Effects of Temperature and Salinity on Perfluorooctane Sulfonate (PFOS) Toxicity in Larval Estuarine Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Organisms
2.2. PFOS Preparations
2.3. Experimental Conditions
2.3.1. Temperature
2.3.2. Salinity
2.3.3. Acclimation
2.3.4. Testing
2.4. Chemical Analysis
2.5. Statistical Methods
3. Results
3.1. Water Quality and Chemisty
3.2. Species Sensitivity under Standard Testing Conditions
3.3. Effect of Salinity
3.4. Effect of Temperature
3.5. Temperature, Salinity, and PFOS Interactions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giesy, J.P.; Kannan, K. Peer Reviewed: Perfluorochemical surfactants in the environment. Environ. Sci. Technol. 2002, 36, 146A–152A. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, L.; Bundschuh, M. Fate and effects of poly-and perfluoroalkyl substances in the aquatic environment: A review. Environ. Toxicol. Chem. 2014, 33, 1921–1929. [Google Scholar] [CrossRef]
- Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl acids: A review of monitoring and toxicological findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, W.; Jin, Y.; Dai, J.; Yu, W.; Liu, X.; Liu, L. Transcriptional effects of prenatal and neonatal exposure to PFOS in developing rat brain. Environ. Sci. Technol. 2010, 44, 1847–1853. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, W.; Ma, J.; Yu, M.; Jin, Y.; Dai, J. Prenatal and neonatal exposure to perfluorooctane sulfonic acid results in changes in miRNA expression profiles and synapse associated proteins in developing rat brains. Environ. Sci. Technol. 2012, 46, 6822–6829. [Google Scholar] [CrossRef]
- Fauconier, G.; Groffen, T.; Wepener, V.; Bervoets, L. Perfluorinated compounds in the aquatic food chains of two subtropical estuaries. Sci. Total Environ. 2019, 719, 135047. [Google Scholar] [CrossRef] [PubMed]
- Salice, C.J.; Anderson, T.A.; Anderson, R.H.; Olson, A.D. Ecological risk assessment of perfluooroctane sulfonate to aquatic fauna from a bayou adjacent to former fire training areas at a US Air Force installation. Environ. Toxicol. Chem. 2018, 37, 2198–2209. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Peter, K.T.; Gipe, A.D.; Zhao, H.; Hou, F.; Wark, D.A.; James, C.A. Suspect and non-target screening for contaminants of emerging concern in an urban estuary. Environ. Sci. Technol. 2019, 54, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, N.; Kannan, K.; Taniyasu, S.; Horii, Y.; Petrick, G.; Gamo, T. A global survey of perfluorinated acids in oceans. Mar. Pollut. Bull. 2005, 51, 658–668. [Google Scholar] [CrossRef]
- Fair, P.A.; Wolf, B.; White, N.D.; Arnott, S.A.; Kannan, K.; Karthikraj, R.; Vena, J.E. Perfluoroalkyl substances (PFASs) in edible fish species from Charleston Harbor and tributaries, South Carolina, United States: Exposure and risk assessment. Environ. Res. 2019, 171, 266–277. [Google Scholar] [CrossRef]
- Nania, V.; Pellegrini, G.E.; Fabrizi, L.; Sesta, G.; De Sanctis, P.; Lucchetti, D.; Coni, E. Monitoring of perfluorinated compounds in edible fish from the Mediterranean Sea. Food Chem. 2009, 115, 951–957. [Google Scholar] [CrossRef]
- Schuetze, A.; Heberer, T.; Effkemann, S.; Juergensen, S. Occurrence and assessment of perfluorinated chemicals in wild fish from Northern Germany. Chemosphere 2010, 78, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, M.D.; Greig, D.J. Perfluoroalkyl compounds (PFCs) in wildlife from an urban estuary. J. Environ. Monit. 2012, 14, 146–154. [Google Scholar] [CrossRef]
- Taylor, M.D.; Johnson, D.D. Preliminary investigation of perfluoroalkyl substances in exploited fishes of two contaminated estuaries. Mar. Pollut. Bull. 2016, 111, 509–513. [Google Scholar] [CrossRef] [PubMed]
- de Vos, M.G.; Huijbregts, M.A.; van den Heuvel-Greve, M.J.; Vethaak, A.D.; Van de Vijver, K.I.; Leonards, P.E.; Hendriks, A.J. Accumulation of perfluorooctane sulfonate (PFOS) in the food chain of the Western Scheldt estuary: Comparing field measurements with kinetic modeling. Chemosphere 2008, 70, 1766–1773. [Google Scholar] [CrossRef]
- Kannan, K.; Hansen, K.J.; Wade, T.L.; Giesy, J.P. Perfluorooctane sulfonate in oysters, Crassostrea virginica, from the Gulf of Mexico and the Chesapeake Bay, USA. Arch. Environ. Contam. Toxicol. 2002, 42, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Meador, J.P.; Yeh, A.; Young, G.; Gallagher, E.P. Contaminants of emerging concern in a large temperate estuary. Environ. Pollut. 2016, 213, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Van de Vijver, K.I.; Hoff, P.T.; Van Dongen, W.; Esmans, E.L.; Blust, R.; De Coen, W.M. Exposure patterns of perfluorooctane sulfonate in aquatic invertebrates from the Western Scheldt estuary and the southern North Sea. Environ. Toxicol. Chem. 2003, 22, 2037–2041. [Google Scholar] [CrossRef]
- Khan, B.; Burgess, R.M.; Cantwell, M.G. Occurrence and Bioaccumulation Patterns of Per-and Polyfluoroalkyl Substances (PFAS) in the Marine Environment. ACS EST Water 2023, 3, 1243–1259. [Google Scholar] [CrossRef]
- Leight, A.K.; Scott, G.I.; Fulton, M.H.; Daugomah, J.W. Long term monitoring of grass shrimp Palaemonetes spp. population metrics at sites with agricultural runoff influences. Integr. Comp. Biol. 2005, 45, 143–150. [Google Scholar] [CrossRef]
- Anderson, G. Species Profiles: Life History and Environmental Requirements of Coastal Fishes and Invertebrates (Gulf of Mexico)—Grass Shrimp; US Fish and Wildlife Service Biological Report 82 (11.35) US Army Corps of Engineers TR EL-82-4; The Service: Ann Arbor, MI, USA, 1985; p. 19. [Google Scholar]
- Weinstein, J.E. Influence of salinity on the bioaccumulation and photoinduced toxicity of fluoranthene to an estuarine shrimp and oligochaete. Environ. Toxicol. Chem. 2003, 22, 2932–2939. [Google Scholar] [CrossRef] [PubMed]
- DeLorenzo, M.E.; Eckmann, C.A.; Chung, K.W.; Key, P.B.; Fulton, M.H. Effects of salinity on oil dispersant toxicity in the grass shrimp Palaemonetes pugio. Ecotox. Environ. Saf. 2016, 134, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Manguson, J.T.; Khursigara, A.J.; Allmon, E.B.; Esbaugh, A.J.; Roberts, A.P. Effects of Deepwater Horizon crude oil on ocular development in two estuarine fish species red drum (Sciaenops ocellatus) and sheepshead minnow (Cyprinodon variegatus). Ecotox. Environ. Saf. 2018, 166, 186–191. [Google Scholar] [CrossRef]
- Bennett, W.A.; Beitinger, T.L. Temperature tolerance of the sheepshead minnow (Cyprindon variegatus). Copeia 1997, 1, 77–87. [Google Scholar] [CrossRef]
- Nordlie, F.G. Osmotic regulation in the sheepshead minnow, Cyprinodon variegatus Lacépède. J. Fish. Biol. 1985, 26, 161–170. [Google Scholar] [CrossRef]
- EPA-821-R-02-014; Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. USEPA: Washington, DC, USA, 2002.
- Method E 1241-98; Standard Guide for Conducting Early Life-Stage Toxicity Tests with Fishes (Approved 2004). West American Society for Testing and Materials: Conshohocken, PA, USA, 2004.
- Verslycke, T.; Ghekiere, A.; Raimondo, S.; Janssen, C. Mysid crustaceans as standard models for the screening and testing of endocrine-disrupting chemicals. Ecotoxicology 2007, 16, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Kelaher, B.P.; Levinton, J.S.; Hoch, J.M. Foraging by the mud snail Ilyanassa obsoleta (Say) modulates spatial variation in benthic community structure. J. Exp. Mar. Biol. Ecol. 2003, 292, 139–157. [Google Scholar] [CrossRef]
- Connor, M.S.; Teal, J.M.; Valiela, I. The effect of feeding by mud snails Ilyanassa obsoleta (Say) on the structure and metabolism of a laboratory benthic algal community. J. Exp. Mar. Biol. Ecol. 1982, 65, 29–45. [Google Scholar] [CrossRef]
- DeLorenzo, M.E.; Key, P.B.; Chung, K.W.; Aaby, K.; Hausman, D.; Jean, C.; Pennington, P.L.; Pisarski, E.C.; Wirth, E.F. Multi-stressor Effects of Ultraviolet Light, Temperature, and Salinity on Louisiana Sweet Crude Oil Toxicity in Larval Estuarine Organisms. Arch. Environ. Contam. Toxicol. 2021, 80, 461–473. [Google Scholar] [CrossRef]
- Jones, D.K.; Quinlin, K.A.; Wigren, M.A.; Choi, Y.J.; Sepúlveda, M.S.; Lee, L.S.; Haskins, D.L.; Lotufo, G.R.; Kennedy, A.; May, L.; et al. Acute Toxicity of Eight Aqueous Film-Forming Foams to 14 Aquatic Species. Environ. Sci. Technol. 2022, 56, 6078–6090. [Google Scholar] [CrossRef]
- DeLorenzo, M.E.; Wallace, S.C.; Danese, L.E.; Baird, T.D. Temperature and salinity effects on the toxicity of common pesticides to the grass shrimp Palaemonetes pugio. J. Environ. Sci. Health B 2009, 44, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.W.; Chandler, A.R.; Key, P.B. Toxicity of carbaryl, diquat dibromide, and fluoranthene, individually and in mixture, to larval grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health B 2008, 43, 293–299. [Google Scholar] [CrossRef] [PubMed]
- EPA 378 833-C-09-001; Whole Effluent Toxicity—Saltwater Series: Sheepshead Minnow (Cyprinodon variegatus) and Inland Silverside (Menidia beryllina) Larval Survival and Growth Toxicity Tests. Test Method 1004.0. USEPA: Washington, DC, USA, 2009.
- Key, P.B.; Simonik, E.; Kish, N.; Chung, K.W.; Fulton, M.H. Differences in response of two model estuarine crustaceans after lethal and sublethal exposures to chlorpyrifos. J. Environ. Sci. Health B 2013, 48, 967–973. [Google Scholar] [CrossRef] [PubMed]
- ASTM Standard E729-96, 2014; Standard Guide for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians. ASTM International: West Conshohocken, PA, USA, 2017.
- Wheeler, M.W.; Park, R.M.; Bailer, A.J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. 2006, 25, 1441–1444. [Google Scholar] [CrossRef]
- Palmer, S.J.; Van Hoven, R.L.; Krueger, H.O. Perfluorooctanesulfonate, Potassium Salt (PFOS): A 96-hr Static Renewal Acute Toxicity Test with the Sheepshead Minnow (Cyprinodon variegatus); Report No. 454A-146A; Wildlife International Ltd.: Easton, MD, USA, 2002. [Google Scholar]
- Key, P.B.; NOAA, Charleston, SC, USA. A 96-hr Static Renewal Acute Toxicity Test with Adult Grass Shrimp (Palaemon pugio) and Perfluorooctanesulfonate (PFOS). Personal Communication, 2023. [Google Scholar]
- Scheltema, R.S. The relationship of salinity to larval survival and development in Nassarius obsoletus (Gastropoda). Biol. Bull. 1965, 129, 340–354. [Google Scholar] [CrossRef]
- Haney, D.C. Osmoregulation in the sheepshead minnow, Cyprinodon variegatus: Influence of a fluctuating salinity regime. Estuaries 1999, 22, 1071–1077. [Google Scholar] [CrossRef]
- Stuck, K.C.; Perry, H.M.; Heard, R.W. Records and range extensions of Mysidaceae from coastal and shelf waters of the eastern Gulf of Mexico. Gulf Res. Rep. 1979, 6, 248–249. [Google Scholar]
- Zeng, C.; Rotllant, G.; Gimenez, L.; Romano, N. Effects of Environmental Conditions on Larval Growth and Development. In Developmental Biology and Larval Ecology: The Natural History of the Crustacea; Anger, K., Harzsch, S., Thiel, M., Eds.; Oxford University Press: Oxford, UK, 2020; Volume 7, 464p. [Google Scholar]
- DeLorenzo, M.E.; Evans, B.; Chung, K.W.; Key, P.B.; Fulton, M.H. Effects of Salinity on Oil Dispersant Toxicity in the Mud Snail Ilyannasa obsoleta. Environ. Sci. Poll. Res. 2017, 24, 21476–21483. [Google Scholar] [CrossRef]
- Richmond, C.E.; Woodin, S.A. Short-term fluctuations in salinity: Effects on planktonic invertebrate larvae. Mar. Ecol. Prog. Ser. 1996, 133, 167–177. [Google Scholar] [CrossRef]
- Nordlie, F.G. Plasma osmotic, Na+ and Cl− regulation under euryhaline conditions in Cyprinodon variegatus Lacepede. Comp. Biochem. Physiol. 1987, 96A, 57–61. [Google Scholar] [CrossRef]
- Escobar-Briones, E.; Soto, L.A. Mysidacea from Terminos lagoon, southern Gulf of Mexico, and description of a new species of Taphromysis. J. Crustac. Biol. 1988, 8, 639–655. [Google Scholar] [CrossRef]
- Price, W.; Heard, R.W.; Stuck, L. Observations on the genus Mysidopsis sars 1864, with the designation of a new genus, Americamysis, and the descriptions of Americamysis alleni and A. stucki (Peracarida: Mysidacea: Mysidae) from the Gulf of Mexico. Proc. Biol. Soc. Wash. 1994, 107, 680–698. [Google Scholar]
- Drottar, K.R.; Krueger, H.O. PFOS: A 96-hr Static Acute Toxicity Test with the Saltwater Mysid (Mysidopsis Bahia); Project No. 454A-101; EPA Docket AR226-0095; Wildlife International, Ltd.: Easton, MD, USA, 2000. [Google Scholar]
- Hayman, N.T.; Rosen, G.; Colvin, M.A.; Conder, J.; Arblaster, J.A. Aquatic toxicity evaluations of PFOS and PFOA for five standard marine endpoints. Chemosphere 2021, 273, 129699. [Google Scholar] [CrossRef]
- Bosker, T.; Santoro, G.; Melvin, S.D. Salinity and sensitivity to endocrine disrupting chemicals: A comparison of reproductive endpoints in small-bodied fish exposed under different salinities. Chemosphere 2017, 183, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Hall, L.W., Jr.; Anderson, R.D. The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit. Rev. Toxicol. 1995, 25, 281–346. [Google Scholar] [CrossRef]
- Hutton, S.J.; St Romain, S.J.; Pedersen, E.I.; Siddiqui, S.; Chappell, P.E.; White, J.W.; Armbrust, K.L.; Brander, S.M. Salinity Alters Toxicity of Commonly Used Pesticides in a Model Euryhaline Fish Species (Menidia beryllina). Toxics 2021, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Sant, K.E.; Sinno, P.P.; Jacobs, H.M.; Timme-Laragy, A.R. Nrf2a modulates the embryonic antioxidant response to perfluorooctanesulfonic acid (PFOS) in the zebrafish, Danio rerio. Aquat. Toxicol. 2018, 198, 92–102. [Google Scholar] [CrossRef]
- Shi, X.; Zhou, B. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol. Sci. 2010, 115, 391–400. [Google Scholar] [CrossRef]
- Tanabe, P.; Key, P.B.; Chung, K.W.; Pisarski, E.C.; Reiner, J.L.; Rodowa, A.E.; Magnuson, J.T.; DeLorenzo, M.E. Mixture Effects of Per- and Polyfluoroalkyl Substances on Embryonic and Larval Sheepshead Minnows (Cyprinodon variegatus). Toxics 2024, 12, 91. [Google Scholar] [CrossRef]
25 °C 10-ppt | 25 °C 20-ppt | 32 °C 10-ppt | 32 °C 20-ppt | |
Shrimp (P. pugio) | 1.174 (0.594–2.138) | 2.011 (1.577–2.468) | 0.904 (0.481–1.229) | 1.652 (1.402–1.860) |
Fish (C. variegatus) | 1.368 (1.066–1.749) | 0.919 (0.527–1.447) | 0.518 (0.430–0.663) | 0.344 (0.291–0.397) |
Mysid (A. bahia) | 1.186 (0.827–1.557) | 1.375 (0.549–2.305) | 0.780 (0.440–1.138) | 1.077 (0.776–1.399) |
Snail (T. obsoleta) | 0.144 * (0.019–0.334) | 1.559 (1.315–1.761) | 0.144 * (0.016–0.306) | 1.297 (0.978–1.519) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, K.W.; Key, P.B.; Tanabe, P.; DeLorenzo, M.E. Effects of Temperature and Salinity on Perfluorooctane Sulfonate (PFOS) Toxicity in Larval Estuarine Organisms. Toxics 2024, 12, 267. https://doi.org/10.3390/toxics12040267
Chung KW, Key PB, Tanabe P, DeLorenzo ME. Effects of Temperature and Salinity on Perfluorooctane Sulfonate (PFOS) Toxicity in Larval Estuarine Organisms. Toxics. 2024; 12(4):267. https://doi.org/10.3390/toxics12040267
Chicago/Turabian StyleChung, Katy W., Peter B. Key, Philip Tanabe, and Marie E. DeLorenzo. 2024. "Effects of Temperature and Salinity on Perfluorooctane Sulfonate (PFOS) Toxicity in Larval Estuarine Organisms" Toxics 12, no. 4: 267. https://doi.org/10.3390/toxics12040267