Impact of Climate Changes on the Natural Prevalence of Fusarium Mycotoxins in Maize Harvested in Serbia and Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Fusarium Mycotoxins Analysis
2.3. Weather Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Serbia
3.1.1. Fusarium Mycotoxins Occurrence in Serbia in the Period 2018–2021
3.1.2. Weather in Serbia in 2018–2021
3.2. Croatia
3.2.1. Fusarium Mycotoxins Occurrence in Croatia in the Period 2018–2021
3.2.2. Weather in Croatia in the Period 2018–2021
3.3. Comparison of Fusarium Mycotoxins Occurrence for the Period 2012–2021
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food. Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Medina, Á.; González-Jartín, J.M.; Sainz, M.J. Impact of global warming on mycotoxins. Curr. Opin. Food Sci. 2017, 18, 76–81. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.; Var, I.I.L. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Ekwomadu, T.I.; Akinola, S.A.; Mwanza, M. Fusarium mycotoxins, their metabolites (free, emerging, and masked), food safety concerns, and health impacts. Int. J. Environ. Res. Public Health 2021, 18, 11741. [Google Scholar] [CrossRef]
- Summerell, B.A. Resolving Fusarium: Current status of the genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef]
- Ferrigo, D.; Raiola, A.; Causin, R. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 2016, 21, 627. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Novak, B.; Nagl, V.; Berthiller, F. Emerging mycotoxins: Beyond traditionally determined food contaminants. J. Agric. Food Chem. 2017, 65, 7052–7070. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Molto, J.C.; Manes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Janić Hajnal, E.; Kos, J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Sulyok, M. Mycotoxins in maize harvested in Serbia in the period 2012–2015. Part 2: Non-regulated mycotoxins and other fungal metabolites. Food Chem. 2020, 317, 126409. [Google Scholar] [CrossRef]
- Scott, P.M. Recent research on fumonisins: A review. Food Addit. Contam. A 2012, 29, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Kras, K.; Rudyk, H.; Muszyński, S.; Tomaszewska, E.; Dobrowolski, P.; Kushnir, V.; Muzuka, V.; Brezvyn, O.; Arciszewski, M.B.; Kotsyumbas, I. Morphology and Chemical Coding of Rat Duodenal Enteric Neurons following Prenatal Exposure to Fumonisins. Animals 2021, 12, 1055. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Ryu, D. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. J. Agric. Food Chem. 2017, 33, 7034–7051. [Google Scholar] [CrossRef]
- Bertero, A.; Moretti, A.; Spicer, L.J.; Caloni, F. Fusarium molds and mycotoxins: Potential species-specific effects. Toxins 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshannaq, A.; Yu, J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and toxicity of a Fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef]
- Neme, K.; Mohammed, A. Mycotoxin occurrence in grains and the role of postharvest management as a mitigation strategies. A review. Food Control 2017, 78, 412–425. [Google Scholar] [CrossRef]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Huang, D.; Cui, L.; Sajid, A.; Zainab, F.; Wu, Q.; Wang, X.; Yuan, Z. The epigenetic mechanisms in Fusarium mycotoxins induced toxicities. Food Chem. Toxicol. 2019, 123, 595–601. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Chemical Agents and Related Occupations, a Review of Human Carcinogens in IARC Monograph on the Evaluation of Carcinogenic Risk to Humans Voluem 100F; World Health Organization, IARC: Lyon, France, 2012; pp. 1–628. [Google Scholar]
- Speijers, G.J.A.; Speijers, M.H.M. Combined toxic effects of mycotoxins. Toxicol. Lett. 2004, 153, 91–98. [Google Scholar] [CrossRef]
- Commission of the European Communities. Commission Regulation EC (1881/2006). Off. J. Eur. Union 2006, 49, 5–24. [Google Scholar]
- EC-European Commission. Commission recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products (2013/165/EU). Off. J. Eur. Comm. L 2013, 91, 12–15. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations, 2018–2020. Available online: http://www.fao.org/faostat/en/#data (accessed on 14 November 2022).
- Maslac, T. Grain and Feed Annual—Serbia; United States Department of Agriculture (USDA): Washington, DC, USA, 2022; pp. 1–17.
- Zadravec, M.; Markov, K.; Lešić, T.; Frece, J.; Petrović, D.; Pleadin, J. Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes 2022, 10, 655. [Google Scholar] [CrossRef]
- Bryła, M.; Pierzgalski, A.; Zapaśnik, A.; Uwineza, P.A.; Ksieniewicz-Woźniak, E.; Modrzewska, M.; Waśkiewicz, A. Recent research on Fusarium mycotoxins in maize—A review. Foods 2022, 11, 3465. [Google Scholar] [CrossRef] [PubMed]
- European Regulation. No 2006/401/EC of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, 70, 1–23. [Google Scholar]
- Serbian Regulation. Methods for physical and chemical analysis for quality control of cereals, mills and bakery products, pasta and fast frozen dough. Off. Bull. SFRJ 1988, 74, 1–93. [Google Scholar]
- Hofmann, S.; Scheibner, O. Quantification of 48 Myco- and Phytoxins in Cereal Using Liquid Chromotography-Triple Quadrupole Mass Spectrometry. ThermoFisher Scientific, Application Note 65969 2021. pp. 1–9. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/an-65969-mycotoxin-phytotoxins-cereal-tsq-quantis-an65969-en.pdf (accessed on 14 January 2022).
- European Commission. Commission Regulation 2002/657/EC of 14 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, 221, 8–36. [Google Scholar]
- CEN/TR 16059:2010; Food Analysis-Performance Criteria for Single Laboratory Validated Methods of Analysis for the Determination of Mycotoxins. European Committee for Standardization, Menagmente Centre: Brussels, Belgium, 2012.
- Pleadin, J.; Sokolović, M.; Perši, N.; Zadravec, M.; Jaki, V.; Vulić, A. Contamination of maize with deoxynivalenol and zearalenone in Croatia. Food Control 2012, 28, 94–98. [Google Scholar] [CrossRef]
- Pleadin, J.; Perši, N.; Mitak, M.; Zadravec, M.; Sokolović, M.; Vulić, A.; Jaki, V.; Brstilo, M. The natural occurance of T-2 toxin and fumonisins in maize samples in Croatia. B Environ. Contam. Tox. 2012, 88, 863–866. [Google Scholar] [CrossRef]
- Pleadin, J.; Frece, J.; Lešić, T.; Zadravec, M.; Vahčić, N.; Malenica Staver, M.; Markov, K. Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Addit. Contam. B 2017, 10, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Pleadin, J.; Vasilj, V.; Kudumija, N.; Petrović, D.; Vilušić, M.; Škrivanko, M. Survey of T-2/HT-2 toxins in unprocessed cereals, food and feed coming from Croatia and Bosnia & Herzegovina. Food Chem. 2017, 224, 153–159. [Google Scholar]
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- Republic Hydrometeorological Service of Serbia, 2012–2021. Available online: http://www.hidmet.gov.rs/ciril/meteorologija/agro.php (accessed on 1 November 2022).
- Croatian Meteorological and Hydrological Service. Available online: https://meteo.hr/index_en.php (accessed on 1 November 2022).
- European Commission. Commission Recommendation 2006/576/EC of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union 2006, 229, 7–9. [Google Scholar]
- Serbian Regulation. Maximum allowed contents of contaminants in food and feed. Off. Bull. Repub. Serb. 2011, 28, 1–16. [Google Scholar]
- Serbian Regulation. Quality of animal feed. Off. Bull. Repub. Serb. 2017, 54, 1–10. [Google Scholar]
- Agrometeorological Conditions in Production 2020/2021 Years on the Territory of the Republic of Serbia. Available online: https://www.hidmet.gov.rs/data/agro/AGROveg2021.pdf (accessed on 16 November 2022).
- Cendoya, E.; Chiotta, M.L.; Zachetti, V.; Chulze, S.N.; Ramirez, M.L. Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by products: A review. J. Cereal. Sci. 2018, 80, 158–166. [Google Scholar] [CrossRef]
- Marín, P.; Magan, N.; Vázquez, C.; González-Jaén, M.T. Differential effect of environmental conditions on the growth and regulation of the fumonisin biosynthetic gene FUM1 in the maize pathogens and fumonisin producers Fusarium verticillioides and Fusarium proliferatum. FEMS Microbiol. Ecol. 2010, 73, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Hjelkrem, A.G.R.; Aamot, H.U.; Brodal, G.; Strand, E.C.; Torp, T.; Edwards, S.G.; Dill-Macky, R.; Hofgaard, I.S. HT-2 and T-2 toxins in Norwegian oat grains related to weather conditions at different growth stages. Eur. J. Plant Pathol. 2018, 151, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, O.; Juan, C.; Berrada, H.; Miere, D.; Loghin, F.; Mañes, J. Study on Trichothecene and Zearalenone Presence in Romanian Wheat Relative to Weather Conditions. Toxins 2019, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Kiš, M.; Vulić, A.; Kudumija, N.; Šarkanj, B.; Jaki Tkalec, V.; Aladić, K.; Škrivanko, M.; Furmeg, S.; Pleadin, J. A two-year occurrence of Fusarium T-2 and HT-2 toxin in Croatian cereals relative of the regional weather. Toxins 2021, 13, 39. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Malachová, A.; Steiner, D.; Stranska, M.; Krska, R.; Poschmaier, B.; Sulyok, M. Mycotoxins in maize harvested in Republic of Serbia in the period 2012–2015. Part 1: Regulated mycotoxins and its derivatives. Food Chem. 2020, 312, 126034. [Google Scholar] [CrossRef]
- Radić, B.; Kos, J.; Janić Hajnal, E.; Malachová, A.; Krska, R.; Sulyok, M. Fusarium metabolites in maize from regions of Northern Serbia in 2016–2017. Food Addit. Contam. B 2021, 14, 295–305. [Google Scholar] [CrossRef]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chromatog. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njobeh, P.B.; Dutton, M.F.; Koch, S.H.; Chuturgoon, A.A.; Stoev, S.D.; Mosonik, J.S. Simultaneous occurrence of mycotoxins in human food commodities from Cameroon. Mycotoxin Res. 2010, 26, 47–57. [Google Scholar] [CrossRef]
- Pleadin, J.; Kos, J.; Radić, B.; Vulić, A.; Kudumija, N.; Radović, R.; Janić Hajnal, E.; Mandić, A.; Anić, M. Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change. Foods 2023, 12, 548. [Google Scholar] [CrossRef] [PubMed]
- Van der Fels-Klerx, H.J.; Liu, C.; Battilani, P. Modelling climate change impacts on mycotoxin contamination. World Mycotoxin J. 2016, 9, 717–726. [Google Scholar] [CrossRef] [Green Version]
- Battilani, P.; Toscano, P.; der Fels-Klerx, V.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Sci. Rep. 2016, 6, 24328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mycotoxin | Year | N (%) 1 | Min–Max (µg/kg) 2 | Mean ± Sdv (µg/kg) 3 | Median (µg/kg) 4 |
---|---|---|---|---|---|
DON | 2018 | 5 (5) | 50–148 | 85 ± 43 | 60 |
2019 | 3 (3) | 50–277 | 160 ± 114 | 152 | |
2020 | 17 (17) | 53–392 | 144 ± 82 | 123 | |
2021 | 13 (13) | 56–752 | 162 ± 181 | 139 | |
FB1 | 2018 | 100 (100) | 19–4403 | 978 ± 732 | 830 |
2019 | 89 (89) | 9–3793 | 614 ± 663 | 382 | |
2020 | 100 (100) | 45–2435 | 739 ± 583 | 533 | |
2021 | 100 (100) | 401–21,239 | 4684 ± 3517 | 3921 | |
FB2 | 2018 | 100 (100) | 17–1297 | 268 ± 206 | 221 |
2019 | 88 (88) | 5–1143 | 171 ± 192 | 100 | |
2020 | 100 (100) | 12–638 | 186 ± 155 | 136 | |
2021 | 100 (100) | 120–5825 | 1300 ± 994 | 1073 | |
ZEN | 2018 | 2 (2) | 17–43 | 30 ± 19 | 30 |
2019 | nd 5 | nd | nd | nd | |
2020 | 2 (2) | 17–57 | 37 ± 28 | 37 | |
2021 | 1 (1) | 27 | nd | nd | |
T-2 toxin | 2018 | 14 (14) | 0.5–24 | 5 ± 7 | 2 |
2019 | 66 (66) | 0.7–17 | 3 ± 3 | 3 | |
2020 | 12 (12) | 0.6–6 | 2 ± 2 | 1 | |
2021 | 25 (25) | 0.5–62 | 7 ± 12 | 3 | |
HT-2 toxin | 2018 | 6 (6) | 1.5–32 | 13 ± 12 | 7 |
2019 | 9 (9) | 0.6–24 | 6 ± 8 | 1 | |
2020 | 6 (6) | 0.6–13 | 6 ± 4 | 6 | |
2021 | 12 (12) | 0.7–36 | 8 ± 11 | 2 |
Month | Year | |||||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | |||||
Standardized Precipitation Index for 60 days (SPI-2) | ||||||||
May | −0.3 | N 1 | 1.9 | EH 2 | −1.4 | SD 3 | −0.1 | N |
June | −0.3 | N | 1.7 | EH | 0.3 | N | −1.0 | MoD 4 |
July | 1.2 | MoH 5 | −0.2 | N | 0.6 | N | −0.1 | N |
August | 0.4 | N | −0.3 | N | 0.8 | N | 0.6 | N |
September | −0.6 | N | −0.3 | N | 0.0 | N | −1.2 | MoD |
Palmer Z Drought Index (Z) | ||||||||
May | −1.2 | N | 3.6 | EH | −1.6 | MoD | 0.2 | N |
June | −0.4 | N | 1.1 | MoH | 1.3 | MoH | −3.9 | ED 6 |
July | 0.7 | N | −1.7 | MoD | −0.3 | N | 0.5 | N |
August | −0.8 | MoD | −1.6 | MoD | 0.4 | N | −1.1 | MoD |
September | −2.3 | SD | −1.0 | N | −2.8 | ED | −2.8 | ED |
Palmer Drought Severity Index (PDSI) | ||||||||
May | −0.7 | N | −0.9 | N | −3.9 | SD | −0.4 | N |
June | −0.6 | N | 0.4 | N | −3.0 | SD 3 | −2.2 | MoD |
July | 0.7 | N | −0.7 | N | −2.6 | MoD | −1.6 | N |
August | 0.1 | N | −1.4 | N | −2.0 | MoD | −2.0 | MoD |
September | −1.6 | N | −1.9 | N | −2.9 | MoD | −2.8 | MoD |
Mycotoxin | Year | N 1 | N (%) 2 | Min–Max (µg/kg) 3 | Mean ± Sdv (µg/kg) 4 | Median (µg/kg) 5 |
---|---|---|---|---|---|---|
DON | 2018 | 78 | 47 (60) | 22–1232 | 235 ± 324 | 104 |
2019 | 72 | 51 (71) | 27–4688 | 473 ± 862 | 168 | |
2020 | 56 | 48 (86) | 93–9923 | 922 ± 1511 | 493 | |
2021 | 62 | 59 (95) | 43–5134 | 875 ± 924 | 572 | |
FUMs | 2018 | 61 | 51 (84) | 28–13800 | 1006 ± 2170 | 336 |
2019 | 61 | 57 (93) | 30–11530 | 1371 ± 2235 | 504 | |
2020 | 37 | 35 (95) | 24–5920 | 962 ± 1453 | 476 | |
2021 | 32 | 27 (84) | 61–6330 | 1314 ± 1740 | 398 | |
ZEN | 2018 | 99 | 15 (15) | 3.6–479 | 76 ± 125 | 23 |
2019 | 114 | 53 (46) | 3.1–658 | 69 ± 146 | 9 | |
2020 | 84 | 53 (63) | 3.1–1241 | 120 ± 214 | 26 | |
2021 | 85 | 47 (55) | 8.2–1170 | 182 ± 242 | 95 | |
T-2/HT-2 | 2018 | 93 | 34 (37) | 11–332 | 58 ± 73 | 36 |
2019 | 94 | 79 (84) | 10–283 | 32 ± 40 | 18 | |
2020 | 39 | 9 (23) | 11–42 | 18 ± 10 | 13 | |
2021 | 36 | 20 (56) | 11–407 | 56 ± 93 | 25 |
Month | Year | |||||||
---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | |||||
Standardized Precipitation Index for 60 days (SPI-2) | ||||||||
May | −0.4 | N 1 | 1.9 | EW 2 | −0.7 | N | 0.7 | N |
June | 0.5 | N | 1.5 | VW 3 | 0.0 | N | −0.8 | N |
July | 0.7 | N | 0.3 | N | 0.2 | N | −1.3 | SD 4 |
August | −0.1 | N | −0.1 | N | 0.7 | N | 0.1 | N |
September | −0.6 | N | 0.0 | N | 0.3 | N | −0.9 | N |
Palmer Z Drought Index (Z) | ||||||||
May | −1.5 | MoD 5 | −0.1 | N | −3.2 | ED 6 | 0.1 | N |
June | −0.4 | N | 4.1 | EW | −0.1 | N | 1.5 | SW 7 |
July | 0.8 | N | −0.6 | N | −1.0 | MoD | −3.5 | ED |
August | 0.6 | N | 0.5 | N | 0.5 | N | −0.1 | N |
September | −1.0 | MoD | −1.3 | MoD | 0.2 | N | −1.1 | MoD |
Palmer Drought Severity Index (PDSI) | ||||||||
May | 0.4 | N | −1.0 | N | −2.2 | MoD | −0.6 | N |
June | 0.4 | N | −1.1 | MiD 8 | −2.3 | MoD | −1.8 | MiD |
July | 0.5 | N | −1.0 | N | −1.8 | MiD | −1.7 | MiD |
August | −0.5 | N | −1.3 | MiD | −1.6 | MiD | −1.9 | MiD |
September | −0.8 | N | −1.1 | MiD | −1.7 | MiD | −2.2 | MoD |
Month | Year | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |||||||
Standardized Precipitation Index for 60 days (SPI-2) | ||||||||||||
June | −0.8 | N 1 | 0.6 | N | 1.0 | MoH 2 | −0.3 | N | 1.0 | MoH | −0.6 | N |
July | −1.1 | MoD 3 | −0.9 | N | 0.7 | N | −2.7 | ExD 4 | 0.9 | N | −1.3 | SD 5 |
August | −0.8 | N | −0.6 | N | 1.2 | MoH | −0.4 | N | 0.5 | N | −0.8 | N |
September | −2.1 | ED | 0.4 | N | 1.3 | MoH | 0.6 | N | 0.4 | N | 0.0 | N |
Palmer Z Drought Index (Z) | ||||||||||||
June | −3.9 | ED 6 | −0.5 | N | −1.5 | SD | −2.8 | ED | 1.8 | MoH | −3.1 | ED |
July | −1.4 | MoD | −2.4 | SD | 2.9 | VH 7 | −3.9 | ED | 0.0 | N | −3.1 | ED |
August | −3.9 | ED | −1.4 | MoD | 1.2 | MoH | 0.2 | N | 0.5 | N | −2.3 | SD |
September | −0.7 | MoD | 0.8 | N | 3.9 | EH 8 | −0.1 | N | 0.0 | N | 0.1 | N |
Palmer Drought Severity Index (PDSI) | ||||||||||||
June | −3.9 | SD | 1.1 | N | −0.9 | N | 0.4 | N | 1.4 | N | −2.9 | MoD |
July | −4.1 | ED | −0.1 | N | 1.6 | MoH | −2.8 | MoD | 1.3 | N | −3.6 | SD |
August | −4.9 | ED | −2.0 | SD | 1.9 | MoH | −2.4 | MoD | 1.3 | N | −4.0 | ED |
September | −4.0 | ED | −0.9 | N | 3.4 | VH | −2.0 | MoD | 1.0 | N | −3.6 | SD |
Month | Year | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |||||||
Standardized Precipitation Index for 60 days (SPI-2) | ||||||||||||
June | 0.4 | N 1 | −0.3 | N | 1.1 | MoH 2 | 0.7 | N | 0.5 | N | −0.8 | N |
July | −0.7 | N | −1.1 | MoD 3 | 0.8 | N | −1.5 | SD 4 | 0.7 | N | −0.8 | N |
August | −2.2 | ED 5 | −0.3 | N | 1.4 | MoH | −0.4 | N | 0.4 | N | −0.7 | N |
September | −1.1 | MoD | 0.4 | N | 1.8 | MoH | 0.1 | N | −0.5 | N | 0.5 | N |
Palmer Z Drought Index (Z) | ||||||||||||
June | −0.2 | N | 0.8 | N | 3.1 | SH 6 | 2.9 | SH | 0.7 | N | −0.6 | N |
July | −1.6 | MiD 7 | −1.4 | MiD | −0.1 | N | −1.8 | MiD | 0.5 | N | −2.1 | MoD |
August | −3.0 | SD | −1.1 | MiD | 2.4 | MoH | −1.5 | MiD | 1.3 | MiH 8 | −1.4 | MiD |
September | −4.2 | ED | −0.8 | N | 2.3 | MoH | −0.6 | N | −0.1 | N | −2.5 | MoD |
Palmer Drought Severity Index (PDSI) | ||||||||||||
June | −5.1 | ED | −0.3 | N | 1.4 | MiH | 2.1 | MoH | 1.9 | MiH | −0.8 | N |
July | −5.4 | ED | −0.6 | N | 1.9 | MiH | 1.7 | MiH | 1.4 | MiH | −1.0 | N |
August | −6.0 | ED | −0.7 | N | 2.3 | MoH | 1.5 | MiH | 1.0 | N | −1.4 | MiD |
September | −5.5 | ED | −0.6 | N | 3.3 | SH | 1.4 | MiH | 0.6 | N | 0.0 | N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janić Hajnal, E.; Kos, J.; Radić, B.; Anić, M.; Radović, R.; Kudumija, N.; Vulić, A.; Đekić, S.; Pleadin, J. Impact of Climate Changes on the Natural Prevalence of Fusarium Mycotoxins in Maize Harvested in Serbia and Croatia. Foods 2023, 12, 1002. https://doi.org/10.3390/foods12051002
Janić Hajnal E, Kos J, Radić B, Anić M, Radović R, Kudumija N, Vulić A, Đekić S, Pleadin J. Impact of Climate Changes on the Natural Prevalence of Fusarium Mycotoxins in Maize Harvested in Serbia and Croatia. Foods. 2023; 12(5):1002. https://doi.org/10.3390/foods12051002
Chicago/Turabian StyleJanić Hajnal, Elizabet, Jovana Kos, Bojana Radić, Mislav Anić, Radmila Radović, Nina Kudumija, Ana Vulić, Sanja Đekić, and Jelka Pleadin. 2023. "Impact of Climate Changes on the Natural Prevalence of Fusarium Mycotoxins in Maize Harvested in Serbia and Croatia" Foods 12, no. 5: 1002. https://doi.org/10.3390/foods12051002
APA StyleJanić Hajnal, E., Kos, J., Radić, B., Anić, M., Radović, R., Kudumija, N., Vulić, A., Đekić, S., & Pleadin, J. (2023). Impact of Climate Changes on the Natural Prevalence of Fusarium Mycotoxins in Maize Harvested in Serbia and Croatia. Foods, 12(5), 1002. https://doi.org/10.3390/foods12051002