Inhalation of Microplastics—A Toxicological Complexity
Abstract
:1. Introduction
1.1. MPs Deposited in the Lungs
1.2. Toxicity of MPs in the Lungs
1.3. MPs as Reservoirs of Chemicals
1.4. Toxicity of Additives
1.5. MPs as Carriers for Environmental Pollutants
2. Key Messages
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Basel Convention Plastic Waste—Overview. Available online: https://www.basel.int/Implementation/Plasticwaste/Overview/tabid/8347/Default.aspx (accessed on 29 November 2023).
- Jenner, L.C.; Rotchell, J.M.; Bennett, R.T.; Cowen, M.; Tentzeris, V.; Sadofsky, L.R. Detection of Microplastics in Human Lung Tissue Using ΜFTIR Spectroscopy. Sci. Total Environ. 2022, 831, 154907. [Google Scholar] [CrossRef]
- Baeza-Martínez, C.; Olmos, S.; González-Pleiter, M.; López-Castellanos, J.; García-Pachón, E.; Masiá-Canuto, M.; Hernández-Blasco, L.; Bayo, J. First Evidence of Microplastics Isolated in European Citizens’ Lower Airway. J. Hazard. Mater. 2022, 438, 129439. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, J.; Yu, H.; Su, H.; Yang, Y.; Cao, Y.; Zhang, Q.; Ren, Y.; Hollert, H.; Shi, H.; et al. An Emerging Role of Microplastics in the Etiology of Lung Ground Glass Nodules. Environ. Sci. Eur. 2022, 34, 25. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; Dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of Airborne Microplastics in Human Lung Tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef]
- Qiu, L.; Lu, W.; Tu, C.; Li, X.; Zhang, H.; Wang, S.; Chen, M.; Zheng, X.; Wang, Z.; Lin, M.; et al. Evidence of Microplastics in Bronchoalveolar Lavage Fluid among Never-Smokers: A Prospective Case Series. Environ. Sci. Technol. 2023, 57, 2435–2444. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; dos Santos Galvão, L.; de Weger, L.A.; Hiemstra, P.S.; Vijver, M.G.; Mauad, T. An Emerging Class of Air Pollutants: Potential Effects of Microplastics to Respiratory Human Health? Sci. Total Environ. 2020, 749, 141676. [Google Scholar] [CrossRef]
- Zimmermann, L.; Dierkes, G.; Ternes, T.; Völker, C.; Wagner, M. Benchmarking the in Vitro Toxicity and Chemical Composition of Plastic Consumer Products. Environ. Sci. Technol. 2019, 53, 11467–11477. [Google Scholar] [CrossRef]
- Wiesinger, H.; Wang, Z.; Hellweg, S. Deep Dive into Plastic Monomers, Additives, and Processing Aids. Environ. Sci. Technol. 2021, 55, 9339–9351. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile Organic Compounds in Indoor Environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of Known Plastic Packaging-Associated Chemicals and Their Hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Little, J.C. Semivolatile Organic Compounds (SVOCs): Phthalates and Flame Retardants. In Toxicity of Building Materials; Pacheco-Torgal, F., Jalali, S., Fucic, A., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2012; pp. 122–137. ISBN 978-0-85709-122-2. [Google Scholar]
- Liu, C.; Zhao, B.; Zhang, Y. The Influence of Aerosol Dynamics on Indoor Exposure to Airborne DEHP. Atmos. Environ. 2010, 44, 1952–1959. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric Microplastics: A Review on Current Status and Perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef]
- Kitahara, K.-I.; Nakata, H. Plastic Additives as Tracers of Microplastic Sources in Japanese Road Dusts. Sci. Total Environ. 2020, 736, 139694. [Google Scholar] [CrossRef]
- Patchaiyappan, A.; Dowarah, K.; Zaki Ahmed, S.; Prabakaran, M.; Jayakumar, S.; Thirunavukkarasu, C.; Devipriya, S.P. Prevalence and Characteristics of Microplastics Present in the Street Dust Collected from Chennai Metropolitan City, India. Chemosphere 2021, 269, 128757. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic Pollution in Deposited Urban Dust, Tehran Metropolis, Iran. Environ. Sci. Pollut. Res. Int. 2017, 24, 20360–20371. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in Air: Are We Breathing It In? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Prata, J.C. Airborne Microplastics: Consequences to Human Health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Saad, M.; Mirande, C.; Tassin, B. Synthetic Fibers in Atmospheric Fallout: A Source of Microplastics in the Environment? Mar. Pollut. Bull. 2016, 104, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne Microplastics in Indoor and Outdoor Environments of a Coastal City in Eastern China. J. Hazard. Mater. 2021, 417, 126007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Kannan, K. Microplastics in House Dust from 12 Countries and Associated Human Exposure. Environ. Int. 2020, 134, 105314. [Google Scholar] [CrossRef] [PubMed]
- Jenner, L.C.; Sadofsky, L.R.; Danopoulos, E.; Rotchell, J.M. Household Indoor Microplastics within the Humber Region (United Kingdom): Quantification and Chemical Characterisation of Particles Present. Atmos. Environ. 2021, 259, 118512. [Google Scholar] [CrossRef]
- Balasubramanian, R.; Lee, S.S. Characteristics of Indoor Aerosols in Residential Homes in Urban Locations: A Case Study in Singapore. J. Air Waste Manag. Assoc. 2007, 57, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.; Minier, J.-P.; Brambilla, S. Particle Resuspension: Challenges and Perspectives for Future Models. Phys. Rep. 2023, 1007, 1–98. [Google Scholar] [CrossRef]
- Kern, D.G.; Crausman, R.S.; Durand, K.T.; Nayer, A.; Kuhn, C. Flock Worker’s Lung: Chronic Interstitial Lung Disease in the Nylon Flocking Industry. Ann. Intern. Med. 1998, 129, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Shahsavaripour, M.; Abbasi, S.; Mirzaee, M.; Amiri, H. Human Occupational Exposure to Microplastics: A Cross-Sectional Study in a Plastic Products Manufacturing Plant. Sci. Total Environ. 2023, 882, 163576. [Google Scholar] [CrossRef] [PubMed]
- Soutar, C.A.; Copland, L.H.; Thornley, P.E.; Hurley, J.F.; Ottery, J.; Adams, W.G.; Bennett, B. Epidemiological Study of Respiratory Disease in Workers Exposed to Polyvinylchloride Dust. Thorax 1980, 35, 644–652. [Google Scholar] [CrossRef]
- Murashov, V.; Geraci, C.L.; Schulte, P.A.; Howard, J. Nano- and Microplastics in the Workplace. J. Occup. Environ. Hyg. 2021, 18, 489–494. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environ. Pollut 2017, 221, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, A.B.; Johnson, A.R.; du Preez, S.; Hammond, D.R.; Wells, J.R.; Ham, J.E.; LeBouf, R.F.; Martin, S.B.; Duling, M.G.; Bowers, L.N.; et al. Insights Into Emissions and Exposures From Use of Industrial-Scale Additive Manufacturing Machines. Saf. Health Work 2019, 10, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Hüffer, T.; Klöckner, P.; Wehrhahn, M.; Hofmann, T.; Reemtsma, T. Tire Wear Particles in the Aquatic Environment—A Review on Generation, Analysis, Occurrence, Fate and Effects. Water Res. 2018, 139, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Mathissen, M.; Scheer, V.; Vogt, R.; Benter, T. Investigation on the Potential Generation of Ultrafine Particles from the Tire–Road Interface. Atmos. Environ. 2011, 45, 6172–6179. [Google Scholar] [CrossRef]
- Mercier, F.; Glorennec, P.; Thomas, O.; Le Bot, B. Organic Contamination of Settled House Dust, a Review for Exposure Assessment Purposes. Environ. Sci. Technol. 2011, 45, 6716–6727. [Google Scholar] [CrossRef] [PubMed]
- Poerio, T.; Piacentini, E.; Mazzei, R. Membrane Processes for Microplastic Removal. Molecules 2019, 24, 4148. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; Depledge, M.H. Where Is the Evidence That Human Exposure to Microplastics Is Safe? Environ. Int. 2020, 142, 105807. [Google Scholar] [CrossRef] [PubMed]
- Burcham, P.C. An Introduction to Toxicology; Springer: London, UK, 2014; ISBN 978-1-4471-5552-2. [Google Scholar]
- González-Pleiter, M.; Pedrouzo-Rodríguez, A.; Verdú, I.; Leganés, F.; Marco, E.; Rosal, R.; Fernández-Piñas, F. Microplastics as Vectors of the Antibiotics Azithromycin and Clarithromycin: Effects towards Freshwater Microalgae. Chemosphere 2021, 268, 128824. [Google Scholar] [CrossRef] [PubMed]
- Verdú, I.; González-Pleiter, M.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Microplastics Can Act as Vector of the Biocide Triclosan Exerting Damage to Freshwater Microalgae. Chemosphere 2021, 266, 129193. [Google Scholar] [CrossRef] [PubMed]
- Sangkham, S. Global Perspective on the Impact of Plastic Waste as a Source of Microplastics and Per- and Polyfluoroalkyl Substances in the Environment. ACS EST Water 2024, 4, 1–4. [Google Scholar] [CrossRef]
- Hartmann, N.B.; Rist, S.; Bodin, J.; Jensen, L.H.; Schmidt, S.N.; Mayer, P.; Meibom, A.; Baun, A. Microplastics as Vectors for Environmental Contaminants: Exploring Sorption, Desorption, and Transfer to Biota. Integr. Environ. Assess. Manag. 2017, 13, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Pedriza, A.; Jaumot, J. Interaction of Environmental Pollutants with Microplastics: A Critical Review of Sorption Factors, Bioaccumulation and Ecotoxicological Effects. Toxics 2020, 8, 40. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, P.; Braunbeck, T. Bioavailability of Microplastic-Bound Pollutants in Vitro: The Role of Adsorbate Lipophilicity and Surfactants. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 221, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Rafa, N.; Ahmed, B.; Zohora, F.; Bakya, J.; Ahmed, S.; Ahmed, S.F.; Mofijur, M.; Chowdhury, A.A.; Almomani, F. Microplastics as Carriers of Toxic Pollutants: Source, Transport, and Toxicological Effects. Environ. Pollut. 2024, 343, 123190. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Pinheiro, M.; Magalhães, J.; Ribeiro, R.; Seabra, V.; Reis, S.; Sarmento, B. The Formulation of Nanomedicines for Treating Tuberculosis. Adv. Drug Deliv. Rev. 2016, 102, 102–115. [Google Scholar] [CrossRef]
- Wang, S.; Lu, W.; Cao, Q.; Tu, C.; Zhong, C.; Qiu, L.; Li, S.; Zhang, H.; Lan, M.; Qiu, L.; et al. Microplastics in the Lung Tissues Associated with Blood Test Index. Toxics 2023, 11, 759. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, F.; Quan, S.; Chen, L.; Shen, A.; Jiao, A.; Qi, H.; Yu, G. Microplastics in the Bronchoalveolar Lavage Fluid of Chinese Children: Associations with Age, City Development, and Disease Features. Environ. Sci. Technol. 2023, 57, 12594–12601. [Google Scholar] [CrossRef] [PubMed]
- Bakand, S.; Hayes, A.; Dechsakulthorn, F. Nanoparticles: A Review of Particle Toxicology Following Inhalation Exposure. Inhal. Toxicol. 2012, 24, 125–135. [Google Scholar] [CrossRef]
- Matijević, E. (Ed.) Fine Particles in Medicine and Pharmacy; Springer: Boston, MA, USA, 2012; ISBN 978-1-4614-0378-4. [Google Scholar]
- Goodman, K.E.; Hare, J.T.; Khamis, Z.I.; Hua, T.; Sang, Q.-X.A. Exposure of Human Lung Cells to Polystyrene Microplastics Significantly Retards Cell Proliferation and Triggers Morphological Changes. Chem Res Toxicol 2021, 34, 1069–1081. [Google Scholar] [CrossRef]
- Rothen-Rutishauser, B.M.; Kiama, S.G.; Gehr, P. A Three-Dimensional Cellular Model of the Human Respiratory Tract to Study the Interaction with Particles. Am. J. Respir. Cell Mol. Biol. 2005, 32, 281–289. [Google Scholar] [CrossRef]
- Blank, F.; Rothen-Rutishauser, B.M.; Schurch, S.; Gehr, P. An Optimized in Vitro Model of the Respiratory Tract Wall to Study Particle Cell Interactions. J. Aerosol. Med. 2006, 19, 392–405. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.-D.; Chen, C.-W.; Chen, Y.-C.; Chen, H.-H.; Lee, J.-S.; Lin, C.-H. Polystyrene Microplastic Particles: In Vitro Pulmonary Toxicity Assessment. J. Hazard. Mater. 2020, 385, 121575. [Google Scholar] [CrossRef] [PubMed]
- Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic Effects of Commonly Used Nanomaterials and Microplastics on Cerebral and Epithelial Human Cells. Environ. Res 2017, 159, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Wilson, M.R.; MacNee, W.; Stone, V.; Donaldson, K. Size-Dependent Proinflammatory Effects of Ultrafine Polystyrene Particles: A Role for Surface Area and Oxidative Stress in the Enhanced Activity of Ultrafines. Toxicol. Appl. Pharmacol. 2001, 175, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Craparo, E.F.; Cabibbo, M.; Emanuele Drago, S.; Casula, L.; Lai, F.; Cavallaro, G. Inhalable Polymeric Microparticles as Pharmaceutical Porous Powder for Drug Administration. Int. J. Pharm. 2022, 628, 122325. [Google Scholar] [CrossRef] [PubMed]
- Atis, S.; Tutluoglu, B.; Levent, E.; Ozturk, C.; Tunaci, A.; Sahin, K.; Saral, A.; Oktay, I.; Kanik, A.; Nemery, B. The Respiratory Effects of Occupational Polypropylene Flock Exposure. Eur. Respir. J. 2005, 25, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.S.-L.; Hii, L.-W.; Looi, C.K.; Lim, W.-M.; Wong, S.-F.; Kok, Y.-Y.; Tan, B.-K.; Wong, C.-Y.; Leong, C.-O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, J.C.; Avila, R.; Lourenço, A.G. Respiratory Disease Caused by Synthetic Fibres: A New Occupational Disease. Thorax 1975, 30, 204–219. [Google Scholar] [CrossRef]
- Kern, D.G.; Kuhn, C.; Ely, E.W.; Pransky, G.S.; Mello, C.J.; Fraire, A.E.; Müller, J. Flock Worker’s Lung: Broadening the Spectrum of Clinicopathology, Narrowing the Spectrum of Suspected Etiologies. Chest 2000, 117, 251–259. [Google Scholar] [CrossRef]
- Eschenbacher, W.L.; Kreiss, K.; Lougheed, M.D.; Pransky, G.S.; Day, B.; Castellan, R.M. Nylon Flock–Associated Interstitial Lung Disease. Am. J. Respir. Crit. Care Med. 1999, 159, 2003–2008. [Google Scholar] [CrossRef]
- Barroso, E.; Ibañez, M.D.; Aranda, F.I.; Romero, S. Polyethylene Flock-Associated Interstitial Lung Disease in a Spanish Female. Eur. Respir. J. 2002, 20, 1610–1612. [Google Scholar] [CrossRef] [PubMed]
- Lilis, R. Review of Pulmonary Effects of Poly(Vinyl Chloride) and Vinyl Chloride Exposure. Environ. Health Perspect. 1981, 41, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef] [PubMed]
- Saghir, S.A. Absorption. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 1–6. ISBN 978-0-12-386455-0. [Google Scholar]
- Hodges, G.M.; Carr, E.A.; Hazzard, R.A.; Carr, K.E. Uptake and Translocation of Microparticles in Small Intestine. Dig. Dis. Sci. 1995, 40, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, J.H.; Meulbroek, J.A.; Staas, J.K.; Tice, T.R.; Gilley, R.M. Vaccine-Containing Biodegradable Microspheres Specifically Enter the Gut-Associated Lymphoid Tissue Following Oral Administration and Induce a Disseminated Mucosal Immune Response. Adv. Exp. Med. Biol. 1989, 251, 191–202. [Google Scholar] [CrossRef]
- Jenkins, P.G.; Howard, K.A.; Blackhall, N.W.; Thomas, N.W.; Davis, S.S.; O’Hagan, D.T. The Quantitation of the Absorption of Microparticles into the Intestinal Lymph of Wistar Rats. Int. J. Pharm. 1994, 102, 261–266. [Google Scholar] [CrossRef]
- Reineke, J.J.; Cho, D.Y.; Dingle, Y.-T.; Morello, A.P.; Jacob, J.; Thanos, C.G.; Mathiowitz, E. Unique Insights into the Intestinal Absorption, Transit, and Subsequent Biodistribution of Polymer-Derived Microspheres. Proc. Natl. Acad. Sci. USA 2013, 110, 13803–13808. [Google Scholar] [CrossRef]
- Ural, B.B.; Caron, D.P.; Dogra, P.; Wells, S.B.; Szabo, P.A.; Granot, T.; Senda, T.; Poon, M.M.L.; Lam, N.; Thapa, P.; et al. Inhaled Particulate Accumulation with Age Impairs Immune Function and Architecture in Human Lung Lymph Nodes. Nat. Med. 2022, 28, 2622–2632. [Google Scholar] [CrossRef]
- Bailey, M.R.; Kreyling, W.G.; Andre, S.; Batchelor, A.; Collier, C.G.; Drosselmeyer, E.; Ferron, G.A.; Foster, P.; Haider, B.; Hodgson, A.; et al. An Interspecies Comparison of the Lung Clearance of Inhaled Monodisperse Cobalt Oxide Particles—Part I: Objectives and Summary of Results. J. Aerosol Sci. 1989, 20, 169–188. [Google Scholar] [CrossRef]
- Chang, X.; Xue, Y.; Li, J.; Zou, L.; Tang, M. Potential Health Impact of Environmental Micro- and Nanoplastics Pollution. J. Appl. Toxicol. 2020, 40, 4–15. [Google Scholar] [CrossRef]
- Prüst, M.; Meijer, J.; Westerink, R.H.S. The Plastic Brain: Neurotoxicity of Micro- and Nanoplastics. Part. Fibre Toxicol. 2020, 17, 24. [Google Scholar] [CrossRef] [PubMed]
- Hale, R.C.; Seeley, M.E.; La Guardia, M.J.; Mai, L.; Zeng, E.Y. A Global Perspective on Microplastics. J. Geophys. Res. Ocean 2020, 125, e2018JC014719. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, S.; Liu, Q.; Wei, J.; Jin, Y.; Wang, X.; Zhang, L. Polystyrene Microplastics Cause Cardiac Fibrosis by Activating Wnt/β-Catenin Signaling Pathway and Promoting Cardiomyocyte Apoptosis in Rats. Environ. Pollut. 2020, 265, 115025. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-J.; Han, J.-S.; Park, E.-J.; Seong, E.; Lee, G.-H.; Kim, D.-W.; Son, H.-Y.; Han, H.-Y.; Lee, B.-S. Repeated-Oral Dose Toxicity of Polyethylene Microplastics and the Possible Implications on Reproduction and Development of the next Generation. Toxicol. Lett. 2020, 324, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.S. Micro- and Nano-Plastics and Human Health. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 343–366. ISBN 978-3-319-16510-3. [Google Scholar]
- Peijnenburg, W.J.G.M. Phthalates. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Oxford, UK, 2008; pp. 2733–2738. ISBN 978-0-08-045405-4. [Google Scholar]
- Wang, W.; Kannan, K. Leaching of Phthalates from Medical Supplies and Their Implications for Exposure. Environ. Sci. Technol. 2023, 57, 7675–7683. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Okoffo, E.D.; Banks, A.P.; Li, Y.; Thomas, K.V.; Rauert, C.; Aylward, L.L.; Mueller, J.F. Phthalate Esters in Face Masks and Associated Inhalation Exposure Risk. J. Hazard. Mater. 2022, 423, 127001. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Song, M.; Guo, M.; Chi, C.; Mo, F.; Shen, X. Pollution Levels and Characteristics of Phthalate Esters in Indoor Air in Hospitals. J. Environ. Sci. 2015, 37, 67–74. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration; Center for Devices and Radiological Health. Safety Assessment of Di(2-Ethylhexyl)Phthalate (DEHP) Released from PVC Medical Devices; Center for Devices and Radiological Health: Rockville, MD, USA. Available online: https://noharm-global.org/documents/safety-assessment-dehp-released-pvc-medical-devices (accessed on 15 March 2024).
- Reale, E.; Hopf, N.B.; Breider, F.; Grandjean, D.; Pirard, C.; Charlier, C.; Koch, H.M.; Berthet, A.; Suarez, G.; Borgatta, M. Repeated Human Exposure to Semivolatile Organic Compounds by Inhalation: Novel Protocol for a Nonrandomized Study. JMIR Res. Protoc. 2023, 12, e51020. [Google Scholar] [CrossRef] [PubMed]
- Masset, T.; Ferrari, B.J.D.; Dudefoi, W.; Schirmer, K.; Bergmann, A.; Vermeirssen, E.; Grandjean, D.; Harris, L.C.; Breider, F. Bioaccessibility of Organic Compounds Associated with Tire Particles Using a Fish In Vitro Digestive Model: Solubilization Kinetics and Effects of Food Coingestion. Environ. Sci. Technol. 2022, 56, 15607–15616. [Google Scholar] [CrossRef]
- Chang, T.-H.; Szabo, E. Induction of Differentiation and Apoptosis by Ligands of Peroxisome Proliferator-Activated Receptor γ in Non-Small Cell Lung Cancer. Cancer Res. 2000, 60, 1129–1138. [Google Scholar]
- Miller, M.D.; Marty, M.A. Impact of Environmental Chemicals on Lung Development. Environ. Health Perspect. 2010, 118, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, R.; Nardacci, R.; Scarsella, G.; Di Carlo, V.; Stefanini, S. Effects of the Plasticiser DEHP on Lung of Newborn Rats: Catalase Immunocytochemistry and Morphometric Analysis. Histochem. Cell Biol. 2003, 120, 41–49. [Google Scholar] [CrossRef]
- Klimisch, H.J.; Gamer, A.O.; Hellwig, J.; Kaufmann, W.; Jäckh, R. Di-(2-Ethylhexyl) Phthalate: A Short-Term Repeated Inhalation Toxicity Study Including Fertility Assessment. Food Chem. Toxicol. 1992, 30, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Rosicarelli, B.; Stefanini, S. DEHP Effects on Histology and Cell Proliferation in Lung of Newborn Rats. Histochem. Cell Biol. 2009, 131, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-M.; Kim, J.; Cheong, H.-K.; Jeon, B.-H.; Ahn, K. Exposure to Phthalates Aggravates Pulmonary Function and Airway Inflammation in Asthmatic Children. PLoS ONE 2018, 13, e0208553. [Google Scholar] [CrossRef]
- Kondo, K.; Kagi, N.; Namiki, N. Study on the Mechanism of SVOC Adsorption onto Airborne Particles in Indoor Air. Jpn. Archit. Rev. 2018, 1, 528–537. [Google Scholar] [CrossRef]
- Ataei, Y.; Sun, Y.; Liu, W.; Ellie, A.S.; Dong, H.; Ahmad, U.M. Health Effects of Exposure to Indoor Semi-Volatile Organic Compounds in Chinese Building Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 678. [Google Scholar] [CrossRef]
- Kocbach-Bølling, A.; Holme, J.A.; Bornehag, C.G.; Nygaard, U.C.; Bertelsen, R.J.; Nånberg, E.; Bodin, J.; Sakhi, A.K.; Thomsen, C.; Becher, R. Pulmonary Phthalate Exposure and Asthma—Is PPAR a Plausible Mechanistic Link? EXCLI J. 2013, 12, 733–759. [Google Scholar]
- Bornehag, C.-G.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hägerhed-Engman, L. The Association between Asthma and Allergic Symptoms in Children and Phthalates in House Dust: A Nested Case-Control Study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef]
- Brassea-Pérez, E.; Hernández-Camacho, C.J.; Labrada-Martagón, V.; Vázquez-Medina, J.P.; Gaxiola-Robles, R.; Zenteno-Savín, T. Oxidative Stress Induced by Phthalates in Mammals: State of the Art and Potential Biomarkers. Environ. Res. 2022, 206, 112636. [Google Scholar] [CrossRef]
- Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y.-J. Phthalate Toxicity Mechanisms: An Update. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 263, 109498. [Google Scholar] [CrossRef]
- Gaudin, R.; Marsan, P.; Ndaw, S.; Robert, A. Surveillance Biologique de l’exposition Au Phtalate de Di-(2-Éthylhexyle) (DEHP) Dans Six Entreprises Françaises—INRS. 2013. Available online: https://www.inrs.fr/dms/inrs/CataloguePapier/DMT/TI-TF-205/tf205.pdf (accessed on 24 February 2024).
- Hauser, R.; Calafat, A.M. Phthalates and Human Health. Occup. Environ. Med. 2005, 62, 806–818. [Google Scholar] [CrossRef]
- Swan, S.H. Environmental Phthalate Exposure in Relation to Reproductive Outcomes and Other Health Endpoints in Humans. Environ. Res. 2008, 108, 177–184. [Google Scholar] [CrossRef]
- Atia, T.; Abdel-Gawad, S. Pulmonary Toxicity Induced by Exposure to Phthalates, an Experimental Study. Inhal. Toxicol. 2019, 31, 376–383. [Google Scholar] [CrossRef]
- Øie, L.; Hersoug, L.G.; Madsen, J.O. Residential Exposure to Plasticizers and Its Possible Role in the Pathogenesis of Asthma. Environ. Health Perspect. 1997, 105, 972–978. [Google Scholar] [CrossRef]
- Spanier, A.J.; Fiorino, E.K.; Trasande, L. Bisphenol A Exposure Is Associated with Decreased Lung Function. J. Pediatr. 2014, 164, 1403–1408.e1. [Google Scholar] [CrossRef]
- Wang, I.-J.; Chen, C.-Y.; Bornehag, C.-G. Bisphenol A Exposure May Increase the Risk of Development of Atopic Disorders in Children. Int. J. Hydrogen Environ. Health 2016, 219, 311–316. [Google Scholar] [CrossRef]
- Soliman, M.A.E.; Noya, D.A.E. Effect of Bisphenol A on the Lung of Adult Male Albino Rats and the Possible Protective Role of Propolis: Light and Electron Microscopic Study. Egypt. J. Histol. 2023, 46, 290–307. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Luo, D.; Wu, D.; Liu, H.; Li, M.; Sun, Q.; Jia, L. Lung Inflammation Induced by Exposure to Bisphenol-A Is Associated with MTOR-Mediated Autophagy in Adolescent Mice. Chemosphere 2020, 248, 126035. [Google Scholar] [CrossRef]
- Nakajima, Y.; Goldblum, R.M.; Midoro-Horiuti, T. Fetal Exposure to Bisphenol A as a Risk Factor for the Development of Childhood Asthma: An Animal Model Study. Environ. Health 2012, 11, 8. [Google Scholar] [CrossRef]
- Midoro-Horiuti, T.; Tiwari, R.; Watson, C.S.; Goldblum, R.M. Maternal Bisphenol A Exposure Promotes the Development of Experimental Asthma in Mouse Pups. Environ. Health Perspect. 2010, 118, 273–277. [Google Scholar] [CrossRef]
- Saeidnia, S. Phthalates. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 928–933. ISBN 978-0-12-386455-0. [Google Scholar]
- Agence Nationale de Sécurité Sanitaire de L’alimentation, de L’environnement et du Travail (Anses) Bisphenol B, an Endocrine Disruptor for Humans and the Environment. Available online: https://www.anses.fr/en/content/bisphenol-b-endocrine-disruptor-humans-and-environment (accessed on 24 February 2024).
- Chen, Q.; Yang, H.; Zhou, N.; Sun, L.; Bao, H.; Tan, L.; Chen, H.; Ling, X.; Zhang, G.; Huang, L.; et al. Phthalate Exposure, Even below US EPA Reference Doses, Was Associated with Semen Quality and Reproductive Hormones: Prospective MARHCS Study in General Population. Environ. Int. 2017, 104, 58–68. [Google Scholar] [CrossRef]
- Duty, S.M.; Silva, M.J.; Barr, D.B.; Brock, J.W.; Ryan, L.; Chen, Z.; Herrick, R.F.; Christiani, D.C.; Hauser, R. Phthalate Exposure and Human Semen Parameters. Epidemiology 2003, 14, 269–277. [Google Scholar] [CrossRef]
- Buck Louis, G.M.; Gray, L.E., Jr.; Marcus, M.; Ojeda, S.R.; Pescovitz, O.H.; Witchel, S.F.; Sippell, W.; Abbott, D.H.; Soto, A.; Tyl, R.W.; et al. Environmental Factors and Puberty Timing: Expert Panel Research Needs. Pediatrics 2008, 121, S192–S207. [Google Scholar] [CrossRef]
- Colón, I.; Caro, D.; Bourdony, C.J.; Rosario, O. Identification of Phthalate Esters in the Serum of Young Puerto Rican Girls with Premature Breast Development. Environ. Health Perspect. 2000, 108, 895–900. [Google Scholar] [CrossRef]
- Ventrice, P.; Ventrice, D.; Russo, E.; De Sarro, G. Phthalates: European Regulation, Chemistry, Pharmacokinetic and Related Toxicity. Environ. Toxicol. Pharmacol. 2013, 36, 88–96. [Google Scholar] [CrossRef]
- Weaver, J.A.; Beverly, B.E.J.; Keshava, N.; Mudipalli, A.; Arzuaga, X.; Cai, C.; Hotchkiss, A.K.; Makris, S.L.; Yost, E.E. Hazards of Diethyl Phthalate (DEP) Exposure: A Systematic Review of Animal Toxicology Studies. Environ. Int. 2020, 145, 105848. [Google Scholar] [CrossRef]
- Adibi, J.J.; Perera, F.P.; Jedrychowski, W.; Camann, D.E.; Barr, D.; Jacek, R.; Whyatt, R.M. Prenatal Exposures to Phthalates among Women in New York City and Krakow, Poland. Environ. Health Perspect. 2003, 111, 1719–1722. [Google Scholar] [CrossRef]
- Swan, S.H.; Main, K.M.; Liu, F.; Stewart, S.L.; Kruse, R.L.; Calafat, A.M.; Mao, C.S.; Redmon, J.B.; Ternand, C.L.; Sullivan, S.; et al. Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure. Environ. Health Perspect. 2005, 113, 1056–1061. [Google Scholar] [CrossRef]
- Hauser, R.; Meeker, J.D.; Duty, S.; Silva, M.J.; Calafat, A.M. Altered Semen Quality in Relation to Urinary Concentrations of Phthalate Monoester and Oxidative Metabolites. Epidemiology 2006, 17, 682–691. [Google Scholar] [CrossRef]
- Hauser, R.; Meeker, J.D.; Singh, N.P.; Silva, M.J.; Ryan, L.; Duty, S.; Calafat, A.M. DNA Damage in Human Sperm Is Related to Urinary Levels of Phthalate Monoester and Oxidative Metabolites. Hum. Reprod. 2007, 22, 688–695. [Google Scholar] [CrossRef]
- Green, R.; Hauser, R.; Calafat, A.M.; Weuve, J.; Schettler, T.; Ringer, S.; Huttner, K.; Hu, H. Use of Di(2-Ethylhexyl) Phthalate-Containing Medical Products and Urinary Levels of Mono(2-Ethylhexyl) Phthalate in Neonatal Intensive Care Unit Infants. Environ. Health Perspect 2005, 113, 1222–1225. [Google Scholar] [CrossRef]
- Calafat, A.M.; Needham, L.L.; Silva, M.J.; Lambert, G. Exposure to Di-(2-Ethylhexyl) Phthalate among Premature Neonates in a Neonatal Intensive Care Unit. Pediatrics 2004, 113, e429–e434. [Google Scholar] [CrossRef]
- van Amerongen, C.C.A.; Ofenloch, R.F.; Cazzaniga, S.; Elsner, P.; Gonçalo, M.; Naldi, L.; Svensson, Å.; Bruze, M.; Schuttelaar, M.L.A. Skin Exposure to Scented Products Used in Daily Life and Fragrance Contact Allergy in the European General Population—The EDEN Fragrance Study. Contact Dermat. 2021, 84, 385–394. [Google Scholar] [CrossRef]
- Rios, L.M.; Moore, C.; Jones, P.R. Persistent Organic Pollutants Carried by Synthetic Polymers in the Ocean Environment. Mar. Pollut. Bull. 2007, 54, 1230–1237. [Google Scholar] [CrossRef]
- Hirai, H.; Takada, H.; Ogata, Y.; Yamashita, R.; Mizukawa, K.; Saha, M.; Kwan, C.; Moore, C.; Gray, H.; Laursen, D.; et al. Organic Micropollutants in Marine Plastics Debris from the Open Ocean and Remote and Urban Beaches. Mar. Pollut. Bull. 2011, 62, 1683–1692. [Google Scholar] [CrossRef]
- Martin, R.A.; Poynter, M.E. The Immunobiology of Asthma. In Encyclopedia of Immunobiology; Ratcliffe, M.J.H., Ed.; Academic Press: Oxford, UK, 2016; pp. 295–305. ISBN 978-0-08-092152-5. [Google Scholar]
- Déciga-Alcaraz, A.; Tlazolteotl Gómez de León, C.; Morales Montor, J.; Poblano-Bata, J.; Martínez-Domínguez, Y.M.; Palacios-Arreola, M.I.; Amador-Muñoz, O.; Rodríguez-Ibarra, C.; Vázquez-Zapién, G.J.; Mata-Miranda, M.M.; et al. Effects of Solvent Extracted Organic Matter from Outdoor Air Pollution on Human Type II Pneumocytes: Molecular and Proteomic Analysis. Environ. Pollut. 2023, 337, 122551. [Google Scholar] [CrossRef]
- Sun, K.; Song, Y.; He, F.; Jing, M.; Tang, J.; Liu, R. A Review of Human and Animals Exposure to Polycyclic Aromatic Hydrocarbons: Health Risk and Adverse Effects, Photo-Induced Toxicity and Regulating Effect of Microplastics. Sci. Total Environ. 2021, 773, 145403. [Google Scholar] [CrossRef]
- Cioroiu, B.I.; Tarcau, D.; Cucu-Man, S.; Chisalita, I.; Cioroiu, M. Polycyclic Aromatic Hydrocarbons in Lung Tissue of Patients with Pulmonary Cancer from Romania. Influence According as Demographic Status and ABO Phenotypes. Chemosphere 2013, 92, 504–511. [Google Scholar] [CrossRef]
- Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015, 145, 5–15. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A Review of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) and Their Human Health Effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Srogi, K. Monitoring of Environmental Exposure to Polycyclic Aromatic Hydrocarbons: A Review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Polymer | Shape | Size (μm) | Concentration | Detection Method | Reference |
---|---|---|---|---|---|---|
Lung tissue | PP, PET | Fibers, fragments, films | 12–2475 (length) 4–88 (width) | 0.41–3.12 MPs/g tissue | mFTIR | [2] |
Lung tissue | PP, PET, PS, PVC, PTFE, CPE, PE, ACR, EVA, BR, PUR, silicone | Fibers | 20–100 (diameter) | 2.19 MPs/g tissue | LDIR | [49] |
Lung tissue | PP, PE, PVC, cellulose acetate, PE, co-PP, PS, PS-co-PVC, PUR | Fibers, fragments | <5 (fragments) 8.12–16.8 (fibers) | 0.56 MPs/g tissue | mRaman | [5] |
Lung tissue | PE, PET, AC, phenoxy resin, rayon | Fibers (>20 μm) | Up to 1750 (length) Up to 34.29 (width) | - | mFTIR | [4] |
BALF | - | Fibers | 1730 | 9.2 ± 2.5 MPs/100 mL BALF | mFTIR | [3] |
BALF | PP, PE, PES, PET, PVC, PC, PTFE, AC, PA, PBT | Fragment, fibers, pellets, sheet | <5 | 4.31 ± 2.77 MPs/10 mL BALF | mRaman | [50] |
BALF | PE, PET, PP, PS, PC, PUR, PSU, PP, PVC, PMMA, PI, PTFE, ACR, PICH | Fiber (length-to-diameter ratio ≥3 μm), “Irregular particles” (length-to-diameter ratio <3 μm) | 30–34 | 0.91 MPs/g BALF | LDIR | [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgatta, M.; Breider, F. Inhalation of Microplastics—A Toxicological Complexity. Toxics 2024, 12, 358. https://doi.org/10.3390/toxics12050358
Borgatta M, Breider F. Inhalation of Microplastics—A Toxicological Complexity. Toxics. 2024; 12(5):358. https://doi.org/10.3390/toxics12050358
Chicago/Turabian StyleBorgatta, Myriam, and Florian Breider. 2024. "Inhalation of Microplastics—A Toxicological Complexity" Toxics 12, no. 5: 358. https://doi.org/10.3390/toxics12050358
APA StyleBorgatta, M., & Breider, F. (2024). Inhalation of Microplastics—A Toxicological Complexity. Toxics, 12(5), 358. https://doi.org/10.3390/toxics12050358