Multifunctional Nutraceutical Composition Based on Fermented Spirulina, Apple Cider Vinegar, Jerusalem Artichoke, and Bovine Colostrum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used for Multifunctional Nutraceutical Preparation
2.2. Spirulina Fermentation and Analysis Methods
2.3. Bovine Colostrum Fermentation and Analysis Methods
2.4. Nutraceutical Preparation and Analysis Methods
2.5. Statistical Analysis
3. Results and Discussion
3.1. Parameters of Spirulina (pH, Colour Coordinates, L-Glutamic and Gamma-Aminobutyric Acids Concentrations and Fatty Acid Profile)
3.2. Parameters of Non-Treated and Fermented Bovine Colostrum
3.3. Overall Acceptability, Colour, and Texture Parameters of the Separate Nutraceutical Layers and Overall Acceptability of the Whole Nutraceutical
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of Nutraceuticals: Role of the Food Matrix, Processing Conditions, the Gastrointestinal Tract, and Nanodelivery Systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 954–994. [Google Scholar] [CrossRef] [PubMed]
- Parmar, K.; Patel, J. Natural Flavors in Various Nutraceutical Product Applications. In Flavor Development for Functional Foods and Nutraceuticals; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-47059-2. [Google Scholar]
- Santini, A. Nutraceuticals and Functional Foods: Is It Possible and Sustainable for Bridging Health and Food? Foods 2022, 11, 1608. [Google Scholar] [CrossRef] [PubMed]
- Daliu, P.; Santini, A.; Novellino, E. From Pharmaceuticals to Nutraceuticals: Bridging Disease Prevention and Management. Expert Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Grand View Research. Nutraceuticals Market Analysis by Product (Dietary Supplements, Function-al Food, Functional Beverage), by Region (North America, Asia Pacific, Europe, CSA, MEA), and Segment Forecasts, 2018–2025; Grand View Research: San Francisco, CA, USA, 2017. [Google Scholar]
- Kumkong, N.; Banjongsinsiri, P.; Laohakunjit, N.; Vatanyoopaisarn, S.; Thumthanaruk, B. Influence of Natural Colour Blends of Freeze-Dried Gac Aril and Pulp on the Quality of Whey Protein-Mixed Gelatin-Based Chewables. Heliyon 2020, 6, e05817. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Davachi, S.M.; Ravanfar, R.; Dadmohammadi, Y.; Deisenroth, T.W.; Van Pho, T.; Odorisio, P.A.; Darji, R.H.; Abbaspourrad, A. Improvement of vitamin C stability in vitamin gummies by encapsulation in casein gel. Food Hydrocoll. 2020, 113, 106414. [Google Scholar] [CrossRef]
- Paternina, L.P.R.; Moraes, L.; Santos, T.D.; de Morais, M.G.; Costa, J.A.V. Spirulina and Açai as Innovative Ingredients in the Development of Gummy Candies. J. Food Process. Preserv. 2022, 46, e17261. [Google Scholar] [CrossRef]
- Niam, M.L.Q.; Amin, R.S.; Utami, N.; Wahyuni, A.S. Formulation of Dietary Supplement Chewable Gummy with Bastard Cedar Leaves (Guazuma Ulmifolia), Senna Leaves (Cassia Angustifolia) and Lime Extracts Using a Simplex Lattice Design. In Proceedings of the International Conference on Sustainable Innovation on Health Sciences and Nursing ICOSI-HSN, Yogyakarta, Indonesia, 20–21 July 2022; Atlantis Press: Amsterdam, The Netherlands, 2022; pp. 122–135. [Google Scholar]
- Rani, K.C.; Jayani, N.I.E.; Feneke, F.; Melanda, S. Preparation and evaluation of gelatin and pectin-based moringa oleifera chewable-gummy tablets. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 913, p. 012082. [Google Scholar]
- de la Jara, A.; Ruano-Rodriguez, C.; Polifrone, M.; Assunçao, P.; Brito-Casillas, Y.; Wägner, A.M.; Serra-Majem, L. Impact of Dietary Arthrospira (Spirulina) Biomass Consumption on Human Health: Main Health Targets and Systematic Review. J. Appl. Phycol. 2018, 30, 2403–2423. [Google Scholar] [CrossRef]
- Priyanka, S.; Varsha, R.; Verma, V.; Ayenampudi, S.B. Spirulina: A Spotlight on Its Nutraceutical Properties and Food Processing Applications. J. Microbiol. Biotechnol. Food Sci. 2023, e4785. [Google Scholar] [CrossRef]
- Kumaraguruparaswami, M.; Subramani, D.; Arunachalam, S.; Kandasamy, S.; Sivasubramaniyan, S.G.; Nallamuthu, D. Spirulina-derived nutraceuticals and their applications in the food industry. Algal Genet. Resour. Cosmeceuticals Nutraceuticals Pharm. Algae 2022, 71. [Google Scholar]
- Playford, R.J.; Weiser, M.J. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.D.; Anaya, K.; Galdino, A.B.; Oliveira, J.P.; Gama, M.A.; Medeiros, C.A.; Gavioli, E.C.; Porto, A.L.F.; Rangel, A.H. Bovine Colostrum: A Source of Bioactive Compounds for Prevention and Treatment of Gastrointestinal Disorders. NFS J. 2021, 25, 1–11. [Google Scholar] [CrossRef]
- Mehra, R.; Garhwal, R.; Sangwan, K.; Guiné, R.P.F.; Lemos, E.T.; Buttar, H.S.; Visen, P.K.S.; Kumar, N.; Bhardwaj, A.; Kumar, H. Insights into the Research Trends on Bovine Colostrum: Beneficial Health Perspectives with Special Reference to Manufacturing of Functional Foods and Feed Supplements. Nutrients 2022, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Yáñez, A.; Ramos, P.; Morales-Quintana, L. Human Health Benefits through Daily Consumption of Jerusalem Artichoke (Helianthus tuberosus L.) Tubers. Horticulturae 2022, 8, 620. [Google Scholar] [CrossRef]
- Rubel, I.A.; Iraporda, C.; Novosad, R.; Cabrera, F.A.; Genovese, D.B.; Manrique, G.D. Inulin Rich Carbohydrates Extraction from Jerusalem Artichoke (Helianthus tuberosus L.) Tubers and Application of Different Drying Methods. Food Res. Int. Ott. Ont 2018, 103, 226–233. [Google Scholar] [CrossRef]
- Rahim, M.A.; Saeed, F.; Khalid, W.; Hussain, M.; Anjum, F.M. Functional and Nutraceutical Properties of Fructo-Oligosaccharides Derivatives: A Review. Int. J. Food Prop. 2021, 24, 1588–1602. [Google Scholar] [CrossRef]
- Tripathi, S. Apple Cider Vinegar (ACV) and Their Pharmacological Approach towards Alzheimer’s Disease (AD): A Review. Indian J. Pharm. Educ. Res. 2020, 54, s67–s74. [Google Scholar] [CrossRef]
- Shirazi, A.O.; Jahandideh, H.; Yarahmadi, A.; Milanifard, M.; Delarestaghi, M.M.; Maleki, M. The Effect of Apple Cider Vinegar in the Treatment of Chronic Rhinosinusitis. Med. Sci. 2020, 24, 2467–2474. [Google Scholar]
- Taroncher, M.; Vila-Donat, P.; Tolosa, J.; Ruiz, M.J.; Rodríguez-Carrasco, Y. Biological Activity and Toxicity of Plant Nutraceuticals: An Overview. Curr. Opin. Food Sci. 2021, 42, 113–118. [Google Scholar] [CrossRef]
- de Marco Castro, E.; Shannon, E.; Abu-Ghannam, N. Effect of Fermentation on Enhancing the Nutraceutical Properties of Arthrospira Platensis (Spirulina). Fermentation 2019, 5, 28. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, Y.; Wang, L.; Sun, T.; Pan, H.; Li, H. PH Auto-Sustain-Based Fermentation Supports Efficient Gamma-Aminobutyric Acid Production by Lactobacillus Brevis CD0817. Fermentation 2022, 8, 208. [Google Scholar] [CrossRef]
- Sahab, N.R.M.; Subroto, E.; Balia, R.L.; Utama, G.L. γ-Aminobutyric Acid Found in Fermented Foods and Beverages: Current Trends. Heliyon 2020, 6, e05526. [Google Scholar] [CrossRef] [PubMed]
- Tolpeznikaite, E.; Bartkevics, V.; Skrastina, A.; Pavlenko, R.; Ruzauskas, M.; Starkute, V.; Zokaityte, E.; Klupsaite, D.; Ruibys, R.; Rocha, J.M.; et al. Submerged and Solid-State Fermentation of Spirulina with Lactic Acid Bacteria Strains: Antimicrobial Properties and the Formation of Bioactive Compounds of Protein Origin. Biology 2023, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Lele, V.; Sakiene, V.; Zavistanaviciute, P.; Ruzauskas, M.; Stankevicius, A.; Grigas, J.; Pautienius, A.; Bernatoniene, J.; Jakstas, V.; et al. Fermented, Ultrasonicated, and Dehydrated Bovine Colostrum: Changes in Antimicrobial Properties and Immunoglobulin Content. J. Dairy Sci. 2020, 103, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Bartkevics, V.; Ikkere, L.E.; Pugajeva, I.; Zavistanaviciute, P.; Lele, V.; Ruzauskas, M.; Bernatoniene, J.; Jakstas, V.; Klupsaite, D.; et al. The Effects of Ultrasonication, Fermentation with Lactobacillus Sp., and Dehydration on the Chemical Composition and Microbial Contamination of Bovine Colostrum. J. Dairy Sci. 2018, 101, 6787–6798. [Google Scholar] [CrossRef] [PubMed]
- Bartkiene, E.; Lele, V.; Ruzauskas, M.; Domig, K.J.; Starkute, V.; Zavistanaviciute, P.; Bartkevics, V.; Pugajeva, I.; Klupsaite, D.; Juodeikiene, G.; et al. Lactic Acid Bacteria Isolation from Spontaneous Sourdough and Their Characterization Including Antimicrobial and Antifungal Properties Evaluation. Microorganisms 2020, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Tolpeznikaite, E.; Bartkevics, V.; Skrastina, A.; Pavlenko, R.; Mockus, E.; Zokaityte, E.; Starkute, V.; Klupsaite, D.; Ruibys, R.; Rocha, J.M.; et al. Changes in Spirulina’s Physical and Chemical Properties during Submerged and Solid-State Lacto-Fermentation. Toxins 2023, 15, 75. [Google Scholar] [CrossRef] [PubMed]
- ISO 6658:2017; Sensory Analysis—Methodology—General Guidance 2017. International Organization for Standardization (ISO): Geneva, Switzerland, 2017.
- Park, W.S.; Kim, H.-J.; Li, M.; Lim, D.H.; Kim, J.; Kwak, S.-S.; Kang, C.-M.; Ferruzzi, M.G.; Ahn, M.-J. Two Classes of Pigments, Carotenoids and c-Phycocyanin, in Spirulina Powder and Their Antioxidant Activities. Molecules 2018, 23, 2065. [Google Scholar] [CrossRef]
- Kurt, H.; Isleten Hosoglu, M.; Guneser, O.; Karagul-Yuceer, Y. Influence of Different Bacteria Species in Chemical Composition and Sensory Properties of Fermented Spirulina. Food Chem. 2023, 400, 133994. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, X.; Zheng, J.-H.; Ren, D.-F.; Lu, J. Mixed Fermentation of Spirulina Platensis with Lactobacillus Plantarum and Bacillus Subtilis by Random-Centroid Optimization. Food Chem. 2018, 264, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Cebi, N.; Dogan, C.E.; Olgun, E.O.; Sagdic, O. A Survey of Free Glutamic Acid in Foods Using a Robust LC–MS/MS Method. Food Chem. 2018, 248, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Woraharn, S.; Lailerd, N.; Sivamaruthi, B.S.; Wangcharoen, W.; Sirisattha, S.; Peerajan, S.; Chaiyasut, C. Evaluation of Factors That Influence the L-Glutamic and γ-Aminobutyric Acid Production during Hericium Erinaceus Fermentation by Lactic Acid Bacteria. CyTA-J. Food 2016, 14, 47–54. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Jooyandeh, H.; Falah, F.; Vasiee, A. Gamma-aminobutyric Acid Production by Lactobacillus Brevis A3: Optimization of Production, Antioxidant Potential, Cell Toxicity, and Antimicrobial Activity. Food Sci. Nutr. 2020, 8, 5330–5339. [Google Scholar] [CrossRef]
- Anggraini, L.; Marlida, Y.; Wizna, W.; Jamsari, J.; Mirzah, M. Optimization of Nutrient Medium for Pediococcus Acidilactici DS15 to Produce GABA. J. Worlds Poult. Res. 2019, 9, 139–146. [Google Scholar] [CrossRef]
- Thuy, D.T.B.; Nguyen, A.T.; Khoo, K.S.; Chew, K.W.; Cnockaert, M.; Vandamme, P.; Ho, Y.-C.; Huy, N.D.; Cocoletzi, H.H.; Show, P.L. Optimization of Culture Conditions for Gamma-Aminobutyric Acid Production by Newly Identified Pediococcus Pentosaceus MN12 Isolated from ‘Mam Nem’, a Fermented Fish Sauce. Bioengineered 2021, 12, 54–62. [Google Scholar] [CrossRef]
- Matos, J.; Cardoso, C.L.; Falé, P.; Afonso, C.M.; Bandarra, N.M. Investigation of Nutraceutical Potential of the Microalgae Chlorella Vulgaris and Arthrospira Platensis. Int. J. Food Sci. Technol. 2020, 55, 303–312. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The True Value of Spirulina. J. Agric. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef]
- AlFadhly, N.K.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and Technological Advancements in the Possible Food Applications of Spirulina and Their Health Benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef] [PubMed]
- Khubber, S.; Marti-Quijal, F.J.; Tomasevic, I.; Remize, F.; Barba, F.J. Lactic Acid Fermentation as a Useful Strategy to Recover Antimicrobial and Antioxidant Compounds from Food and By-Products. Curr. Opin. Food Sci. 2022, 43, 189–198. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and Functional Paths of Lactic Acid Bacteria in Plant Foods: Get out of the Labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Dewi, E.N.; Amalia, U. Nutritional Comparison of Spirulina Sp Powder by Solid-State Fermentation Using Aspergillus Sp (FNCL 6088) and Lactobacillus Plantarum (FNCL 0127). In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 102, p. 012024. [Google Scholar]
- McGrath, B.A.; Fox, P.F.; McSweeney, P.L.; Kelly, A.L. Composition and Properties of Bovine Colostrum: A Review. Dairy Sci. Technol. 2016, 96, 133–158. [Google Scholar] [CrossRef]
- Dande, N.D.; Nande, P.J. Nutritional Composition of Bovine Colostrum: Palatability Evaluation of Food Products Prepared Using Bovine Colostrum. Int. J. Nutr. Pharmacol. Neurol. Dis. 2020, 10, 8–13. [Google Scholar]
- Puppel, K.; Gołębiewski, M.; Grodkowski, G.; Slósarz, J.; Kunowska-Slósarz, M.; Solarczyk, P.; Łukasiewicz, M.; Balcerak, M.; Przysucha, T. Composition and Factors Affecting Quality of Bovine Colostrum: A Review. Animals 2019, 9, 1070. [Google Scholar] [CrossRef] [PubMed]
- Šlosárková, S.; Pechová, A.; Staněk, S.; Fleischer, P.; Zouharová, M.; Nejedlá, E. Microbial Contamination of Harvested Colostrum on Czech Dairy Farms. J. Dairy Sci. 2021, 104, 11047–11058. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, G.; Da Silva, J.T.; da Rocha Santos, F.H.; Bittar, C.M.M. Nutritional and Microbiological Quality of Bovine Colostrum Samples in Brazil. Rev. Bras. Zootec. 2017, 46, 72–79. [Google Scholar] [CrossRef]
- Fasse, S.; Alarinta, J.; Frahm, B.; Wirtanen, G. Bovine Colostrum for Human Consumption—Improving Microbial Quality and Maintaining Bioactive Characteristics through Processing. Dairy 2021, 2, 556–575. [Google Scholar] [CrossRef]
- Mörschbächer, A.P.; Granada, C.E. Mapping the Worldwide Knowledge of Antimicrobial Substances Produced by Lactobacillus Spp.: A Bibliometric Analysis. Biochem. Eng. J. 2022, 180, 108343. [Google Scholar] [CrossRef]
- Saalfeld, M.H.; Pereira, D.I.B.; Valente, J.D.S.S.; Borchardt, J.L.; Weissheimer, C.F.; Gularte, M.A.; Leite, F.P.L. Effect of Anaerobic Bovine Colostrum Fermentation on Bacteria Growth Inhibition. Ciênc. Rural 2016, 46, 2152–2157. [Google Scholar] [CrossRef]
- Wang, R.; Hartel, R.W. Citric Acid and Heating on Gelatin Hydrolysis and Gelation in Confectionery Gels. Food Hydrocoll. 2022, 129, 107642. [Google Scholar] [CrossRef]
- Bagwe, S.; Tharappel, L.J.; Kaur, G.; Buttar, H.S. Bovine Colostrum: An Emerging Nutraceutical. J. Complement. Integr. Med. 2015, 12, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Arslan, A.; Duman, H.; Karyelioğlu, M.; Baydemir, B.; Günar, B.B.; Alkan, M.; Bayraktar, A.; Tosun, H.İ.; Ertürk, M. Production of Bovine Colostrum for Human Consumption to Improve Health. Front. Pharmacol. 2022, 12, 796824. [Google Scholar] [CrossRef]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the Food and Functional Food Industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, O.; Kahala, M.; Marsol-Vall, A.; Blasco, L.; Järvenpää, E.; Rosenvald, S.; Virtanen, M.; Tarvainen, M.; Yang, B. Impact of Lactic Acid Fermentation on Sensory and Chemical Quality of Dairy Analogues Prepared from Lupine (Lupinus angustifolius L.) Seeds. Food Chem. 2021, 346, 128852. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, L.; Wen, R.; Chen, Q.; Kong, B. Role of Lactic Acid Bacteria in Flavor Development in Traditional Chinese Fermented Foods: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2741–2755. [Google Scholar] [CrossRef]
Ingredients | Formulas for Layers | |||||
---|---|---|---|---|---|---|
I | II | III | IV | V | VI | |
Sugar, g | 17 | - | 17 | - | 17 | - |
Xylitol, g | - | 17 | - | 17 | - | 17 |
Gelatine, g | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 | 8.5 |
Citric acid, g | 0.7 | 0.7 | 0.7 | 0.7 | - | - |
Fermented Spirulina powder, g | 5 | 5 | - | - | - | - |
Water, mL | 20 | 20 | 20 | 20 | 20 | 20 |
C. paradise essential oil, µL | 2 | 2 | - | - | - | - |
Fermented bovine colostrum, g | - | - | 7.0 | 7.0 | - | - |
Jerusalem artichoke powder, g | - | - | 5.0 | 5.0 | - | - |
Apple cider vinegar, mL | - | - | - | - | 15 | 15 |
Nutraceutical Formulations | Images |
---|---|
Formulation I (sugar + gelatine + citric acid + fermented Spirulina + water + C. paradise essential oil) | |
Formulation II (xylitol + gelatine + citric acid + fermented Spirulina + water + C. paradise essential oil) | |
Formulation III (sugar + gelatine + citric acid + fermented bovine colostrum + Jerusalem artichoke powder + water) | |
Formulation IV (xylitol + gelatine + citric acid + fermented bovine colostrum + Jerusalem artichoke powder + water) | |
Formulation V (sugar + gelatine + apple cider vinegar + water) | |
Formulation VI (xylitol + gelatine + apple cider vinegar + water) | |
Whole (a) and cut (b) nutraceutical (a) (Layers I + III + V and Layers II + IV + VI) | (a) (b) |
NutraceuticalFormulations | Colour Coordinates, NBS | Texture Hardness, mJ | Overall Acceptability | ||
---|---|---|---|---|---|
L* | a* | b* | |||
I | 26.5 ± 0.3 a | −1.03 ± 0.06 a | 0.98 ± 0.05 a | 1.20 ± 0.18 bc | 10.0 ± 0.3 b |
II | 28.7 ± 0.7 a | −0.90 ± 0.05 a | 2.25 ± 0.18 b | 0.90 ± 0.11 b | 10.0 ± 0.5 b |
III | 50.6 ± 0.6 b | 4.49 ± 0.46 c | 14.10 ± 0.31 c | 1.70 ± 0.12 d | 8.5 ± 0.7 a |
IV | 47.0 ± 0.8 b | 5.35 ± 0.79 c | 13.01 ± 0.58 c | 1.30 ± 0.15 c | 8.5 ± 0.8 a |
V | 71.4 ± 0.9 d | 0.65 ± 0.15 b | 20.50 ± 0.42 d | 0.30 ± 0.19 a | 8.0 ± 0.4 a |
VI | 63.9 ± 1.2 c | 1.11 ± 0.25 b | 20.20 ± 0.27 d | 0.50 ± 0.16 a | 8.0 ± 0.6 a |
I + III + V | - | - | - | - | 10.0 ± 0.5 b |
II + IV + VI | - | - | - | - | 10.0 ± 0.7 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartkiene, E.; Starkute, V.; Jomantaite, I.; Zokaityte, E.; Mockus, E.; Tolpeznikaite, E.; Zokaityte, G.; Petrova, P.; Santini, A.; Rocha, J.M.; et al. Multifunctional Nutraceutical Composition Based on Fermented Spirulina, Apple Cider Vinegar, Jerusalem Artichoke, and Bovine Colostrum. Foods 2023, 12, 1690. https://doi.org/10.3390/foods12081690
Bartkiene E, Starkute V, Jomantaite I, Zokaityte E, Mockus E, Tolpeznikaite E, Zokaityte G, Petrova P, Santini A, Rocha JM, et al. Multifunctional Nutraceutical Composition Based on Fermented Spirulina, Apple Cider Vinegar, Jerusalem Artichoke, and Bovine Colostrum. Foods. 2023; 12(8):1690. https://doi.org/10.3390/foods12081690
Chicago/Turabian StyleBartkiene, Elena, Vytaute Starkute, Ieva Jomantaite, Egle Zokaityte, Ernestas Mockus, Ernesta Tolpeznikaite, Gintare Zokaityte, Penka Petrova, Antonello Santini, João Miguel Rocha, and et al. 2023. "Multifunctional Nutraceutical Composition Based on Fermented Spirulina, Apple Cider Vinegar, Jerusalem Artichoke, and Bovine Colostrum" Foods 12, no. 8: 1690. https://doi.org/10.3390/foods12081690
APA StyleBartkiene, E., Starkute, V., Jomantaite, I., Zokaityte, E., Mockus, E., Tolpeznikaite, E., Zokaityte, G., Petrova, P., Santini, A., Rocha, J. M., Özogul, F., & Klupsaite, D. (2023). Multifunctional Nutraceutical Composition Based on Fermented Spirulina, Apple Cider Vinegar, Jerusalem Artichoke, and Bovine Colostrum. Foods, 12(8), 1690. https://doi.org/10.3390/foods12081690