Characteristics of Red Deer (Cervus elaphus) Milk: Lactational Changes in Composition and Processing Impacts on Structural and Gelation Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sampling
2.2. Compositional Analyses
2.3. Physicochemical Properties
2.4. Gelation Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. Deer Milk Compositions over Different Stages of Lactation
3.1.1. Proximate and Mineral Compositions
3.1.2. Fatty Acid Composition
- C6–C14 fatty acids (excluding iso C14) decreased over the lactation (Figure 2A);
- The abundant long-chain fatty acids, C18:0 and C18:1 c9, increased over the lactation (Figure 2B);
- All the BCFAs (excluding iso C17) displayed significant quadratic patterns; they were lowest at the beginning of lactation, increased to their highest levels in week 9, and then decreased slightly towards the end of lactation (Figure 2C). Similarly, the odd-chain fatty acids C15:0 and C17:0 increased from week 3 to week 9 but did not decrease as markedly thereafter;
- The monounsaturated fatty acids C14:1, C16:1, and C18:1 c11 remained stable except for remarkably higher levels in week 3, which were 2 to 4 times higher than the levels in later lactation (Figure 2D);
- The abundant fatty acids C16:0 and C4:0 had random variation;
- C18:1 t11 and some polyunsaturated fatty acids, including C18:3 n3 and CLA, fluctuated in cubic patterns. C18:1 t11 and CLA fluctuated in similar patterns over the lactation: decrease–increase–decrease.
3.1.3. Protein Composition
3.2. Physicochemical Properties of Deer Milk
3.3. Gelation Properties of Deer Milk
3.3.1. Acid-Induced Gelation
3.3.2. Rennet-induced Gelation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Bekhit, A.E.D.A.; Morton, J.D.; Mason, S. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications for Health and Disease, 1st ed.; Watson, R.R., Collier, R.J., Preedy, P.R., Eds.; Academic Press: London, UK, 2017; pp. 363–375. [Google Scholar] [CrossRef]
- Berruga, M.I.; de la Vara, J.Á.; Licón, C.C.; Garzón, A.I.; García, A.J.; Carmona, M.; Chonco, L.; Molina, A. Physicochemical, microbiological and technological properties of red deer (Cervus elaphus) milk during lactation. Animals 2021, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, structure, and digestive dynamics of milk from different species—A review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef] [PubMed]
- Gallego, L.; Landete-Castillejos, T.; Garcia, A.; Sánchez, P.J. Seasonal and lactational changes in mineral composition of milk from Iberian red deer (Cervus elaphus hispanicus). J. Dairy Sci. 2006, 89, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, M.; Franceschi, P.; Formaggioni, P.; Pisani, G.M.; Petrera, F.; Abeni, F.; Soffiantini, C.S.; Summer, A. Minerals content and distribution in milk from red deer (Cervus elaphus), fallow deer (Dama dama) and roe deer (Capreolus capreolus). Small Rumin. Res. 2015, 130, 208–215. [Google Scholar] [CrossRef]
- Landete-Castillejos, T.; Garcia, A.; Molina, P.; Vergara, H.; Garde, J.; Gallego, L. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. J. Anim. Sci. 2000, 78, 2771–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vergara, H.; Landete-Castillejos, T.; Garcia, A.; Molina, P.; Gallego, L. Concentration of Ca, Mg, K, Na, P and Zn in milk in two subspecies of red deer: Cervus elaphus hispanicus and C. e. scoticus. Small Rumin. Res. 2003, 47, 77–83. [Google Scholar] [CrossRef]
- Serrano, M.P.; Gambín, P.; Landete-Castillejos, T.; García, A.; Cappelli, J.; Pérez-Barbería, F.J.; Gómez, J.A.; Gallego, L. Effects of Mn supplementation in late-gestating and lactating red deer (Cervus elaphus hispanicus) on milk production, milk composition, and calf growth. J. Anim. Sci. 2018, 96, 2038–2049. [Google Scholar] [CrossRef]
- De la Vara, J.A.; Berruga, M.I.; Cappelli, J.; Landete-Castillejos, T.; Carmona, M.; Gallego, L.; Molina, A. Some aspects of the ethanol stability of red deer milk (Cervus elaphus hispanicus): A comparison with other dairy species. Int. Dairy J. 2018, 86, 103–109. [Google Scholar] [CrossRef]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Gelation of milks of different species (dairy cattle, goat, sheep, red deer, and water buffalo) using glucono-δ-lactone and pepsin. J. Dairy Sci. 2020, 103, 5844–5862. [Google Scholar] [CrossRef]
- Ha, M.; Bekhit, A.E.D.; McConnell, M.; Mason, S.; Carne, A. Fractionation of whey proteins from red deer (Cervus elaphus) milk and comparison with whey proteins from cow, sheep and goat milks. Small Rumin. Res. 2014, 120, 125–134. [Google Scholar] [CrossRef]
- Wang, Y.; Bekhit, A.E.A.; Mason, S.L.; Morton, J.D. Lactoferrin isolation and hydrolysis from red deer (Cervus elaphus) milk and the antibacterial activity of deer lactoferrin and its hydrolysates. Foods 2020, 9, 1711. [Google Scholar] [CrossRef]
- Auldist, M.J.; Walsh, B.J.; Thomson, N.A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 1998, 65, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ye, A.; Singh, H. Seasonal variations in composition, properties, and heat-induced changes in bovine milk in a seasonal calving system. J. Dairy Sci. 2019, 102, 7747–7759. [Google Scholar] [CrossRef] [PubMed]
- Timlin, M.; Tobin, J.T.; Brodkorb, A.; Murphy, E.G.; Dillon, P.; Hennessy, D.; O’donovan, M.; Pierce, K.M.; O’callaghan, T.F. The Impact of Seasonality in Pasture-Based Production Systems on Milk Composition and Functionality. Foods 2021, 10, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Lucey, J.A. Cheesemaking from Grass Based Seasonal Milk and Problems Associated with Late-lactation Milk. Int. J. Dairy Technol. 1996, 49, 59–64. [Google Scholar] [CrossRef]
- Li, S.; Delger, M.; Dave, A.; Singh, H.; Ye, A. Acid and rennet gelation properties of sheep, goat, and cow milks: Effects of processing and seasonal variation. J. Dairy Sci. 2023, 106, 1611–1625. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Corredig, M. The Structure of the casein micelle of milk and its changes during processing. Annu. Rev. Food Sci. Technol. 2012, 3, 449–467. [Google Scholar] [CrossRef]
- Li, S.; Delger, M.; Dave, A.; Singh, H.; Ye, A. Seasonal variations in the composition and physicochemical characteristics of sheep and goat milks. Foods 2022, 11, 1737. [Google Scholar] [CrossRef]
- Ye, A.; Cui, J.; Dalgleish, D.; Singh, H. Formation of a structured clot during the gastric digestion of milk: Impact on the rate of protein hydrolysis. Food Hydrocoll. 2016, 52, 478–486. [Google Scholar] [CrossRef]
- Vasbinder, A.J.; de Kruif, C.G. Casein–whey protein interactions in heated milk: The influence of pH. Int. Dairy J. 2003, 13, 669–677. [Google Scholar] [CrossRef]
- Anema, S.G.; Klostermeyer, H. Heat-induced, pH-dependent dissociation of casein micelles on heating reconstituted skim milk at temperatures below 100 C. J. Agric. Food Chem. 1997, 45, 1108–1115. [Google Scholar] [CrossRef]
- Mayer, H.K.; Fiechter, G. Physical and chemical characteristics of sheep and goat milk in Austria. Int. Dairy J. 2012, 24, 57–63. [Google Scholar] [CrossRef]
- Garzón, A.; Figueroa, A.; Caballero-Villalobos, J.; Angón, E.; Arias, R.; Perea, J.M. Derivation of multivariate indices of milk composition, coagulation properties, and curd yield in Manchega dairy sheep. J. Dairy Sci. 2021, 104, 8618–8629. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Gaucheron, F. The minerals of milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Opatha-Vithana, N.L. A Comparative Study of Immunomodulatory Activity of Deer and Cow Milk Proteins. Ph.D. Thesis, Lincoln University, Christchurch, New Zealand, 2012; pp. 1–12. [Google Scholar]
- Lagutin, K.; MacKenzie, A.; Bloor, S.; Scott, D.; Vyssotski, M. HPLC-MS, GC and NMR profiling of bioactive lipids of human milk and milk of dairy animals (cow, sheep, goat, buffalo, camel, red deer). Separations 2022, 9, 145. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Seasonal variations in the characteristics of milk fat and the whipping properties of cream. Int. Dairy J. 2022, 127, 105288. [Google Scholar] [CrossRef]
- Pacheco-Pappenheim, S.; Yener, S.; Heck, J.M.L.; Dijkstra, J.; van Valenberg, H.J.F. Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. J. Dairy Sci. 2021, 104, 8479–8492. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Taormina, V.M.; Unger, A.L.; Schiksnis, M.R.; Torres-Gonzalez, M.; Kraft, J. Branched-chain fatty acids—An underexplored class of dairy-derived fatty acids. Nutrients 2020, 12, 2875. [Google Scholar] [CrossRef] [PubMed]
- Ran-Ressler, R.R.; Sim, D.; O’Donnell-Megaro, A.M.; Bauman, D.E.; Barbano, D.M.; Brenna, J.T. Branched chain fatty acid content of United States retail cow’s milk and implications for dietary intake. Lipids 2011, 46, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L.; Denise Beaulieu, A.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Tudisco, R.; Grossi, M.; Calabrò, S.; Cutrignelli, M.I.; Musco, N.; Addi, L.; Infascelli, F. Influence of pasture on goat milk fatty acids and stearoyl-CoA desaturase expression in milk somatic cells. Small Rumin. Res. 2014, 122, 38–43. [Google Scholar] [CrossRef]
- Bobe, G.; Beitz, D.C.; Freeman, A.E.; Lindberg, G.L. Separation and quantification of bovine milk proteins by reversed-phase high-performance liquid chromatography. J. Agric. Food Chem. 1998, 46, 458–463. [Google Scholar] [CrossRef]
- Arman, P.; Kay, R.N.B.; Goodall, E.D.; Sharman, G.A.M. The composition and yield of milk from captive red deer (Cervus elaphus L.). Reproduction 1974, 37, 67–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, M. The measurement and significance of ionic calcium in milk–a review. Int. J. Dairy Technol. 2011, 64, 1–13. [Google Scholar] [CrossRef]
- Lin, M.J.; Lewis, M.J.; Grandison, A.S. Measurement of ionic calcium in milk. Int. J. Dairy Technol. 2006, 59, 192–199. [Google Scholar] [CrossRef]
- Wiking, L.; Stagsted, J.; Björck, L.; Nielsen, J.H. Milk fat globule size is affected by fat production in dairy cows. Int. Dairy J. 2004, 14, 909–913. [Google Scholar] [CrossRef]
- Briard, V.; Leconte, N.; Michel, F.; Michalski, M. The fatty acid composition of small and large naturally occurring milk fat globules. Eur. J. Lipid Sci. Technol. 2003, 105, 677–682. [Google Scholar] [CrossRef]
- Lu, J.; Argov-Argaman, N.; Anggrek, J.; Boeren, S.; van Hooijdonk, T.; Vervoort, J.; Hettinga, K.A. The protein and lipid composition of the membrane of milk fat globules depends on their size. J. Dairy Sci. 2016, 99, 4726–4738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, C.; Briard-Bion, V.; Ménard, O.; Beaucher, E.; Rousseau, F.; Fauquant, J.; Leconte, N.; Robert, B. Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chem. 2011, 125, 355–368. [Google Scholar] [CrossRef]
- Anema, S.G.; Li, Y. Association of denatured whey proteins with casein micelles in heated reconstituted skim milk and its effect on casein micelle size. J. Dairy Res. 2003, 70, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Ye, A.; Dave, A.; Fraser, K.; Singh, H. Kinetics of heat-induced interactions among whey proteins and casein micelles in sheep skim milk and aggregation of the casein micelles. J. Dairy Sci. 2022, 105, 3871–3882. [Google Scholar] [CrossRef]
- Li, Y.; Joyner, H.S.; Carter, B.G.; Drake, M.A. Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk. J. Dairy Sci. 2018, 101, 2941–2955. [Google Scholar] [CrossRef] [PubMed]
- Anema, S.G.; Lee, S.K.; Lowe, E.K.; Klostermeyer, H. Rheological properties of acid gels prepared from heated pH-adjusted skim milk. J. Agric. Food Chem. 2004, 52, 337–343. [Google Scholar] [CrossRef]
- Lucey, J.A.; Teo, C.T.; Munro, P.A.; Singh, H. Rheological properties at small (dynamic) and large (yield) deformations of acid gels made from heated milk. J. Dairy Res. 1997, 64, 591–600. [Google Scholar] [CrossRef]
- Raynal, K.; Remeuf, F. The effect of heating on physicochemical and renneting properties of milk: A comparison between caprine, ovine and bovine milk. Int. Dairy J. 1998, 8, 695–706. [Google Scholar] [CrossRef]
- Michalski, M.C.; Cariou, R.; Michel, F.; Garnier, C. Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. J. Dairy Sci. 2002, 85, 2451–2461. [Google Scholar] [CrossRef] [Green Version]
Mineral | Mean ± SD | Minimum–Maximum | Correlation Coefficient with Lactation Weeks 1 |
---|---|---|---|
Calcium (mg/100g) | 297.5 ± 18.3 | 260–310 | −0.30 |
Magnesium (mg/100g) | 16.8 ± 1.0 | 14.9–17.7 | −0.22 |
Potassium (mg/100g) | 135.6 ± 11.1 | 113–151 | −0.85 ** |
Sodium (mg/100g) | 38.0 ± 4.4 | 33–45 | 0.90 ** |
Chloride (mg/100g) | 76.8 ± 11.3 | 66–97 | 0.89 ** |
Phosphorus (mg/100g) | 208.1 ± 13.6 | 185–230 | −0.66 |
Zinc (mg/kg) | 9.56 ± 1.16 | 8.30–12.0 | −0.56 |
Iodine (mg/kg) | 0.69 ± 0.37 | 0.34–1.44 | −0.09 |
Copper (mg/kg) | 0.16 ± 0.15 | 0.05–0.48 | −0.88 ** |
Selenium (mg/kg) | 0.02 ± 0.01 | 0.01–0.04 | 0.67 |
Fatty Acid | Mean ± SD | Minimum–Maximum | Lactation Effect 1 |
---|---|---|---|
C4:0 | 5.69 ± 0.18 | 5.31–5.92 | NS |
C6:0 | 2.24 ± 0.30 | 1.93–2.66 | Decrease |
C8:0 | 1.32 ± 0.29 | 1.03–1.75 | Decrease |
C10:0 | 2.25 ± 0.52 | 1.72–3.01 | Decrease |
C10:1 | 0.14 ± 0.02 | 0.12–0.16 | Decrease |
C12:0 | 2.85 ± 0.60 | 2.26–3.72 | Decrease |
iso C14 | 0.15 ± 0.02 | 0.13–0.19 | Quadratic |
C14:0 | 12.34 ± 1.46 | 10.53–14.86 | Decrease |
iso C15 | 0.47 ± 0.07 | 0.37–0.57 | Quadratic |
anteiso C15 | 0.66 ± 0.11 | 0.44–0.79 | Quadratic |
C14:1 | 0.24 ± 0.16 | 0.16–0.62 | NS (Highest in week 3) |
C15:0 | 1.08 ± 0.11 | 0.90–1.17 | NS (Quadratic p = 0.08) |
iso C16 | 0.29 ± 0.05 | 0.23–0.37 | Quadratic |
C16:0 | 25.81 ± 1.15 | 24.59–27.86 | NS |
iso C17 | 0.82 ± 0.05 | 0.75–0.90 | NS |
C16:1 | 0.66 ± 0.62 | 0.36–2.16 | NS (Highest in week 3) |
anteiso C17 | 0.46 ± 0.06 | 0.35–0.56 | Quadratic |
C17:0 | 0.68 ± 0.08 | 0.54–0.79 | NS (Quadratic p = 0.07) |
C17:1 | 0.08 ± 0.01 | 0.07–0.10 | NS |
C18:0 | 16.83 ± 2.18 | 12.34–18.83 | Increase |
C18:1 t9 | 0.16 ± 0.02 | 0.13–0.18 | NS |
C18:1 t11 | 1.72 ± 0.25 | 1.25–2.00 | Cubic |
C18:1 c9 | 15.11 ± 1.37 | 13.09–17.09 | Increase |
C18:1 c11 | 0.78 ± 0.31 | 0.60–1.54 | NS (Highest in week 3) |
C18:2 n6 | 1.07 ± 0.16 | 0.87–1.31 | NS |
C20:0 | 0.25 ± 0.05 | 0.13–0.29 | Increase |
C18:3 n3 | 1.48 ± 0.38 | 1.08–2.25 | Cubic |
CLA | 0.45 ± 0.11 | 0.30–0.58 | Cubic |
C22:5 | 0.20 ± 0.03 | 0.17–0.25 | Cubic |
C22:6 | 0.07 ± 0.04 | 0.03–0.13 | Cubic |
C14:1/C14:0 | 0.019 ± 0.011 | 0.013–0.046 | NS (Highest in week 3) |
C16:1/C16:0 | 0.026 ± 0.024 | 0.014–0.084 | NS (Highest in week 3) |
C18:1 c9/C18:0 | 0.908 ± 0.118 | 0.784–1.182 | NS (Highest in week 3) |
CLA/C18:1 t11 | 0.261 ± 0.035 | 0.203–0.299 | Cubic |
Protein Peak | Mean ± SD | Minimum–Maximum | Correlation Coefficient with Lactation Weeks 1 |
---|---|---|---|
κ-Casein | 5.2 ± 0.9 | 3.9–6.5 | 0.96 *** |
αs2-Casein | 5.8 ± 1.1 | 4.8–7.9 | −0.87 ** |
αs1-Casein | 2.4 ± 0.3 | 1.8–2.7 | −0.32 |
β-Casein | 49.7 ± 0.7 | 48.6–50.8 | 0.12 |
Unknown | 20.7 ± 2.3 | 15.9–22.8 | 0.81 * |
Whey protein 1 | 4.7 ± 0.7 | 4.1–6.2 | −0.90 ** |
Whey protein 2 | 9.8 ± 0.7 | 9.1–11.1 | −0.86 ** |
Whey protein 3 | 1.8 ± 0.5 | 1.2–2.6 | −0.98 *** |
Property | RM | PM | HPM | HHM |
---|---|---|---|---|
pH | 6.67 | 6.67 | 6.67 | 6.67 |
Ionic calcium concentration (mM) | 3.34 a | 3.10 b | 3.08 b | 3.07 b |
Ethanol stability (%) | 59.4 ± 1.3 | ND | ND | ND |
Fat globule size (μm, D [4,3]) | 6.66 ± 0.10 | ND | ND | ND |
Casein micelle size (nm) | 195 ± 4 b | 199 ± 5 b | ND | 244 ± 8 a |
Viscosity (mPa·s) | 6.1 ± 0.6 | 6.0 ± 0.5 | 94 ± 67 | 622 ± 437 |
Property | RM | PM | HPM |
---|---|---|---|
Acid gelation time (min) | 113.4 ± 8.2 a | 62.2 ± 1.2 b | 45.4 ± 6.7 c |
Gelation pH | 4.83 ± 0.02 c | 5.05 ± 0.02 b | 5.14 ± 0.04 a |
Storage modulus G’ (Pa) | 177 ± 5 c | 208 ± 3 b | 234 ± 11 a |
Tan δ | 0.317 ± 0.003 a | 0.276 ± 0.004 b | 0.259 ± 0.012 b |
Property | RM | PM | HPM |
---|---|---|---|
Rennet gelation time (min) | 18.3 ± 2.1 a | 16.1 ± 1.2 ab | 14.5 ± 0.8 b |
Storage modulus G’ (Pa) | 384 ± 13 c | 457 ± 22 b | 529 ± 39 a |
Tan δ | 0.298 ± 0.004 a | 0.281 ± 0.010 b | 0.263 ± 0.0051 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Saharawat, A.; Ye, A.; Dave, A.; Singh, H. Characteristics of Red Deer (Cervus elaphus) Milk: Lactational Changes in Composition and Processing Impacts on Structural and Gelation Properties. Foods 2023, 12, 1517. https://doi.org/10.3390/foods12071517
Li S, Saharawat A, Ye A, Dave A, Singh H. Characteristics of Red Deer (Cervus elaphus) Milk: Lactational Changes in Composition and Processing Impacts on Structural and Gelation Properties. Foods. 2023; 12(7):1517. https://doi.org/10.3390/foods12071517
Chicago/Turabian StyleLi, Siqi, Ashish Saharawat, Aiqian Ye, Anant Dave, and Harjinder Singh. 2023. "Characteristics of Red Deer (Cervus elaphus) Milk: Lactational Changes in Composition and Processing Impacts on Structural and Gelation Properties" Foods 12, no. 7: 1517. https://doi.org/10.3390/foods12071517
APA StyleLi, S., Saharawat, A., Ye, A., Dave, A., & Singh, H. (2023). Characteristics of Red Deer (Cervus elaphus) Milk: Lactational Changes in Composition and Processing Impacts on Structural and Gelation Properties. Foods, 12(7), 1517. https://doi.org/10.3390/foods12071517