Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism
Abstract
:1. A Historical and Taxonomic Introduction: From Spirulina and Arthrospira to Limnospira
- Trichome helix usually nearly closed (i.e., spring-like coil); cross walls thin and usually invisible with light microscope; cell width typically 2–4 µm, permanently motile by rotation. Form—genus Spirulina.
- Trichome helix usually open (i.e., as stretched spring); cross walls visible with light microscopy; cell width typically 6–12 µm; gas vesicles generally present. Form—genus Arthrospira [17].
- Spirulina spp.—12 species with the type strain Spirulina subsalsa;
- Arthrospira spp.—about 35 species with the type strain Arthrospira jenneri;
- Limnospira spp.—4 species with the type strain Limnospira fusiformis (formerly Spirulina fusiformis), as well as Limnospira (formerly Spirulina or Arthrospira) platensis, Limnospira (formerly Spirulina or Arthrospira) maxima, and Limnospira (formerly Spirulina or Arthrospira) indica, which are commonly mass-cultivated to produce spirulina biomass for sale on the market.
2. Biochemical Characterization of Spirulina
2.1. Protein Value of Spirulina
2.2. Lipids and Fatty Acids
2.3. Phenolic Compounds
2.4. Polysaccharides
3. Culturing Spirulina: Quality Control and Standardization Issues
- (1)
- The choice of species, namely stress-tolerant or enhanced in stability;
- (2)
- Specific inhibitors and ambient conditions of biological pollution;
- (3)
- Appropriate cultivation technology;
- (4)
- Pollution monitoring;
- (5)
- Quality control.
4. Genetic Modification of Spirulina: Achievements and Perspectives
5. Spirulinomics (Limnospiromics)
5.1. Genomics—Whole-Genome Sequencing
5.2. Transcriptomics
5.3. Proteomics
Effects | Targets | References |
---|---|---|
Antiviral | Immunodeficiency virus (HIV) | [156] |
Hepatitis C virus (HCV) | [156] | |
COVID (SARS-CoV-2) | [157] | |
Antioxidant | Free radicals, lipid peroxidation | [158] |
Anti-inflammatory | NO-synthase, tumor necrosis factor (TNF)-α and interleukin-6 | [157,158,159] |
Anticancer | Inhibition of the proliferation of tumor cells, triggering cell cycle arrest, and induction of apoptosis via different signaling pathways | [160] |
Antidiabetic | Improving fasting blood sugar, total cholesterol, triglycerides, increasing the high-density lipoprotein cholesterol | [161,162] |
Antimicrobial | Inhibition of bacterial growth via antimicrobial peptides, phenolic compounds (no exact mechanism reported) | [163] |
Antitoxic | Protection from poisonings from arsenic, cadmium, carbon tetrachloride, deltamethrin, fluoride, hexachlorocyclohexane, iron, lead, mercury (detoxification by absorbtion) | [164] |
Hypertension | Lowers systolic and diastolic blood pressure (no mechanism reported) | [165] |
Obesity | Reduces body weight (no mechanism reported) | [166] |
Hepatoprotection | Improvement of sonographic liver parameters (no mechanism reported) | [167] |
5.4. Metabolomics
6. Spirulina in Space
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schopf, J.W. Microfossils of the early Archean apex chert: New evidence of the antiquity of life. Science 1993, 260, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Segreev, V.N.; Gerasimenko, L.M.; Zavarzin, G.A. The Proterozoic history and present state of cyanobacteria. Microbiology 2002, 71, 623–637. [Google Scholar] [CrossRef]
- Rozanov, A.Y.; Astafieva, M.M. The evolution of the early precambrian geobiological systems. Paleontol. J. 2009, 43, 911–927. [Google Scholar] [CrossRef]
- Blank, C.E.; Sánchez-Baracaldo, P. Timing of morphological and ecological innovations in the cyanobacteria—A key to understanding the rise in atmospheric oxygen. Geobiology 2010, 8, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Sasson, A. Micro Biotechnologies: Recent Developments and Prospects for Developing Countries; BIOTEC Publication 1/2542; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 1997; pp. 11–31. Available online: https://books.google.ru/books?id=kqUdtwAACAAJ (accessed on 13 August 2024).
- Habib, M.A.B.; Parvin, M.; Huntington, T.C.; Hasan, M.R. A review on culture, production and use of spirulina as food for humans and feeds for domestic animals and fish. In FAO Fisheries and Aquaculture Circular; No. 1034; FAO: Rome, Italy, 2008; 33p, Available online: https://www.fao.org/fishery/en/publications/42827 (accessed on 13 August 2024).
- Farrar, W. Tecuitlatl; A glimpse of Aztec food technology. Nature 1966, 211, 341–342. [Google Scholar] [CrossRef]
- Turpin, P.J.F. Spirulina oscillarioide. Dict. Sci. 1827, 50, 309–310. [Google Scholar]
- Stizenberger, E. Spirulina und Arthrospira (nov. gen.). Hedwigia 1852, 1, 32–41. Available online: https://www.zobodat.at/pdf/Hedwigia_1_1854_0032-0034.pdf (accessed on 13 August 2024).
- Rich, F. Notes on Arthrospira platensis. Rev. Algol. 1931, 6, 75–79. [Google Scholar]
- Geitler, L. Cyanophyceae. In Rabenhorst’s Kryptogamen flora von Deutschland, Österreich und der Schweiz; Akademie Verlag: Leipzig, Germany, 1932; Volume 14, pp. 916–931. [Google Scholar]
- Vonshak, A.; Tomaselli, L. Arthrospira (Spirulina): Systematics and Ecophysiology. In The Ecology of Cyanobacteria; Whitton, B.A., Potts, M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 505–522. [Google Scholar] [CrossRef]
- Dangeard, P. Sur une algue bleue alimentaire pour l’homme: Arthrospira platensis (Nordst.) Gomont. Actes Soc. Linn. Boreaux Extr. Proces-Verbaux. 1940, 91, 39–41. [Google Scholar]
- Leonard, J. The 1964–65 Belgian trans-Saharan expedition. Nature 1966, 209, 126–128. [Google Scholar] [CrossRef]
- Clément, G. A new type of food algae. In Single-Cell Protein; Mateles, R.J., Tannenbaum, S.R., Eds.; MIT Press: Cambridge, MA, USA, 1968; pp. 306–308. [Google Scholar]
- Ciferri, O. Spirulina, the edible microorganism. Microbiol. Rev. 1983, 47, 551–578. [Google Scholar] [CrossRef] [PubMed]
- Castenholz, R.W. Subsection III, order Oscillatoriales. In Bergey’s Manual of Systematic Bacteriology; Staley, J.T., Bryant, M.P., Pfennig, N., Holt, J.G., Eds.; Williams and Wilkins Co.: Baltimore, MD, USA, 1989; Volume 3, pp. 1771–1780. [Google Scholar] [CrossRef]
- Sili, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II; Whitton, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 677–705. [Google Scholar] [CrossRef]
- Komárek, J.; Kaštovskỵ, J.; Mareš, J.; Johansen, J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 2014, 86, 295–335. [Google Scholar]
- Shih, P.M.; Wu, D.; Latifi, A.; Axen, S.D.; Fewer, D.P.; Talla, E.; Calteau, A.; Cai, F.; Tandeau de Marsac, N.; Rippka, R.; et al. Improving the coverage of the cyanobacterial phylum using diversity driven genome sequencing. Proc. Natl. Acad. Sci. USA 2013, 15, 1053–1058. [Google Scholar] [CrossRef]
- Gomont, M.M. Monographie des Oscillariées (Nostocacées Homocystées). Ann. Sci. Nat. Bot. Ser. 1892, 7, 263–368. Available online: https://www.algaebase.org/search/bibliography/detail/?biblio_id=18281 (accessed on 13 August 2024).
- Hassall, A.H. A History of the British Freshwater Algae, Including Descriptions of the Desmideae and Diatomaceae, with Upwards of One Hundred Plates Illustrating the Various Species; Spottishwoode, A., Ed.; Taylor: London, UK, 1845; pp. 1–462. [Google Scholar] [CrossRef]
- Papapanagiotou, G.; Gkelis, S. Taxonomic revision of commercially used Arthrospira (Cyanobacteria) strains: A polyphasic approach. Eur. J. Phycol. 2019, 54, 595–608. [Google Scholar] [CrossRef]
- Choi, G.G.; Ahn, C.Y.; Oh, H.M. Phylogenetic relationships of Arthrospira strains inferred from 16S rRNA gene and cpcBA-IGS sequences. Algae 2012, 27, 559–562. [Google Scholar] [CrossRef]
- Dadheech, P.K.; Ballot, A.; Casper, P.; Kotut, K.; Novelo, E.; Lemma, B.; Pröschold, T.; Krienitz, L. Phylogenetic relationship and divergence among planktonic strains of Arthrospira (Oscillatoriales, Cyanobacteria) of African, Asian and American origin deduced by 16S–23S ITS and phycocyanin operon sequences. Phycologia 2010, 49, 361–372. [Google Scholar] [CrossRef]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef]
- Roussel, T.; Halary, S.; Duval, C.; Piquet, B.; Cadoret, J.P.; Vernès, L.; Bernard, C.; Marie, B. Monospecific renaming within the cyanobacterial genus Limnospira (Spirulina) and consequences for food authorization. J. Appl. Microbiol. 2023, 134, lxad159. [Google Scholar] [CrossRef]
- Zavřel, T.; Očenášová, P.; Červený, J. Phenotypic characterization of Synechocystis sp. PCC 6803 substrains reveals differences in sensitivity to abiotic stress. PLoS ONE 2017, 12, e0189130. [Google Scholar] [CrossRef]
- Strunecký, O.; Ivanova, A.P.; Mareš, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 2023, 59, 12–51. [Google Scholar] [CrossRef] [PubMed]
- Berthold, D.E.; Lefler, F.W.; Laughinghouse, H.D. Recognizing novel cyanobacterial diversity in marine benthic mats, with the description of Sirenicapillariaceae fam. nov., two new genera, Sirenicapillaria gen. nov. and Tigrinifilum gen. nov., and seven new species. Phycologia 2022, 61, 146–165. [Google Scholar] [CrossRef]
- Hadson, B.J.F.; Karis, I.G. Lipids of the alga Spirulina. J. Sci. Food Agric. 1974, 25, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Maddiboyina, B.; Vanamamalai, H.K.; Roy, H.; Ramaiah; Gandhi, S.; Kavisri, M.; Moovendhan, M. Food and drug industry applications of microalgae Spirulina platensis: A review. J. Basic Microbiol. 2023, 63, 573–583. [Google Scholar] [CrossRef]
- Markou, G.; Kougia, E.; Arapoglou, D.; Chentir, I.; Andreou, V.; Tzovenis, I. Production of Arthrospira platensis: Effects on growth and biochemical composition of long-term acclimatization at different salinities. Bioengineering 2023, 10, 233. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential application of microalga Spirulina platensis as a protein source. J. Sci. Food Agric. 2017, 97, 724–732. [Google Scholar] [CrossRef]
- Thevarajah, B.; Nishshanka, G.K.S.H.; Premaratne, M.; Nimarshana, P.H.V.; Nagarajan, D.; Chang, J.S.; Ariyadasa, T.U. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem. Eng. J. 2022, 185, 108541. [Google Scholar] [CrossRef]
- Manirafasha, E.; Ndikubwimana, T.; Zeng, X.; Lu, Y.; Jing, K. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J. 2016, 109, 282–296. [Google Scholar] [CrossRef]
- Kuddus, M.; Singh, P.; Thomas, G.; Al-Hazimi, A. Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Res. Int. 2013, 2013, 742859. [Google Scholar] [CrossRef]
- Priyanka, S.; Varsha, R.; Verma, R.; Ayenampudi, S.B. Spirulina: A spotlight on its nutraceutical properties and food processing applications. J. Microbiol. Biotechnol. Food Sci. 2023, 12, e4785. [Google Scholar] [CrossRef]
- Liestianty, D.; Rodianawati, I.; Arfah, R.A.; Assa, A.; Patimah; Sundari; Muliadi. Nutritional analysis of Spirulina sp. to promote as superfood candidate. IOP Conf. Ser. Mater. Sci. Eng. 2019, 509, 012031. [Google Scholar] [CrossRef]
- Masten Rutar, J.; Jagodic Hudobivnik, M.; Nečemer, M.; Vogel Mikuš, K.; Arčon, I.; Ogrinc, N. Nutritional quality and safety of the Spirulina dietary supplements sold on the Slovenian market. Foods 2022, 11, 849. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Mironov, K.S.; Allakhverdiev, S.I. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 2013, 116, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Los, D.A.; Murata, N. Structure and expression of fatty acid desaturases. Biochim. Biophys. Acta 1998, 1394, 3–15. [Google Scholar] [CrossRef]
- Los, D.A.; Murata, N. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 2004, 1666, 142–157. [Google Scholar] [CrossRef]
- Parker, P.L.; van Baalen, C.; Maurer, L. Fatty acids in eleven species of blue-green algae: Geochemical significance. Science 1967, 155, 707–708. [Google Scholar] [CrossRef]
- Holton, R.W.; Blecker, H.H.; Stevens, T.S. Fatty acids in blue-green algae: Possible relation to phylogenetic position. Science 1968, 160, 545–547. [Google Scholar] [CrossRef]
- Kenyon, C.N.; Stanier, R.Y. Possible evolutionary significance of polyunsaturated fatty acids in blue-green algae. Nature 1970, 227, 1164–1166. [Google Scholar] [CrossRef]
- Kenyon, C.N. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 1972, 109, 827–834. [Google Scholar] [CrossRef]
- Kenyon, C.N.; Rippka, R.; Stanier, R.Y. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. Microbiol. 1972, 83, 216–236. [Google Scholar] [CrossRef] [PubMed]
- Murata, N.; Wada, H.; Gombos, Z. Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol. 1992, 33, 933–941. [Google Scholar] [CrossRef]
- Los, D.A.; Mironov, K.S. Modes of fatty acid desaturation in cyanobacteria: An update. Life 2015, 5, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Nichols, B.W.; Wood, B.J. The occurrence and biosynthesis of gamma-linolenic acid in a blue-green alga, Spirulina platensis. Lipids 1968, 3, 46–50. [Google Scholar] [CrossRef]
- Iliev, I.; Petkov, G.; Lukavsky, J.; Furnadzhieva, S.; Andreeva, R. Do cyanobacterial lipids contain fatty acids longer than 18 carbon atoms? Z. Naturforsch. 2011, 66, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Ötleq, S.; Pire, R. Fatty acid composition of Chlorella and Spirulina microalgae species. J. Assoc. Anal. Commun. Int. 2001, 84, 1708–1714. [Google Scholar]
- Ojit, S.K.; Thadoi, D.A.; Indrama, T.; Avijeet, S.O.; Gunapati, O.; Tiwari, O.N.; Sharma, G.D. Fatty acid profiling of filamentous non-heterocystous cyanobacteria from Loktak Lake, the largest freshwater lake in North-Eastern region of India. Int. Res. J. Biol. Sci. 2015, 4, 69–74. Available online: https://www.isca.in/IJBS/Archive/v4/i6/13.ISCA-IRJBS-2015-073.pdf (accessed on 13 August 2024).
- Tokuşoglu, Ö.; Ünal, M.K. Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J. Food Sci. 2003, 68, 1144–1148. [Google Scholar] [CrossRef]
- Farag, M.A.; Reda, A.; Nabil, M.; Elimam, D.M.; Zayed, A. Evening primrose oil: A comprehensive review of its bioactives, extraction, analysis, oil quality, therapeutic merits, and safety. Food Funct. 2023, 14, 2042–6496. [Google Scholar] [CrossRef]
- Ruiz del Castillo, M.L.; Dobson, G.; Brennan, R.; Gordon, S. Genotypic variation in fatty acid content of blackcurrant seeds. J. Agric. Food Chem. 2002, 50, 332–335. [Google Scholar] [CrossRef]
- Jurgoński, A.; Koza, J.; Chu, D.T.; Opyd, P.M. Berry seed oils as potential cardioprotective food supplements. Nutrire 2018, 43, 26. [Google Scholar] [CrossRef]
- Gunstone, F.D. Gamma-linolenic acid—Occurrence and physical and chemical properties. Prog. Lipid Res. 1992, 31, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Roughan, P.G. Spirulina: A source of dietary gamma-linolenic acid? J. Sci. Food Agric. 1989, 47, 85–93. [Google Scholar] [CrossRef]
- Cohen, Z.; Vonshak, A.; Richmond, A. Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 1987, 26, 2255–2258. [Google Scholar] [CrossRef]
- Jiang, L.; Pei, H.; Hu, W.; Ji, Y.; Han, L.; Ma, G. The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition. Bioresour. Technol. 2015, 180, 304–310. [Google Scholar] [CrossRef]
- Hirano, M.; Mori, H.; Mura, Y.; Matsunaga, N.; Nakamura, N.; Matsunaga, T. γ-Linolenic acid production by microalgae. Appl. Biochem. Biotechnol. 1990, 24, 183–191. [Google Scholar] [CrossRef]
- Tanticharoen, M.; Reungjitchachawali, M.; Boonag, B.; Vonktaveesuk, P.; Vonshak, A.; Cohen, Z. Optimization of γ-linolenic acid (GLA) production in Spirulina platensis. J. Appl. Phycol. 1994, 6, 295–300. [Google Scholar] [CrossRef]
- Mahajan, G.; Kamat, M. γ-Linolenic acid production from Spirulina platensis. Appl. Microbiol. Biotechnol. 1995, 43, 466–469. [Google Scholar] [CrossRef]
- AlFadhly, N.K.Z.; Alhelfi, N.; Altemimi, A.B.; Verma, D.K.; Cacciola, F.; Narayanankutty, A. Trends and technological advancements in the possible food applications of Spirulina and their health benefits: A Review. Molecules 2022, 27, 5584. [Google Scholar] [CrossRef]
- Aizouq, M.; Peisker, H.; Gutbrod, K.; Melzer, M.; Hölzl, G.; Dörmann, P. Triacylglycerol and phytyl ester synthesis in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA 2020, 117, 6216–6222. [Google Scholar] [CrossRef]
- Tanaka, M.; Ishikawa, T.; Tamura, S.; Saito, Y.; Kawai-Yamada, M.; Hihara, Y. Quantitative and qualitative analyses of triacylglycerol production in the wild-type cyanobacterium Synechocystis sp. PCC 6803 and the strain expressing AtfA from Acinetobacter baylyi ADP1. Plant Cell Physiol. 2020, 61, 1537–1547. [Google Scholar] [CrossRef]
- Kondo, M.; Aoki, M.; Hirai, K.; Sagami, T.; Ito, R.; Tsuzuki, M.; Sato, N. slr2103, a homolog of type-2 diacylglycerol acyltransferase genes, for plastoquinone-related neutral lipid synthesis and NaCl-stress acclimatization in a cyanobacterium, Synechocystis sp. PCC 6803. Front. Plant Sci. 2023, 14, 1181180. [Google Scholar] [CrossRef] [PubMed]
- Park, W.S.; Kim, H.J.; Li, M.; Lim, D.H.; Kim, J.; Kwak, S.S.; Kang, C.M.; Ferruzzi, M.G.; Ahn, M.J. Two classes of pigments, carotenoids and C-phycocyanin, in Spirulina powder and their antioxidant activities. Molecules 2018, 23, 2065. [Google Scholar] [CrossRef] [PubMed]
- Jung, F.; Braune, S.; Jung, C.H.G.; Krüger-Genge, A.; Waldeck, P.; Petrick, I.; Küpper, J.H. Lipophilic and hydrophilic compounds from Arthrospira platensis and its effects on tissue and blood cells—An overview. Life 2022, 12, 1497. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Hu, Y.; Saito, H.; Zhang, Z.; Li, Z.; Cai, Y.; Ou, C.; Lin, H.; Imbs, A.B. Molecular species composition of glycolipids from Sprirulina platensis. Food Chem. 2002, 77, 9–13. [Google Scholar] [CrossRef]
- Singh, D.P.; Prabha, R.; Verma, S.; Meena, K.K.; Yandigeri, M. Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech 2017, 7, 134. [Google Scholar] [CrossRef]
- Blagojević, D.; Babić, O.; Rašeta, M.; Šibul, F.; Janjušević, L.; Simeunović, J. Antioxidant activity and phenolic profile in filamentous cyanobacteria: The impact of nitrogen. J. Appl. Phycol. 2018, 30, 2337–2346. [Google Scholar] [CrossRef]
- Guerreiro, A.; Andrade, M.A.; Menezes, C.; Vilarinho, F.; Dias, E. Antioxidant and cytoprotective properties of cyanobacteria: Potential for biotechnological applications. Toxins 2020, 12, 548. [Google Scholar] [CrossRef]
- Gentscheva, G.; Milkova-Tomova, I.; Pehlivanov, I.; Gugleva, V.; Nikolova, K.; Petkova, N.; Andonova, V.; Buhalova, D.; Pisanova, E. Chemical characterization of selected algae and cyanobacteria from Bulgaria as sources of compounds with antioxidant activity. Appl. Sci. 2022, 12, 9935. [Google Scholar] [CrossRef]
- Abd El-Baky, H.H.; El Baz, F.K.; El-Baroty, G.S. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr. J. Biotechnol. 2009, 8, 7059–7067. [Google Scholar]
- Guldas, M.; Ziyanok-Demirtas, S.; Sahan, Y.; Yildiz, E.; Gurbuz, O. Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Food Sci. Technol. 2020, 41, 615–625. [Google Scholar] [CrossRef]
- Liao, B.; Zheng, J.; Xia, C.; Chen, X.; Xu, Q.; Duan, B. The potential, challenges, and prospects of the genus Spirulina polysaccharides as future multipurpose biomacromolecules. Intl. J. Biol. Macromol. 2023, 253, 127482. [Google Scholar] [CrossRef] [PubMed]
- Van Eykelenburg, C. A glucan from the cell wall of the cyanobacterium Spirulina platensis. Antonie van Leeuwenhoek 1978, 44, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Ma, M.; Zhang, X.; Yang, S.; Wang, D.; Chen, T. Three-phase partitioning for efficient extraction and separation of polysaccharides from Spriulina platensis and its structural characterization. Food Ferment. Ind. 2019, 45, 147–152. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, J.; Wang, M.; Li, C.; Zhang, C. Isolation and purification of intracellular polysaccharide from Spirulina maxima and its primary structure. Nat. Prod. Res. Dev. 2004, 16, 548–551. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Khosravi-Darani, K.; Mozafari, M.R. Nutritional and medical applications of spirulina microalgae. Mini Rev. Med. Chem. 2013, 13, 1231–1237. [Google Scholar] [CrossRef]
- Kaur, M.; Bhatia, S.; Gupta, U.; Decker, E.; Tak, Y.; Bali, M.; Gupta, V.K.; Dar, R.A.; Bala, S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: Inspiring therapy for health benefits. Phytochem. Rev. 2023, 22, 903–933. [Google Scholar] [CrossRef]
- Chaouachi, M.; Vincent, S.; Groussard, C. A review of the health-promoting properties of Spirulina with a focus on athletes’ performance and recovery. J. Diet. Suppl. 2024, 21, 210–241. [Google Scholar] [CrossRef]
- Mazur-Marzec, H.; Cegłowska, M.; Konkel, R.; Pyrć, K. Antiviral cyanometabolites—A review. Biomolecules 2021, 11, 474. [Google Scholar] [CrossRef]
- Lee, J.B.; Hayashi, T.; Hayashi, K.; Sankawa, U. Structural analysis of calcium spirulan (Ca-SP)-derived oligosaccharides using electrospray ionization mass spectrometry. J. Nat. Prod. 2000, 63, 136–138. [Google Scholar] [CrossRef]
- Hayashi, T.; Hayashi, K.; Maeda, M.; Kojima, I. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis. J. Nat. Prod. 1996, 59, 83–87. [Google Scholar] [CrossRef]
- Rechter, S.; Konig, T.; Auerochs, S.; Thulke, S.; Walter, H.; Dornenburg, H.; Walter, C.; Marschall, M. Antiviral activity of Arthrospira-derived spirulan-like substances. Antivir. Res. 2006, 72, 197–206. [Google Scholar] [CrossRef]
- Ye, C.; Mu, D.; Horowitz, N.; Xue, Z.; Chen, J.; Xue, M.; Zhou, Y.; Klutts, M.; Zhou, W. Life cycle assessment of industrial scale production of spirulina tablets. Algal Res. 2018, 34, 154–163. [Google Scholar] [CrossRef]
- Furmaniak, M.A.; Misztak, A.E.; Franczuk, M.D.; Wilmotte, A.; Waleron, M.; Waleron, K.F. Edible cyanobacterial genus Arthrospira: Actual state of the art in cultivation methods, genetics, and application in medicine. Front. Microbiol. 2017, 8, 2541. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.W.; Brodsky, M.H. The microbiological quality of ‘health foods’ sold in Ontario, Canada. Food Microbiol. 1993, 10, 69–74. [Google Scholar] [CrossRef]
- Belay, A. Mass culture of Spirulina outdoors—The Earthrise Farms experience. In Spirulina platensis (Arthrospira) Physiology, Cell-Biology and Biotechnology; Vonshak, A., Ed.; Taylor & Francis Ltd.: London, UK, 1997; pp. 43–84. [Google Scholar]
- Wang, H.; Zhang, W.; Chen, L.; Wang, J.; Liu, T. The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresour. Technol. 2013, 128, 745–750. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, B.; Parlindungan, E.; Vasiliauskaite, E.; Bottacini, F.; Coughlan, K.; Krishnaswami, L.P.; Sassen, T.; Lugli, G.A.; Ventura, M.; Mastroleo, F.; et al. Viromic and metagenomic analyses of commercial Spirulina fermentations reveal remarkable microbial diversity. Viruses 2024, 16, 1039. [Google Scholar] [CrossRef]
- Bumandalai, O.; Bayliss, K.L.; Moheimani, N.R. Innovative processes for combating contaminants in fresh Spirulina. Algal Res. 2024, 78, 103397. [Google Scholar] [CrossRef]
- Grobbelaar, J.U. Quality control and assurance: Crucial for the sustainability of the applied phycology industry. J. Appl. Phycol. 2003, 15, 209–215. [Google Scholar] [CrossRef]
- Al-Dhabi, N.A. Heavy metal analysis in commercial Spirulina products for human consumption. Saudi J. Biol. Sci. 2013, 20, 383–388. [Google Scholar] [CrossRef]
- Grosshagauer, S.; Kraemer, K.; Somoza, V. The true value of Spirulina. J. Agricult. Food Chem. 2020, 68, 4109–4115. [Google Scholar] [CrossRef] [PubMed]
- Koru, E. Earth food Spirulina (Arthrospira): Production and quality standards. In Food Additive; El-Samragy, Y., Ed.; InTech Europe: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, T.; Zhang, Q.; Liu, T.; Lai, J.; Wang, C.; Cao, L.; Liu, Y.; Ruan, R.; Xue, M.; et al. Influence of cold atmospheric pressure plasma treatment of Spirulina platensis slurry over biomass characteristics. Bioresour. Technol. 2023, 386, 129480. [Google Scholar] [CrossRef] [PubMed]
- Agustini, T.W.; Suzery, M.; Sutrisnanto, D.; Ma’ruf, W.F.; Hadiyanto. Comparative study of bioactive substances extracted from fresh and dried Spirulina sp. Procedia Environ. Sci. 2015, 23, 282–289. [Google Scholar] [CrossRef]
- Huh, J.; Zhang, J.; Hauerov, R.; Lee, J.; Haider, S.; Wang, M.; Hauer, T.; Khan, I.A.; Chittiboyina, A.G.; Pugh, N.D. Utility of fatty acid profile and in vitro immune cell activation for chemical and biological standardization of Arthrospira/Limnospira. Sci. Rep. 2022, 12, 15657. [Google Scholar] [CrossRef] [PubMed]
- Kawata, Y.; Yano, S.; Kojima, H. Construction of a genomic DNA library with a TA vector and its application in cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis M-135. Chin. J. Ocean. Limnol. 1998, 16 (Suppl. S1), 17–24. [Google Scholar] [CrossRef]
- Kawata, Y.; Yano, S.; Kojima, H. Efficient library construction with a TA vector and its application to cloning of the phytoene synthase gene from the cyanobacterium Spirulina platensis. Curr. Microbiol. 1998, 37, 289–291. [Google Scholar] [CrossRef]
- Toyomizu, M.; Suzuki, K.; Kawata, Y.; Kojima, H.; Akiba, Y. Effective transformation of the cyanobacterium Spirulina platensis using electroporation. J. Appl. Phycol. 2001, 13, 209–214. [Google Scholar] [CrossRef]
- Kawata, Y.; Yano, S.; Kojima, H.; Toyomizu, M. Transformation of Spirulina platensis strain C1 (Arthrospira sp. PCC 9438) with Tn5 transposase transposon DNA-cation liposome complex. Mar. Biotechnol. 2004, 6, 355–363. [Google Scholar] [CrossRef]
- Jeamton, W.; Dulsawat, S.; Tanticharoen, M.; Vonshak, A.; Cheevadhanarak, S. Overcoming intristic restriction enzyme barriers enhances transformation efficiency in Arthrospira platensis C1. Plant Cell Physiol. 2017, 58, 822–830. [Google Scholar] [CrossRef]
- Cao, J.; Liang, D.; Xu, Z.; Qiu, G.; Li, B.; Vonshak, A. Physico-chemical parameters influencing DNase activity of the cyanobacterium Spirulina platensis. Microbiol. Res. 2000, 155, 59–63. [Google Scholar] [CrossRef]
- Tragut, V.; Xiao, J.; Bylina, E.J.; Borthakur, D. Characterization of DNA restriction-modification systems in Spirulina platensis strain pacifica. J. Appl. Phycol. 1995, 7, 561–564. [Google Scholar] [CrossRef]
- Shiraishi, H.; Tabuse, Y. The AplI restriction-modification system in an edible cyanobacterium, Arthrospira (Spirulina) platensis NIES-39, recognizes the nucleotide sequence 5′-CTGCAG-3′. Biosci. Biotechnol. Biochem. 2013, 77, 782–788. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, X.; Liang, C.; Wu, J.; Bao, Q.; Qin, S. Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria. Physiol. Genom. 2006, 24, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, J.; Adibkia, K.; Movafeghi, A.; Barzegari, A.; Pourseif, M.M.; Maleki Kakelar, H.; Golchin, A.; Omidi, Y. Stable transformation of Spirulina (Arthrospira) platensis: A promising microalga for production of edible vaccines. Appl. Microbiol. Biotechnol. 2018, 102, 9267–9278. [Google Scholar] [CrossRef] [PubMed]
- Jester, B.W.; Zhao, H.; Gewe, M.; Adame, T.; Perruzza, L.; Bolick, D.T.; Agosti, J.; Khuong, N.; Kuestner, R.; Gamble, C.; et al. Development of spirulina for the manufacture and oral delivery of protein therapeutics. Nat. Biotechnol. 2022, 40, 956–964. [Google Scholar] [CrossRef]
- Pope, M.A.; Hodge, J.A.; Nixon, P.J. An improved natural transformation protocol for the cyanobacterium Synechocystis sp. PCC 6803. Front. Plant Sci. 2020, 11, 372. [Google Scholar] [CrossRef]
- Tabakh, H.; Jester, B.W.; Zhao, H.; Kuestner, R.; Khuong, N.; Shanitta, C.; Takeuchi, R.; Roberts, J. Protocol for the transformation and engineering of edible algae Arthrospira platensis to generate heterologous protein-expressing strains. STAR Protoc. 2023, 4, 102087. [Google Scholar] [CrossRef]
- Castillo, M.; Guevara, G.; Baldanta, S.; Suárez Rodríguez, P.; Agudo, L.; Nogales, J.; Díaz Carrasco, A.; Arribas-Aguilar, F.; Pérez-Pérez, J.; García, J.L.; et al. Characterization of Limnospira platensis PCC 9108 R-M and CRISPR-Cas systems. Microbiol. Res. 2024, 279, 127572. [Google Scholar] [CrossRef]
- Gupta, A.; Morby, A.P.; Turner, J.S.; Whitton, B.A.; Robinson, N.J. Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1). Mol. Microbiol. 1993, 7, 189–195. [Google Scholar] [CrossRef]
- Robinson, N.J.; Robinson, P.J.; Gupta, A.; Bleasby, A.J.; Whitton, B.A.; Morby, A.P. Singular over-representation of an octameric palindrome, HIP1, in DNA from many cyanobacteria. Nucleic Acids Res. 1995, 23, 729–735. [Google Scholar] [CrossRef]
- Bhaya, D.; Vaulot, D.; Amin, P.; Takahashi, A.W.; Grossman, A.R. Isolation of regulated genes of the cyanobacterium Synechocystis sp. strain PCC 6803 by differential display. J. Bacteriol. 2000, 182, 5692–5699. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J. Highly iterated palindromic sequences (HIPs) and their relationship to DNA methyltransferases. Life 2015, 5, 921–948. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Narikawa, R.; Okamoto, S.; Ehira, S.; Yoshimura, H.; Suzuki, I.; Masuda, T.; Mochimaru, M.; Takaichi, S.; Awai, K.; et al. Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res. 2010, 17, 85–103. [Google Scholar] [CrossRef]
- Janssen, P.J.; Morin, N.; Mergeay, M. Genome sequence of the edible cyanobacterium Arthrospira sp. PCC 8005. J. Bacteriol. 2010, 192, 2465–2466. [Google Scholar] [CrossRef]
- Cheevadhanarak, S.; Paithoonrangsarid, K.; Prommeenate, P.; Kaewngam, W.; Musigkain, A.; Tragoonrung, S.; Tabata, S.; Kaneko, T.; Chaijaruwanich, J.; Sangsrakru, D.; et al. Draft genome sequence of Arthrospira platensis C1 (PCC 9438). Stand. Genom. Sci. 2012, 6, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Qin, S.; Hu, Y.; Song, Z.; Ying, J.; Li, P.; Dong, W.; Zhao, F.; Yang, H.; Bao, Q. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: High genome plasticity and genetic diversity. DNA Res. 2016, 23, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Misztak, A.E.; Waleron, M.; Furmaniak, M.; Waleron, M.M.; Bazhenova, O.; Daroch, M.; Waleron, K.F. Comparative genomics and physiological investigation of a new Arthrospira/Limnospira strain O9.13F isolated from an alkaline, winter freezing, Siberian lake. Cells 2021, 10, 3411. [Google Scholar] [CrossRef]
- Hicks, M.; Tran-Dao, T.K.; Mulroney, L.; Bernick, D.L. De-novo assembly of Limnospira fusiformis using ultra-long reads. Front. Microbiol. 2021, 12, 657995. [Google Scholar] [CrossRef]
- Shiraishi, H.; Nishida, H. Complete genome sequence of the edible filamentous cyanobacterium Arthrospira platensis NIES-39, based on long-read sequencing. Microbiol. Resour. Announc. 2023, 12, e0113922. [Google Scholar] [CrossRef]
- Mironov, K.S.; Los, D.A. RNA isolation from Synechocystis. Bio-Protocol 2015, 5, e1428. [Google Scholar] [CrossRef]
- Jeamton, W.; Mungpakdee, S.; Sirijuntarut, M.; Prommeenate, P.; Cheevadhanarak, S.; Tanticharoen, M.; Hongsthong, A. A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes. FEMS Microbiol. Lett. 2008, 281, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.R.; Lochab, S. A method for rapid isolation of total RNA of high purity and yield from Arthrospira platensis. Can. J. Microbiol. 2010, 56, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Rodriguez, Y.Y.; Pompelli, M.F.; Jarma-Orozco, A.; Rodríguez, N.V.; Rodriguez-Paez, L.A. A new and profitable protocol to DNA extraction in Limnospira maxima. Methods Protoc. 2023, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A. Sulfur metabolism in cyanobacteria. Methods Enzymol. 1988, 167, 572–583. [Google Scholar] [CrossRef]
- Kumaresan, V.; Nizam, F.; Ravichandran, G.; Viswanathan, K.; Palanisamy, R.; Bhatt, P.; Arasu, M.V.; Al-Dhabi, N.A.; Mala, K.; Arockiaraj, J. Transcriptome changes of blue-green algae, Arthrospira sp. in response to sulfate stress. Algal Res. 2017, 23, 96–103. [Google Scholar] [CrossRef]
- Hong, D.D.; Hien, H.T.M.; Thom, L.T.; Ha, N.C.; Huy, L.A.; Thu, N.T.H.; Cuong, N.; Tang, D.Y.Y.; Show, P.L. Transcriptome analysis of Spirulina platensis sp. at different salinity and nutrient compositions for sustainable cultivation in Vietnam. Sustainability 2023, 15, 11906. [Google Scholar] [CrossRef]
- Panyakampol, J.; Cheevadhanarak, S.; Sutheeworapong, S.; Chaijaruwanich, J.; Senachak, J.; Siangdung, W.; Jeamton, W.; Tanticharoen, M.; Paithoonrangsarid, K. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1. Plant Cell Physiol. 2015, 56, 481–496. [Google Scholar] [CrossRef]
- Hongsthong, A.; Sirijuntarut, M.; Prommeenate, P.; Lertladaluck, K.; Porkaew, K.; Cheevadhanarak, S.; Tanticharoen, M. Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol. Lett. 2008, 288, 92–101. [Google Scholar] [CrossRef]
- Kurdrid, P.; Senachak, J.; Sirijuntarut, M.; Yutthanasirikul, R.; Phuengcharoen, P.; Jeamton, W.; Roytrakul, S.; Cheevadhanarak, S.; Hongsthong, A. Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: Uncovering cross-talk of signaling components. Proteome Sci. 2011, 9, 39. [Google Scholar] [CrossRef]
- Sinetova, M.A.; Los, D.A. Systemic analysis of stress transcriptomics of Synechocystis reveals common stress genes and their universal triggers. Mol. BioSyst. 2016, 12, 3254–3258. [Google Scholar] [CrossRef]
- Mironov, K.S.; Sinetova, M.A.; Shumskaya, M.; Los, D.A. Universal molecular triggers of stress responses in cyanobacterium Synechocystis. Life 2019, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, X.; Lin, M.; Dahlgren, R.A.; Chen, W.; Zhou, J.; Xu, C.; Jin, C.; Xu, Y.; Wang, X.; et al. Proteomic analysis and qRT-PCR verification of temperature response to Arthrospira (Spirulina) platensis. PLoS ONE 2013, 8, e83485. [Google Scholar] [CrossRef]
- Li, Q.; Chang, R.; Sun, Y.; Li, B. iTRAQ-based quantitative proteomic analysis of Spirulina platensis in response to low temperature stress. PLoS ONE 2016, 11, e0166876. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Han, J.; Zhang, J.; Hu, J.; Fu, Y.; Qi, H.; Sun, Y.; Yu, C. Omics-prediction of bioactive peptides from the edible cyanobacterium Arthrospira platensis proteome. J. Sci. Food Agric. 2018, 98, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Nguyen, T.T.; Zhou, Y.; Diao, Y.; Zhang, W. Identification of antioxidative peptides derived from Arthrospira maxima in the biorefinery process after extraction of C-phycocyanin and lipids. Mar. Drugs 2023, 21, 146. [Google Scholar] [CrossRef]
- Suo, Q.; Yue, Y.; Wang, J.; Wu, N.; Geng, L.; Zhang, Q. Isolation, identification and in vivo antihypertensive effect of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Spirulina protein hydrolysate. Food Funct. 2022, 13, 9108–9118. [Google Scholar] [CrossRef]
- Anekthanakul, K.; Senachak, J.; Hongsthong, A.; Charoonratana, T.; Ruengjitchatchawalya, M. Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1. Peptides 2019, 118, 170107. [Google Scholar] [CrossRef] [PubMed]
- Carrizzo, A.; Conte, G.M.; Sommella, E.; Damato, A.; Ambrosio, M.; Sala, M.; Scala, M.C.; Aquino, R.P.; De Lucia, M.; Madonna, M.; et al. Novel potent decameric peptide of Spirulina platensis reduces blood pressure levels through a PI3K/AKT/eNOS-dependent mechanism. Hypertension 2019, 73, 449–457. [Google Scholar] [CrossRef]
- Montalvo, G.E.B.; Vandenberghe, L.P.S.; Soccol, V.T.; Carvalho, J.C.; Soccol, C.R. The antihypertensive, antimicrobial and anticancer peptides from Arthrospira with therapeutic potential: A mini review. Curr. Mol. Med. 2020, 20, 593–606. [Google Scholar] [CrossRef]
- Koníčková, R.; Vaňková, K.; Vaníková, J.; Vánová, K.; Muchová, L.; Subhanová, I.; Zadinová, M.; Zelenka, J.; Dvořák, A.; Kolář, M.; et al. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds. Ann. Hepatol. 2014, 13, 273–283. [Google Scholar] [CrossRef]
- Ratha, S.K.; Renuka, N.; Rawat, I.; Bux, F. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition 2021, 83, 111089. [Google Scholar] [CrossRef]
- Ramos-Romero, S.; Torrella, J.R.; Pagès, T.; Viscor, G.; Torres, J.L. Edible microalgae and their bioactive compounds in the prevention and treatment of metabolic alterations. Nutrients 2021, 13, 563. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, T.N.B.T.; Feisal, N.A.S.; Kamaludin, N.H.; Cheah, W.Y.; How, V.; Bhatnagar, A.; Ma, Z.; Show, P.L. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. Bioresour. Technol. 2023, 372, 128661. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, T.; Yao, J.; Lu, J.; Liu, Z.; Ding, L. Recent advances in chemistry and bioactivity of marine cyanobacteria Moorea species. Eur. J. Med. Chem. 2020, 201, 112473. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Tiwari, B.S. Cyanotherapeutics: An emerging field for future drug discovery. Appl. Phycol. 2020, 1, 44–57. [Google Scholar] [CrossRef]
- McKinley, L.; Acen, I.K.; Alshannaq, A.; Christensen, L.; Dolan, K.; Kates, A.; Keating, J.; Musuuza, J.; Hollnagel, F.; Safdar, N. Antiviral potential of spirulina in individuals with human immunodeficiency virus or Hepatis C virus infections: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2024, 63, 440–446. [Google Scholar] [CrossRef]
- Perna, A.; Hay, E.; Sellitto, C.; Del Genio, E.; De Falco, M.; Guerra, G.; De Luca, A.; De Blasiis, P.; Lucariello, A. Antiinflammatory activities of curcumin and Spirulina: Focus on their role against COVID-19. J. Diet. Suppl. 2023, 20, 372–389. [Google Scholar] [CrossRef] [PubMed]
- Calella, P.; Cerullo, G.; Di Dio, M.; Liguori, F.; Di Onofrio, V.; Gallè, F.; Liguori, G. Antioxidant, anti-inflammatory and immunomodulatory effects of spirulina in exercise and sport: A systematic review. Front. Nutr. 2022, 9, 1048258. [Google Scholar] [CrossRef]
- Ngu, E.L.; Tan, C.Y.; Lai, N.J.; Wong, K.H.; Lim, S.H.; Ming, L.C.; Tan, K.O.; Phang, S.M.; Yow, Y.Y. Spirulina platensis Suppressed iNOS and Proinflammatory Cytokines in Lipopolysaccharide-Induced BV2 Microglia. Metabolites 2022, 12, 1147. [Google Scholar] [CrossRef]
- Da Silva, M.R.O.B.; da Silva, G.M.; da Silva, A.L.F.; de Lima, L.R.A.; Bezerra, R.P.; Marques, D.D.A.V. Bioactive compounds of Arthrospira spp. (Spirulina) with potential anticancer activities: A systematic review. ACS Chem. Biol. 2021, 16, 2057–2067. [Google Scholar] [CrossRef]
- Lafarga, T.; Fernández-Sevilla, J.M.; González-López, C.; Acién-Fernández, F.G. Spirulina for the food and functional food industries. Food Res. Int. 2020, 137, 109356. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Amerizadeh, A.; Behshood, P.; Moradi, S.; Asgary, S. Effect of microalgae Arthrospira on biomarkers of glycemic control and glucose metabolism: A systematic review and meta-analysis. Curr. Probl. Cardiol. 2022, 47, 100942. [Google Scholar] [CrossRef] [PubMed]
- Ilieva, Y.; Zaharieva, M.M.; Najdenski, H.; Kroumov, A.D. Antimicrobial activity of Arthrospira (former Spirulina) and Dunaliella related to recognized antimicrobial bioactive compounds. Int. J. Mol. Sci. 2024, 25, 5548. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Galero, E.; Pérez-Pastén, R.; Perez-Juarez, A.; Fabila-Castillo, L.; Gutiérrez-Salmeán, G.; Chamorro, G. Preclinical antitoxic properties of Spirulina (Arthrospira). Pharm. Biol. 2016, 54, 1345–1353. [Google Scholar] [CrossRef]
- Machowiec, P.; Ręka, G.; Maksymowicz, M.; Piecewicz-Szczęsna, H.; Smoleń, A. Effect of Spirulina supplementation on systolic and diastolic blood pressure: Systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 3054. [Google Scholar] [CrossRef]
- Moradi, S.; Ziaei, R.; Foshati, S.; Mohammadi, H.; Nachvak, S.M.; Rouhani, M.H. Effects of Spirulina supplementation on obesity: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2019, 47, 102211. [Google Scholar] [CrossRef]
- Służały, P.; Paśko, P.; Galanty, A. Natural products as hepatoprotective agents—A comprehensive review of clinical trials. Plants 2024, 13, 1985. [Google Scholar] [CrossRef]
- Bianco, M.; Ventura, G.; Calvano, C.D.; Losito, I.; Cataldi, T.R.I. Discovery of marker peptides of spirulina microalga proteins for allergen detection in processed foodstuffs. Food Chem. 2022, 393, 133319. [Google Scholar] [CrossRef]
- Ferrinho, S.; Connaris, H.; Mouncey, N.J.; Goss, R.J.M. Compendium of metabolomic and genomic datasets for cyanobacteria: Mined the gap. Water Res. 2024, 256, 121492. [Google Scholar] [CrossRef]
- Drobac Backović, D.; Tokodi, N. Blue revolution turning green? A global concern of cyanobacteria and cyanotoxins in freshwater aquaculture: A literature review. J. Environ. Manag. 2024, 360, 121115. [Google Scholar] [CrossRef]
- Weckwerth, W. (Ed.) Metabolomics. Methods and Protocols; Humana: Totowa, NJ, USA, 2007; 312p. [Google Scholar] [CrossRef]
- Klanchui, A.; Vorapreeda, T.; Vongsangnak, W.; Khannapho, C.; Cheevadhanarak, S.; Meechai, A. Systems biology and metabolic engineering of Arthrospira cell factories. Comput. Struct. Biotechnol. J. 2012, 3, e201210015. [Google Scholar] [CrossRef] [PubMed]
- Klanchui, A.; Dulsawat, S.; Chaloemngam, K.; Cheevadhanarak, S.; Prommeenate, P.; Meechai, A. An improved genome-scale metabolic model of Arthrospira platensis C1 (iAK888) and its application in glycogen overproduction. Metabolites 2018, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, N.; Khattab, A.R.; Saad, H.H.; Abib, B.; Farag, M.A. A multiplex metabolomic approach for quality control of Spirulina supplement and its allied microalgae (Amphora & Chlorella) assisted by chemometrics and molecular networking. Sci. Rep. 2024, 14, 2809. [Google Scholar] [CrossRef]
- Mróz, M.; Parchem, K.; Jóźwik, J.; Domingues, M.R.; Kusznierewicz, B. The impact of different drying methods on the metabolomic and lipidomic profiles of Arthrospira platensis. Molecules 2024, 29, 1747. [Google Scholar] [CrossRef]
- Ikeda, I.K.; Sydney, E.B.; Sydney, A.C.N. Potential application of Spirulina in dermatology. J. Cosmet. Dermatol. 2022, 21, 4205–4214. [Google Scholar] [CrossRef]
- Canan, S.G.; Deniz, K.E.; Ilyas, O.; Pergin, A.; Nur, C.; Ismet, D.G. In vitro and in vivo investigations of the wound healing effect of crude Spirulina extract and C-phycocyanin. J. Med. Plants Res. 2013, 7, 425–433. [Google Scholar] [CrossRef]
- Refai, H.; El-Gazar, A.A.; Ragab, G.M.; Hassan, D.H.; Ahmed, O.S.; Hussein, R.A.; Shabana, S.; Waffo-Téguo, P.; Valls, J.; Al-Mokaddem, A.K.; et al. Enhanced wound healing potential of Spirulina platensis nanophytosomes: Metabolomic profiling, molecular networking, and modulation of HMGB-1 in an excisional wound rat model. Mar. Drugs 2023, 21, 149. [Google Scholar] [CrossRef]
- Macêdo, A.P.A.; Muñoz, V.R.; Cintra, D.E.; Pauli, J.R. 12,13-diHOME as a new therapeutic target for metabolic diseases. Life Sci. 2021, 290, 120229. [Google Scholar] [CrossRef]
- Lockhart, J.A. The care and feeding of spacemen. Eng. Sci. 1959, 22, 11–13. Available online: https://calteches.library.caltech.edu/1910/1/lockhart.pdf (accessed on 13 August 2024).
- Semenenko, V.E.; Vladimirova, M.G. Effects of cosmic flight conditions in the Sputnik-ship on the viability of Chlorella. Sov. Plant Physiol. 1961, 8, 743–749. Available online: https://ntrs.nasa.gov/citations/19640001769 (accessed on 13 August 2024). (In Russian).
- Poughon, L.; Laroche, C.; Creuly, C.; Dussap, C.-G.; Paille, C.; Lasseur, C.; Monsieurs, P.; Heylen, W.; Coninx, I.; Mastroleo, F.; et al. Limnospira indica PCC8005 growth in photobioreactor: Model and simulation of the ISS and ground experiments. Life Sci. Space Res. 2020, 25, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Revellame, E.D.; Aguda, R.; Chistoserdov, A.; Fortela, D.L.; Hernandez, R.A.; Zappi, M.E. Microalgae cultivation for space exploration: Assessing the potential for a new generation of waste to human life-support system for long duration space travel and planetary human habitation. Algal Res. 2021, 55, 102258. [Google Scholar] [CrossRef]
- Olsson-Francis, K.; Cockell, C.S. Use of cyanobacteria for in-situ resource use in space applications. Planet. Space Sci. 2010, 58, 1279–1285. [Google Scholar] [CrossRef]
- Fais, G.; Manca, A.; Concas, A.; Pantaleo, A.; Cao, G. A novel process to grow edible microalgae on Mars by exploiting in situ-available resources: Experimental investigation. Acta Astronaut. 2022, 201, 454–463. [Google Scholar] [CrossRef]
- Sukhinov, D.V.; Gotovtsev, P.M.; Sergeeva, Y.E. Phototrophic microorganisms in bioregenerative life support systems for long-term crewed expeditions: Prospects and challenges. Acta Astronaut. 2023, 211, 518–538. [Google Scholar] [CrossRef]
Substance | Relative Quantities | References |
---|---|---|
Allophycocyanin | Up to 47% of total protein | [34] |
Carotenoids (β-carotene, zeaxanthin, cryptoxanthin) | Up to 2% (d/w *) | [71] |
Chlorophyll a | Up to 2% (d/w *) | [31] |
Chlorophyll b | 0 | [31] |
Palmitic acid | 42–47% of total FAs | [53,55] |
Oleic acid | 2–5% of total FAs | [53,55] |
Linoleic acids | 15–35% of total FAs | [61] |
γ-Linolenic acid (GLA) | 10–50% of total FAs | [63,64,65] |
ω3-FAs | 0 | [72] |
α-Linolenic acid (ALA) | 0 | [72] |
Eisosapentaenoic acid (EPA) | 0 | [72] |
Docosahexaenoic acid (DHA) | 0 | [72] |
Triacylglycerides (TAGs) | 0 | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinetova, M.A.; Kupriyanova, E.V.; Los, D.A. Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism. Foods 2024, 13, 2762. https://doi.org/10.3390/foods13172762
Sinetova MA, Kupriyanova EV, Los DA. Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism. Foods. 2024; 13(17):2762. https://doi.org/10.3390/foods13172762
Chicago/Turabian StyleSinetova, Maria A., Elena V. Kupriyanova, and Dmitry A. Los. 2024. "Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism" Foods 13, no. 17: 2762. https://doi.org/10.3390/foods13172762
APA StyleSinetova, M. A., Kupriyanova, E. V., & Los, D. A. (2024). Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism. Foods, 13(17), 2762. https://doi.org/10.3390/foods13172762