang, B.; Xiong, X.; Yang, Z.; Yu, Y.; Zheng, Q. Mechanisms of the regulation of ester balance between oxidation and esterification in aged Baijiu. Sci. Rep. 2020, 10, 17169. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zeng, Y.; Sun, Q.; Zhang, W.; Wang, S.; Shen, C.; Shi, B. Insights into the mechanism of flavor compound changes in strong flavor baijiu during storage by using the density functional theory and molecular dynamics simulation. Food Chem. 2022, 373, 131522. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fan, W.; Xu, Y. Volatile compounds sorption during the aging of Chinese Liquor (Baijiu) using Pottery Powder. Food Chem. 2021, 345, 128705. [Google Scholar] [CrossRef] [PubMed]
- Roullier-Gall, C.; Signoret, J.; Hemmler, D.; Witting, M.A.; Kanawati, B.; Schäfer, B.; Gougeon, R.D.; Schmitt-Kopplin, P. Usage of FT-ICR-MS Metabolomics for Characterizing the Chemical Signatures of Barrel-Aged Whisky. Front. Chem. 2018, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Flamini, R.; Panighel, A.; De Marchi, F. Mass spectrometry in the study of wood compounds released in the barrel-aged wine and spirits. Mass Spectrom. Rev. 2021, 42, e21754. [Google Scholar] [CrossRef]
- Singleton, V.L. Some Aspects of the Wooden Container as a Factor in Wine Maturation. In Chemistry of Winemaking; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1974; Volume 137, pp. 254–277. [Google Scholar]
- Glabasnia, A.; Hofmann, T. Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines. J. Agric. Food Chem. 2006, 54, 3380–3390. [Google Scholar] [CrossRef]
- Gollihue, J.; Richmond, M.; Wheatley, H.; Pook, V.G.; Nair, M.; Kagan, I.A.; DeBolt, S. Liberation of recalcitrant cell wall sugars from oak barrels into bourbon whiskey during aging. Sci. Rep. 2018, 8, 15899. [Google Scholar] [CrossRef] [Green Version]
- Wanikawa, A.; Hosoi, K.; Kato, T.; Nakagawa, K.-i. Identification of green note compounds in malt whisky using multidimensional gas chromatography. Flavour Fragr. J. 2002, 17, 207–211. [Google Scholar] [CrossRef]
- Kerley, T.; Munafo, J.P., Jr. Changes in Tennessee Whiskey Odorants by the Lincoln County Process. J.Agric. Food Chem. 2020, 68, 9759–9767. [Google Scholar] [CrossRef]
- Kyraleou, M.; Herb, D.; O’Reilly, G.; Conway, N.; Bryan, T.; Kilcawley, K.N. The Impact of Terroir on the Flavour of Single Malt Whisk(e)y New Make Spirit. Foods 2021, 10, 443. [Google Scholar] [CrossRef]
- Ochiai, N.; Sasamoto, K.; MacNamara, K. Characterization of sulfur compounds in whisky by full evaporation dynamic headspace and selectable one-dimensional/two-dimensional retention time locked gas chromatography–mass spectrometry with simultaneous element-specific detection. J. Chromatogr. A 2012, 1270, 296–304. [Google Scholar] [CrossRef]
- Jeleń, H.H.; Majcher, M.; Szwengiel, A. Key odorants in peated malt whisky and its differentiation from other whisky types using profiling of flavor and volatile compounds. LWT 2019, 107, 56–63. [Google Scholar] [CrossRef]
- Poisson, L.; Schieberle, P. Characterization of the key aroma compounds in an american bourbon whisky by quantitative measurements, aroma recombination, and omission studies. J. Agric. Food Chem. 2008, 56, 5820–5826. [Google Scholar] [CrossRef]
- Genthner-Kreger, E.; Cadwallader, K.R. Identification of Rotundone as an Important Contributor to the Flavor of Oak-Aged Spirits. Molecules 2021, 26, 4368. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; Garrouste, C.; Absalon, C.; Nonier, M.F.; Vivas, N.; Vivas, N. Development of a Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry Method for Quantifying Nitrogen-Heterocyclic Volatile Aroma Compounds: Application to Spirit and Wood Matrices. J. Agric. Food Chem. 2019, 67, 13694–13705. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ming, Y.; Li, Y.; Huang, M.; Luo, S.; Li, H.; Li, H.; Wu, J.; Sun, X.; Luo, X. Characterization and comparative study of the key odorants in Caoyuanwang mild-flavor style Baijiu using gas chromatography–olfactometry and sensory approaches. Food Chem. 2021, 347, 129028. [Google Scholar] [CrossRef]
- Sun, X.; Qian, Q.; Xiong, Y.; Xie, Q.; Yue, X.; Liu, J.; Wei, S.; Yang, Q. Characterization of the key aroma compounds in aged Chinese Xiaoqu Baijiu by means of the sensomics approach. Food Chem. 2022, 384, 132452. [Google Scholar] [CrossRef]
- Chen, S.; Tang, J.; Fan, S.; Zhang, J.; Chen, S.; Liu, Y.; Yang, Q.; Xu, Y. Comparison of Potent Odorants in Traditional and Modern Types of Chinese Xiaoqu Liquor (Baijiu) Based on Odor Activity Values and Multivariate Analyses. Foods 2021, 10, 2392. [Google Scholar] [CrossRef]
- Wang, G.; Jing, S.; Wang, X.; Zheng, F.; Li, H.; Sun, B.; Li, Z. Evaluation of the Perceptual Interaction among Ester Odorants and Nonvolatile Organic Acids in Baijiu by GC-MS, GC-O, Odor Threshold, and Sensory Analysis. J. Agric. Food Chem. 2022, 70, 13987–13995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Zhu, T.; Wang, J.; Huang, M.; Wei, J.; Ye, H.; Wu, J.; Zhang, J.; Meng, N. Characterization of the key odorants and their content variation in Niulanshan Baijiu with different storage years using flavor sensory omics analysis. Food Chem. 2022, 376, 131851. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qin, D.; Wu, Z.; Sun, B.; Sun, X.; Huang, M.; Sun, J.; Zheng, F. Characterization of key aroma compounds in Chinese Guojing sesame-flavor Baijiu by means of molecular sensory science. Food Chem. 2019, 284, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, Q.; Luo, S.; Zhang, J.; Huang, M.; Chen, F.; Zheng, F.; Sun, X.; Li, H. Characterization of key aroma compounds in Meilanchun sesame flavor style baijiu by application of aroma extract dilution analysis, quantitative measurements, aroma recombination, and omission/addition experiments. RSC Adv. 2018, 8, 23757–23767. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, J.; Sun, X.; Li, H. Characterization of the Key Odorants in Chinese Zhima Aroma-Type Baijiu by Gas Chromatography-Olfactometry, Quantitative Measurements, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2016, 64, 5367–5374. [Google Scholar] [CrossRef]
- Dong, W.; Guo, R.; Liu, M.; Shen, C.; Sun, X.; Zhao, M.; Sun, J.; Li, H.; Zheng, F.; Huang, M.; et al. Characterization of key odorants causing the roasted and mud-like aromas in strong-aroma types of base Baijiu. Food Res. Int. 2019, 125, 108546. [Google Scholar] [CrossRef]
- Wang, G.; Jing, S.; Song, X.; Zhu, L.; Zheng, F.; Sun, B. Reconstitution of the Flavor Signature of Laobaigan-Type Baijiu Based on the Natural Concentrations of Its Odor-Active Compounds and Nonvolatile Organic Acids. J. Agric. Food Chem. 2022, 70, 837–846. [Google Scholar] [CrossRef]
- Du, J.; Li, Y.; Xu, J.; Huang, M.; Wang, J.; Chao, J.; Wu, J.; Sun, H.; Ding, H.; Ye, H. Characterization of key odorants in Langyatai Baijiu with Jian flavour by sensory-directed analysis. Food Chem. 2021, 352, 129363. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, Y.; Chen, S.; Xu, Y.; Tang, K. Exploring the Mystery of the Sweetness of Baijiu by Sensory Evaluation, Compositional Analysis and Multivariate Data Analysis. Foods 2021, 10, 2843. [Google Scholar] [CrossRef]
- Niu, Y.; Zhao, W.; Xiao, Z.; Zhu, J.; Xiong, W.; Chen, F. Characterization of aroma compounds and effects of amino acids on the release of esters in Laimao baijiu. J. Sci. Food Agric. 2023, 103, 1784–1799. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, Y.; Xiao, Z. Characterization of important sulfur and nitrogen compounds in Lang baijiu by application of gas chromatography-olfactometry, flame photometric detection, nitrogen phosphorus detector and odor activity value. Food Res. Int. 2020, 131, 109001. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, Y.; Wang, W.; Shu, N.; Hou, Q.; Tang, F.; Shan, C.; Yang, X.; Guo, Z. Insights into the Aroma Profile of Sauce-Flavor Baijiu by GC-IMS Combined with Multivariate Statistical Analysis. J. Anal. Methods Chem. 2022, 2022, 4614330. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, J.; Liu, X.; Zhang, C.; Zhao, Z.; Li, X.; Sun, B. Flavor mystery of Chinese traditional fermented baijiu: The great contribution of ester compounds. Food Chem. 2022, 369, 130920. [Google Scholar] [CrossRef] [PubMed]
- Levisson, M.; van der Oost, J.; Kengen, S.W. Carboxylic ester hydrolases from hyperthermophiles. Extrem. Life Under Extrem. Cond. 2009, 13, 567–581. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, X.; Liu, X.; Li, X.; Zhang, C.; Li, W.; Sun, X.; Wang, W.; Sun, B. Discovery and development of a novel short-chain fatty acid ester synthetic biocatalyst under aqueous phase from Monascus purpureus isolated from Baijiu. Food Chem. 2021, 338, 128025. [Google Scholar] [CrossRef]
- Boothroyd, E.L.; Linforth, R.S.; Cook, D.J. Effects of ethanol and long-chain ethyl ester concentrations on volatile partitioning in a whisky model system. J Agric Food Chem 2012, 60, 9959–9966. [Google Scholar] [CrossRef]
- Nykanen, L.; Suomalainen, H. Aroma of Beer, Wine and Distilled Alcoholic Beverages; Nykänen, L., Suomalainen, H., Reidel, D., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Camara, J.S.; Marques, J.C.; Perestrelo, R.M.; Rodrigues, F.; Oliveira, L.; Andrade, P.; Caldeira, M. Comparative study of the whisky aroma profile based on headspace solid phase microextraction using different fibre coatings. J. Chromatogr. A 2007, 1150, 198–207. [Google Scholar] [CrossRef] [Green Version]
- Salo, P.; Nykänen, L.; Suomalainen, H. Odor thresholds and relative intensities of volatile aroma components in an artificial beverage imitating whisky. J. Food Sci. 1972, 37, 394–398. [Google Scholar] [CrossRef]
- Wanikawa, A. Flavors in Malt Whisky: A Review. J. Am. Soc. Brew. Chem. 2020, 78, 260–278. [Google Scholar] [CrossRef]
- Wu, Y.; Hou, Y.; Chen, H.; Wang, J.; Zhang, C.; Zhao, Z.; Ao, R.; Huang, H.; Hong, J.; Zhao, D.; et al. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022, 11, 2959. [Google Scholar] [CrossRef]
- Bamforth, C.W. Dimethyl sulfide-Significance, origins, and control. J. Am. Soc. Brew. Chem. 2014, 72, 165–168. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Shen, H.; Xu, Y. Quantification of volatile compounds in Chinese soy sauce aroma type liquor by stir bar sorptive extraction and gas chromatography-mass spectrometry. J. Sci. Food Agric. 2011, 91, 1187–1198. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Identification of Aroma Compounds in Chinese ‘Yanghe Daqu’ Liquor by Normal Phase Chromatography Fractionation Followed by Gas Chromatography[sol ]olfactometry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; Volume 21, pp. 333–342. [Google Scholar]
- Masuda, M.; Nishimura, K.-I.-C. Changes in Volatile Sulfur Compounds of Whisky During Aging. J. Food Sci. 1982, 47, 101–105. [Google Scholar] [CrossRef]
- Nedjma, M.; Hoffmann, N. Hydrogen Sulfide Reactivity with Thiols in the Presence of Copper(II) in Hydroalcoholic Solutions or Cognac Brandies: Formation of Symmetrical and Unsymmetrical Dialkyl Trisulfides. J. Agric. Food Chem. 1996, 44, 3935–3938. [Google Scholar] [CrossRef]
- Furusawa, T. The Formation and Reactions of Sulphur Compounds during Distillation. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 1996. [Google Scholar]
- Wanikawa, A.; Sugimoto, T. A Narrative Review of Sulfur Compounds in Whisk(e)y. Molecules 2022, 27, 1672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Chen, S.; Li, H.; Xu, Y. Identification of 2-Hydroxymethyl-3,6-diethyl-5-methylpyrazine as a Key Retronasal Burnt Flavor Compound in Soy Sauce Aroma Type Baijiu Using Sensory-Guided Isolation Assisted by Multivariate Data Analysis. J. Agric. Food Chem. 2018, 66, 10496–10505. [Google Scholar] [CrossRef]
- Zhao, D.R.; Jiang, Y.S.; Sun, J.Y.; Li, H.H.; Luo, X.L.; Zhao, M.M. Anti-inflammatory Mechanism Involved in 4-Ethylguaiacol-Mediated Inhibition of LPS-Induced Inflammation in THP-1 Cells. J. Agric. Food Chem. 2019, 67, 1230–1243. [Google Scholar] [CrossRef]
- Wang, L.; Gao, M.; Liu, Z.; Chen, S.; Xu, Y. Three Extraction Methods in Combination with GC×GC-TOFMS for the Detailed Investigation of Volatiles in Chinese Herbaceous Aroma-Type Baijiu. Molecules 2020, 25, 4429. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhu, L.; Geng, X.; Li, Q.; Zheng, F.; Zhao, Q.; Ji, J.; Sun, J.; Li, H.; Wu, J.; et al. Analysis, occurrence, and potential sensory significance of tropical fruit aroma thiols, 3-mercaptohexanol and 4-methyl-4-mercapto-2-pentanone, in Chinese Baijiu. Food Chem. 2021, 363, 130232. [Google Scholar] [CrossRef]
- Yan, Y.; Lu, J.; Nie, Y.; Li, C.; Chen, S.; Xu, Y. Characterization of volatile thiols in Chinese liquor (Baijiu) by ultraperformance liquid chromatography-mass spectrometry and ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry. Front. Nutr. 2022, 9, 1022600. [Google Scholar] [CrossRef]
- Xie, X.; Lu, X.; Zhang, X.; Zheng, F.; Yu, D.; Li, C.; Zheng, S.; Chen, B.; Liu, X.; Ma, M.; et al. In-depth profiling of carboxyl compounds in Chinese Baijiu based on chemical derivatization and ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry. Food Chem. X 2022, 15, 100440. [Google Scholar] [CrossRef]
- Wu, J.; Peng, H.; Li, L.; Wen, L.; Chen, X.; Zong, X. FT-IR combined with chemometrics in the quality evaluation of Nongxiangxing baijiu. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2023, 284, 121790. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Shi, K.; Liu, M.; Shen, C.; Li, A.; Sun, X.; Zhao, M.; Sun, J.; Li, H.; Zheng, F.; et al. Characterization of 3-Methylindole as a Source of a “Mud”-like Off-Odor in Strong-Aroma Types of Base Baijiu. J. Agric. Food Chem. 2018, 66, 12765–12772. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Qin, D.; Duan, J.; Li, H.; Sun, J.; Huang, M.; Sun, B. Characterization of benzenemethanethiol in sesame-flavour baijiu by high-performance liquid chromatography-mass spectrometry and sensory science. Food Chem. 2021, 364, 130345. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhu, L.; Wang, X.; Zheng, F.; Zhao, M.; Liu, Y.; Li, H.; Zhang, F.; Zhang, Y.; Chen, F. Characterization of key aroma-active sulfur-containing compounds in Chinese Laobaigan Baijiu by gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography coupled with sulfur chemiluminescence detection. Food Chem. 2019, 297, 124959. [Google Scholar] [CrossRef] [PubMed]
- Tschannerl, J.; Ren, J.; Jack, F.; Krause, J.; Zhao, H.; Huang, W.; Marshall, S. Potential of UV and SWIR hyperspectral imaging for determination of levels of phenolic flavour compounds in peated barley malt. Food Chem. 2019, 270, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Câmara, J.S.; Marques, J.C.; Perestrelo, R.; Rodrigues, F.; Oliveira, L.C.; Andrade, P.d.C.d.S.; Caldeira, M. Evaluation of volatile constituents profile in Scotch whisky by SPME/GC-ITMS. In Proceedings of the 13th World Congress of Food Science & Technology, Nantes, France, 17–21 September 2006. [Google Scholar]
- Collins, T.S.; Zweigenbaum, J.; Ebeler, S.E. Profiling of nonvolatiles in whiskeys using ultra high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC–QTOF MS). Food Chem. 2014, 163, 186–196. [Google Scholar] [CrossRef]
- Demyttenaere, J.C.R.; Sánchez Martínez, J.I.; Verhé, R.; Sandra, P.; De Kimpe, N. Analysis of volatiles of malt whisky by solid-phase microextraction and stir bar sorptive extraction. J. Chromatogr. A 2003, 985, 221–232. [Google Scholar] [CrossRef]
- Ferracane, A.; Manousi, N.; Tranchida, P.Q.; Zachariadis, G.A.; Mondello, L.; Rosenberg, E. Exploring the volatile profile of whiskey samples using solid-phase microextraction Arrow and comprehensive two-dimensional gas chromatography-mass spectrometry. J. Chromatogr. A 2022, 1676, 463241. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yin, Z.; Zhao, J.; Sun, J.; Zhao, D.; Zeng, X.A.; Li, H.; Huang, M.; Wu, J. Antioxidant mechanism exploration of the tripeptide Val-Asn-Pro generated from Jiuzao and its potential application in baijiu. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2021, 155, 112402. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Kong, X.-F.; Wang, Z.; Ai-lati, A.; Ji, Z.; Mao, J. Baijiu vinasse as a new source of bioactive peptides with antioxidant and anti-inflammatory activity. Food Chem. 2021, 339, 128159. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, J.; Yin, Z.; Li, H.; Sun, X.; Zheng, F. Evaluation of antioxidant peptides generated from Jiuzao (residue after Baijiu distillation) protein hydrolysates and their effect of enhancing healthy value of Chinese Baijiu. J. Sci. Food Agric. 2020, 100, 59–73. [Google Scholar] [CrossRef]
- Wei, D.; Fan, W.; Xu, Y. In Vitro Production and Identification of Angiotensin Converting Enzyme (ACE) Inhibitory Peptides Derived from Distilled Spent Grain Prolamin Isolate. Foods 2019, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.; Fan, W.-l.; Xu, Y. Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis. Food Chem. 2021, 353, 129521. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; Zhang, D.; Liu, J.; Wang, J.; Wang, S.; Sun, B. Baijiu Vinasse Extract Scavenges Glyoxal and Inhibits the Formation of N(ε)-Carboxymethyllysine in Dairy Food. Molecules 2019, 24, 1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Fan, W.; Xu, Y. Melanoidins from Chinese Distilled Spent Grain: Content, Preliminary Structure, Antioxidant, and ACE-Inhibitory Activities In Vitro. Foods 2019, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Chetrariu, A.; Dabija, A. Spent Grain from Malt Whisky: Assessment of the Phenolic Compounds. Molecules 2021, 26, 3236. [Google Scholar]
- Huo, J.; Wu, J.; Zhao, M.; Sun, W.; Sun, J.; Li, H.; Huang, M. Immunomodulatory activity of a novel polysaccharide extracted from Huangshui on THP-1 cells through NO production and increased IL-6 and TNF-α expression. Food Chem. 2020, 330, 127257. [Google Scholar] [CrossRef]
- Huo, J.; Wu, J.; Huang, M.; Zhao, M.; Sun, W.; Sun, X.; Zheng, F. Structural characterization and immuno-stimulating activities of a novel polysaccharide from Huangshui, a byproduct of Chinese Baijiu. Food Res. Int. 2020, 136, 109493. [Google Scholar] [CrossRef]
- Zhao, D.; Shi, D.; Sun, J.; Li, H.; Zhao, M.; Sun, B. Quantification and cytoprotection by vanillin, 4-methylguaiacol and 4-ethylguaiacol against AAPH-induced abnormal oxidative stress in HepG2 cells. RSC Adv. 2018, 8, 35474–35484. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.G.; Pedersen, M.W.; Gardner, P.T.; Morrice, P.C.; Jenkinson, A.M.; McPhail, D.B.; Steele, G.M. The effect of whisky and wine consumption on total phenol content and antioxidant capacity of plasma from healthy volunteers. Eur. J. Clin. Nutr. 1998, 52, 733–736. [Google Scholar] [CrossRef]
- Wu, J.; Fu, Y.S.; Lin, K.; Huang, X.; Chen, Y.J.; Lai, D.; Kang, N.; Huang, L.; Weng, C.F. A narrative review: The pharmaceutical evolution of phenolic syringaldehyde. Biomed. Pharmacother. Biomed. Pharmacother. 2022, 153, 113339. [Google Scholar] [CrossRef]
- Yoshioka, S.; Terashita, T.; Yoshizumi, H.; Shirasaka, N. Inhibitory effects of whisky polyphenols on melanogenesis in mouse B16 melanoma cells. Biosci. Biotechnol. Biochem. 2011, 75, 2278–2282. [Google Scholar] [CrossRef] [Green Version]
- Koga, K.; Tachihara, S.; Shirasaka, N.; Yamada, Y.; Koshimizu, S. Profile of non-volatiles in whisky with regard to superoxide dismutase activity. J. Biosci. Bioeng. 2011, 112, 154–158. [Google Scholar] [CrossRef]
- Iino, T.; Nakahara, K.; Miki, W.; Kiso, Y.; Ogawa, Y.; Kato, S.; Takeuchi, K. Less damaging effect of whisky in rat stomachs in comparison with pure ethanol. Role of ellagic acid, the nonalcoholic component. Digestion 2001, 64, 214–221. [Google Scholar] [CrossRef]
- Haseba, T.; Sugimoto, J.; Sato, S.; Abe, Y.; Ohno, Y. Phytophenols in whisky lower blood acetaldehyde level by depressing alcohol metabolism through inhibition of alcohol dehydrogenase 1 (class I) in mice. Metab. Clin. Exp. 2008, 57, 1753–1759. [Google Scholar] [CrossRef]
- Fan, G.; Sun, B.; Fu, Z.; Xia, Y.; Huang, M.; Xu, C.; Li, X. Analysis of microbial community, physiochemical indices, and volatile compounds of Chinese te-flavor baijiu daqu produced in different seasons. J. Sci. Food Agric. 2021, 101, 6525–6532. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, S.; Chen, S.; Han, X.; Yang, Q.; Zhang, L.; Xia, X.; Tu, J.; Hu, Y. Tetramethylpyrazine in Chinese baijiu: Presence, analysis, formation, and regulation. Front. Nutr. 2022, 9, 1004435. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huo, J.; Huang, M.; Zhao, M.; Luo, X.; Sun, B. Structural Characterization of a Tetrapeptide from Sesame Flavor-Type Baijiu and Its Preventive Effects against AAPH-Induced Oxidative Stress in HepG2 Cells. J. Agric. Food Chem. 2017, 65, 10495–10504. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Sun, B.; Luo, X.; Zhao, M.; Zheng, F.; Sun, J.; Li, H.; Sun, X.; Huang, M. Cytoprotective effects of a tripeptide from Chinese Baijiu against AAPH-induced oxidative stress in HepG2 cells via Nrf2 signaling. RSC Adv. 2018, 8, 10898–10906. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Yan, R.; Jiang, Y.; Feng, S.; Sun, H.; Sun, J.; Zhao, D.; Li, H.; Wang, B.; Zhang, N. Identification of peptides in Qingke baijiu and evaluation of its angiotensin converting enzyme (ACE) inhibitory activity and stability. Food Chem. 2022, 395, 133551. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Lu, W.; Liu, Q.; Chen, Y.; Jia, W.; Xu, Y. Comparative study between the effects of aged and fresh Chinese baijiu on gut microbiota and host metabolism. Food Biosci. 2022, 49, 101859. [Google Scholar] [CrossRef]
- Wu, C.; Xing, X.; Liu, G.; Su, D.; Li, A.; Gui, S.; Lu, W.; Liang, J. Effects of Nongxiangxing baijiu (Chinese liquor) on mild alcoholic liver injury revealed by non-target metabolomics using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. J. Biosci. Bioeng. 2022, 134, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Fang, C.; Jia, W.; Du, H.; Xu, Y. Regulatory effect of volatile compounds in fermented alcoholic beverages on gut microbiota and serum metabolism in a mouse model. Food Funct. 2021, 12, 5576–5590. [Google Scholar] [CrossRef]
- Goso, Y.; Ueno, M.; Hotta, K.; Ishihara, K. Protective effects of the whisky congeners on ethanol-induced gastric mucosal damage. Alcohol. Clin. Exp. Res. 2007, 31, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liang, Y.; Fan, W.; Liu, W.; Wu, B.; Li, J. Relationship between Chinese Baijiu consumption and dental caries among 55- to 74-year-old adults in Guangdong, southern China: A cross-sectional survey. BMC Geriatr. 2021, 21, 506. [Google Scholar] [CrossRef]
Compound Name | Odor Description | Whisky | Baijiu | References |
---|---|---|---|---|
Methylsulfanylmethane/Dimethyl sulfide | Sweet corn | √ | √ | [2,65] |
Ethylsulfanylethane/Diethyl sulfide | Garlic-like | √ | √ | |
1-Propylsulfanylpropane/Dipropyl sulfide | Garlic, onion | √ | - | |
Methylsulfanylpropane/Methyl propyl sulfide | Green, leek | √ | - | |
Methyldisulfanylmethane/Dimethyl disulfide | Vegetable | √ | √ | |
Propyldisulfanylpropane/Dipropyl disulfide | Green onion | √ | - | |
2-Methyl-1-(methyldisulfanyl) propane/Isobutyl methyl disulfide | - | √ | - | |
Methyltrisulfanylmethane/Dimethyl trisulfide | Onion, meaty | √ | √ | |
2-Methylsulfanylethanol/2-(Methylthio) ethanol | Meaty | √ | √ | |
3-Methylsulfanylpropan-1-ol/3-(Methylthio) propanol | Boiled potato | √ | - | |
3-Methylsulfanylpropanal/3-(Methylthio) propanol | Onion, meaty | √ | - | |
3-Methylsulfanylpropyl acetate/3-(Methylthio) propyl acetate | Potato | √ | √ | |
S-Methyl ethanethioate/S-Methyl thioacetate | Cheese | √ | √ | |
2-(Methyldisulfanyl) ethan-1-ol/3,4-Dithiapentyl alcohol | √ | - | ||
1-Ethoxy-2-(methyldisulfanyl) ethane/3,4-Dithiapentyl ethyl ether | √ | - | ||
2-(Methyldisulfanyl) ethyl acetate/3,4-Dithiapentyl acetate | √ | - | ||
2-Methyl-3-(methyldisulfanyl) furan/Methyl-(2-methyl-3-furyl) disulfide | Meaty, sulfury | √ | - | |
Sulfane/Hydrogen sulfide | Rotten egg | √ | - | |
Methanethiol | Rotten cabbage | √ | √ | |
Ethanethiol | Leek | √ | √ | |
Ethyl 3-methylsulfanyl propanoate/Ethyl 3-(methylthio) propanoate | Pineapple | √ | - | |
Ethyl 2-methylsulfanyl acetate/Ethyl 2-(methylthio) acetate | Green tropical | √ | - | |
Thiophene | Garlic | √ | √ | |
2-Methylthiophenone | Meaty, cooked | √ | - | |
2,5-Dimethylthiophene | Nutty, green | √ | - | |
Thiophene-2-carbaldehyde/Thiophene-2-carboxaldehyde | Benzaldehyde-like | √ | - | |
Thiophene-3-carbaldehyde/Thiophene-3-carboxaldehyde | - | √ | - | |
3-Methylthiophene-2-carbaldehyde/3-Methylthiophene-2-carboxaldehyde | - | √ | √ | |
3-Ethylthiophene-2-carbaldehyde/3-Ethylthiophene-2-carboxaldehyde | - | √ | - | |
5-Methylthiophene-2-carbaldehyde/5-Methylthiophene-2-carboxaldehyde | Benzaldehyde-like | √ | - | |
2-Methylthiolan-3-one/Dihydro-2-methyl-3(2H)-thiophenone | Sulfur, fruity | √ | - | |
1-Thiophen-2-ylethanone/2-Acetyl thiophene | Nutty | √ | - | |
1-Thiophen-2-ylbutan-1-one/2-Butanoyl thiophene | Meaty | √ | - | |
1-(5-Methylthiophen-2-yl) ethenone/2-Acetyl-5-methyl thiophene | Sweet, spicy | √ | - | |
1-Benzothiophene | Rubbery | √ | - | |
1,3-Thiazole | Nutty, meaty | √ | - | |
2-Methyl-1,3-thiazole | Vegetable | √ | - | |
1-(1,3-Thazol-2-yl) ethenone/2-Acetyl-1,3-thiazole | Popcorn | √ | - | |
5-Ethenyl-4-methyl-1,3-thiazole/4-Methyl-5-vinyl-1,3-thiazole | Nutty | √ | - | |
1,3-Benzothiazole | Rubbery | √ | - | |
2-Methyl-1,3-benzothiazole | Rubbery, coffee | √ | - | |
3-Ethyl-1,3-benzothiazole-2-thione/3-Ethyl-1,3-benzothiazolethione | - | √ | - | |
2-(Furan-2-yl)1,3-thiazole/2-(2-Furanyl) thiazole | - | √ | - | |
2-Penylthiophene | Fruit, sweet | - | √ | |
3-Penylthiophene | Meaty, roast | - | √ | |
2-Methylthiophene | - | - | √ | |
3-Methylthiophene | Plastic, sulfurous | - | √ | |
3-Acetylthiophene | - | - | √ | |
2,4-Dimethylthiophene | - | - | √ | |
2-Thiophenecarboxaldehyde | Almond, cherry | - | √ | |
Ethyl 2-thiophenecarboxylate | - | - | √ | |
3-Methyl-2-thiophenecarboxaldehyde | - | - | √ | |
Ethyl 3-thiopheneacetate | - | - | √ | |
3-Thiophenecarboxaldoxime | Grass | - | √ | |
1-(3-Methylthiophen-2-yl) ethanone | Nut | - | √ | |
5-Methyl-2-thiophenecarboxaldehyde | Cherry, sweet | - | √ | |
2-tert-Butyl-thiophene | - | - | √ | |
3-Methyl-1-benzothiophene | - | - | √ | |
2,5-Dimethylbenzothiophene | - | - | √ | |
3-Thiophenecarboxaldehyde | - | - | √ | |
2-Acetylthiophen | - | - | √ | |
1-(2-Thienyl) propanone | - | - | √ | |
2-Phenylthiophene | - | - | √ | |
Thianaphthen | - | - | √ | |
Benzo[c]thiophene | - | - | √ | |
4-Methyldibenzothiophene | - | - | √ | |
2-Methylbenzo[b]thiophene | - | - | √ | |
2,7-Dimethylbenzo[b]thiophene | - | - | √ | |
Dimethyl tetrasulfide | Cabbage | - | √ | |
Diethyl disulfide | Onion, sulfurous | - | √ | |
Divinyl sulfide | - | - | √ | |
Allyl methyl sulfide | - | - | √ | |
Methyl benzyl sulfide | - | - | √ | |
Allyl propyl disulfide | Sulfurous | - | √ | |
Propyl disulfide | Onion | - | √ | |
Diallyl disulfide | Garlic | - | √ | |
Isopropyl disulfide | - | - | √ | |
Isopropyl phenyl sulfide | - | - | √ | |
Difurfuryl disulfide | Coffee, roasted | - | √ | |
Ethyl methyl disulfide | Onion, sulfur | - | √ | |
Methyl sec-butyl disulfide | - | - | √ | |
Furfuryl methyl sulfide | Garlic, vegetable | - | √ | |
Isopropyl methyl disulfide | - | - | √ | |
Methyl pentyl disulfide | - | - | √ | |
Dipropyl trisulfide | - | - | √ | |
Diallyl trisulfide | Garlic | - | √ | |
Methyl propyl trisulfide | - | - | √ | |
Allyl methyl trisulfide | - | - | √ | |
Thiazole | Nut, sulfur, stink | - | √ | |
4-Methylthiazole | - | - | √ | |
2-Ethoxythiazole | - | - | √ | |
Benzothiazole | Gasoline, leather, roasted, smoky, and rubber | - | √ | |
2-Mercapto-4-phenylthiazole | - | - | √ | |
2-Methylmercaptobenzothiazole | - | - | √ | |
4-Methyl-5-vinylthiazole | Cocoa, roast, soil | - | √ | |
2-Ethyl-4-methyl thiazole | - | - | √ | |
1,2-Benzisothiazole | - | - | √ | |
4,5-Dimethyl-2-isopropyl-thiazole | - | - | √ | |
4,5-Dimethyl-2-isobutylthiazole | - | - | √ | |
Methionol | Rubber stink, cooked vegetable, gasoline | - | √ | |
Methioninol | - | - | √ | |
3-Mercapto-3-methylbutanol | - | - | √ | |
3-Mercaptohexanol | Passion fruity, grapefruit | - | √ | |
4-(Methylthio) phenol | - | - | √ | |
Furfuryl mercaptan | Roasted sesame | - | √ | |
1-Hexanethiol | Baked taste | - | √ | |
1-Heptanethiol | Truffle, mushroom | - | √ | |
2-Methyl-3-furanthiol | Beefy, vitamin, sulfur | - | √ | |
2-Propene-1-thiol | Onion, garlic | - | √ | |
2-Hydroxy-1-ethanethiol | Unpleasant | - | √ | |
4-Methylbenzenemethanethiol | - | - | √ | |
Benzenemethanethiol | Roasted | - | √ | |
2-Methylundecane-2-thiol | - | - | √ | |
Ethyl thioacetate | Onion | - | √ | |
S-Methyl butanethioate | Cheesy, cabbage | - | √ | |
S-Methyl thiohexanoate | - | - | √ | |
S-Furfuryl thioacetate | - | - | √ | |
S-Methyl propanethioate | - | - | √ | |
S-Allyl thiopropionate | - | - | √ | |
Methyl 2-thiolfuroate | - | - | √ | |
Ethyl (methylthio) acetate | Garlic, sulfurous | - | √ | |
3-Mercaptohexyl acetate | Stink/passion fruity, grapefruit, citrus | - | √ | |
Ethyl 2-mercaptoacetate | Cooked vegetable, nutty, pineapple | - | √ | |
Ethyl 3-methylthiopropionate | Cabbage, grassy | - | √ | |
Methyl 2-(methylthio) acetate | - | - | √ | |
Methional | Cooked potato | - | √ | |
3-(Methylthio) butanal | - | - | √ | |
Furfuryl methyl disulfide | Roast, smoke | - | √ | |
2-Methyl-5-(methylsulfanyl) furan | Mustard, onion | - | √ | |
2-Methyl-3-(methyldisulfanyl) furan | Meat-like, roast | - | √ | |
1-Methyl-3-[(2-methylpropyl)thio] benzene | - | - | √ | |
S-methyl methanethiolsulfonate | - | - | √ | |
2-Methyl-3-(methylthio)-1-propene | - | - | √ | |
Ethylene trithiocarbonate | - | - | √ | |
4,5-Dihydro-3(2H)thiophenone | Onion | - | √ | |
2-Acetamido-5-methyl-1,3,4-thiadiazole | - | - | √ | |
3-Ethylthiophene | - | - | √ | |
2,5-Dimethyl-1,3,4-trithiolane | - | - | √ | |
1,2,4-Trithiolane | - | - | √ | |
bis(2-Methyl-3-furyl) disulfide | Meaty | - | √ |
Matrix | Pre-treatment Method | Analysis Methods | Compounds Analyzed | Flavor Contributions | References |
---|---|---|---|---|---|
Sauce-aroma baijiu | SPE, HPLC separation | UPLC-MS, NMR | 6-(2-formyl-5-methyl-1H-pyrrol-1-yl)hexanoic acid, 2-hydroxymethyl-3,6-diethyl-5-methylpyrazine | Retronasal burnt aroma | [66,67] |
SBSE | UPLC-MS, GC-MS, GC-FPD, GC-NPD, GC-O, | Sulfur and nitrogen compounds, esters, ketones, aldehydes, amino acids | Important aroma compounds | [47,48] | |
HS-SPME, LLE | GC-MS, GC-O, GC-FID, GC×GC-TOFMS | Sulfur compounds, esters, aldehydes, ketones, nitrogen compounds, alcohols, furans, acids | Important aroma compounds | [68] | |
Baijiu, general | derivatization | GC-MS | Non-volatile organic acids | Complex matrix effect | [38] |
LLE | GC-MS, GC×GC-TOFMS, GC×GC-SCD, AEDA, aroma reconstitution and omission experiments | 3-Mercaptohexanol, 4-methyl-4-mercapto-2-pentanone | Tropical fruit | [69] | |
derivatization | UPLC-MS/MS, UPLC-Q-TOFMS | Volatile thiols | Important aroma compounds, fruity character | [70] | |
derivatization | UHPLC-HRMS | Carboxyl compounds | [71] | ||
Feng-aroma baijiu | Direct injection | UHPLC-Q-Orbitrap, AEDA, aroma reconstitution and omission experiments | Acids, alcohols, aldehydes, ketones | Responsible for the honey aroma during aging | [18] |
Light-aroma baijiu | DI, LLE, HS-SPME | GC-MS, GC-FID, GC-O, AEDA, aroma reconstitution and omission experiments | Esters, acids, alcohol, phenols, aldehydes, acetals, ketones, sulfur compounds, pyrazines | Key aroma compounds | [35,36,39] |
Strong-aroma baijiu | GC-MS, FT-IR spectrometer | Esters, alcohols, acids | Important | [72] | |
HS-SPME, LLE | GC-MS/O, GC-MS | 3-Methylindole | Mud-like off odor | [73] | |
Sesame-aroma baijiu | derivatization | LC-MS/MS, aroma reconstitution and omission experiments | Benzenemethanethiol | Important contribution to roasted aroma | [74] |
LLE, DI, VSLLME (vortex-assisted surfactant-enhanced emulsification liquid–liquid microextraction), derivatization | GC-MS, GC-FID, aroma reconstitution and omission experiments | Esters, alcohols, aromatics, phenols, furans | Aroma active compounds | [43] | |
LLE, HS-SPME | GC×GC-TOFMS, GC-MS, GC-O, GC-FID, AEDA | Esters, alcohols, acids, aldehydes, acetals, ketones, sulfur and nitrogen compounds, heterocycles, alkanes, other aromatic compounds | Important aroma compounds | [8,40,41,42] | |
Herbaceous-aroma baijiu | HS-SPME, SPE, SBSE | GC×GC-TOFMS | Esters, alcohols, acids, aldehydes, ketones, terpenes, sulfides | [68] | |
Laobaigan-aroma baijiu | HS-SPME | GC×GC-SCD, AEDA | Volatile sulfur compounds | Aroma active trace compounds | [75] |
Jian-aroma baijiu | LLE, HS-SPME | GC-O-MS/Osme | Esters, alcohols, acids, sulfur and nitrogen compounds, aldehydes, ketones | Aroma active compounds | [45] |
Scotch malt whisky | LLE | MDGC-MS-O | E,Z-2,6-nonadienal, nonan-2-ol, 4-hepten-1-ol, E-2-nonenal, 1-octen-3-ol | Green note compounds | [65] |
UV-HSI, hyperspectral imaging, SWIR-HSI, short-wave infra-red | Phenolic compounds | Responsible for smoky aroma | [76] | ||
Scotch whisky | HS-SPME | GC-ITMS (ion trap mass) | Esters, alcohols, acids, carbonyl compounds, monoterpenols, C13 norisoprenoids, volatile phenols | Volatile compounds | [77] |
American whisky | UHPLC-QTOF-MS/MS | Fatty acids, fatty acid lipids, phenolic compounds | Nonvolatiles | [78] | |
Tennessee whiskey | SAFE, SPE | GC-O, GC-MS, AEDA | Esters, ketones, alcohols, acids, aldehydes, sulfur compounds, furans, nitrogen compounds, alkanes, | Volatiles | [28] |
Bourbon whisky | TD-HRGC-SIDA, (Two-dimensional high resolution) TD-HRGC-MS, GC-FID | Alcohols, alkanes, esters, ketones, aldehydes, phenols, | Potent volatiles | [32] | |
Whisky, general | HS, LLE, HS-SPME, HS Tenax full evaporation dynamic, SAFE | GC-MS, GC-FPD, GC-SCD, MDGC-MS, MDGC-ECD, MDGC-SCD, MDGC-NTD | Volatile sulfur compounds | [65] | |
SAFE, HS-SPME, SBSE, SPME arrow | GC-MS, GC×GC-TOFMS | Esters, alcohols, nitrogen heterocyclic compounds, terpenes, acids, alkanes, aldehydes, phenols, lactones, | Volatiles | [31,34,79,80] | |
FT-ICR-MS (Fourier transform ion cyclotron resonance), UHPLC-QTOF-MS/MS | Flavonols, oligolignols, fatty acids, polyphenol glycosides | Chemical signatures for barrel aging | [22] |
Spirit Type | Waste Type | Functional Compounds/Groups | Identified Functions | Test Method | References |
---|---|---|---|---|---|
Baijiu | jiuzao | Tripeptide Val-Asn-Pro | Antioxidant; eliminate excessive oxidative stress and activate antioxidant enzymes | In vivo | [81] |
Peptides (amino acid sequences KLPDHPKLPK and VDVPVKVPYS) | Anti-inflammatory activity | In vitro, LPS (lipopolysaccharide)-stimulated RAW264.7 macrophage cells | [82] | ||
Peptides (amino acid sequences AYI, AYL, DREI, DREL) | Anti-oxidation activity | In vitro assay and AAPH-induced HepG2 cells | [83] | ||
Peptide fractions | Anti-oxidation activity | In vitro, justified by DPPH radical (hydroxyl, superoxide anion, and nitric oxide) scavenging activity | [82] | ||
Peptide fractions | ACE (angiotensin converting enzyme) inhibitory effect | In vitro assay | [84,85] | ||
Phenolic acid compounds (vanillic, chlorogenic, p-coumaric, sinapic, caffeic, ferulic, and syringic acid) | Antioxidant activity, CML (Nε-carboxymethyllysine) inhibition in dairy models | In vitro, inhibitory effects on CML formation and radical (glyoxal) scavenging | [86] | ||
Melanoidins | Anti-oxidant activity, ACE inhibitory effect | In vitro assay, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)(ABTS·+), ferric-reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assays | [87] | ||
Whisky | draff | P-coumaric, rosmarinic, chlorogenic, vanillic, protocatechuic, 4-hydroxy benzoic, caffeic acids | Antioxidant activity | In vitro assay, DPPH free radical assays | [88] |
Baijiu | huangshui | Polysaccharides HSP-3 and HSP-W | Immunomodulatory activity | THP-1 cells: induce NO and ROS production (HSP-2, HSP-3, and HSP-W); induce production of IL-1β, IFN-γ,TNF-α, and IL-6 (HSP-2, HSP-W); enhance pinocytic and phagocytic activities (HSP-2, HSP-3, and HSP-W); upregulate mRNA and protein expressions of these cytokines (HSP-2, HSP-3, and HSP-W). | [89,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhang, Q.; Sun, B. Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food. Foods 2023, 12, 2841. https://doi.org/10.3390/foods12152841
Li J, Zhang Q, Sun B. Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food. Foods. 2023; 12(15):2841. https://doi.org/10.3390/foods12152841
Chicago/Turabian StyleLi, Jinchen, Qiuyu Zhang, and Baoguo Sun. 2023. "Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food" Foods 12, no. 15: 2841. https://doi.org/10.3390/foods12152841
APA StyleLi, J., Zhang, Q., & Sun, B. (2023). Chinese Baijiu and Whisky: Research Reservoirs for Flavor and Functional Food. Foods, 12(15), 2841. https://doi.org/10.3390/foods12152841