Ocular Surface Fluid: More than a Matrix
Abstract
:1. Introduction
2. Conjunctival Sac Fluid as a Biological Sample
2.1. Sampling
2.2. Analysis
2.3. Method Validation
3. Drugs in Ocular Surface Fluid
3.1. Ever-Present Lipid Sealant Film (Precorneal Compartment)
3.2. Routes in the Interface between the Functioning Eye and Our Environment
3.3. Nasal Mucosa
- The first surface or barrier for active pharmaceutical ingredient absorption is the mucus layer of the nasal cavity. The molecules of active pharmaceutical ingredients are dissolved here; otherwise, they trespass through the mucus layer before being swept away by mucociliary activity or succumbing to enzymatic degradation [74];
- A double-layered, stratified columnar epithelium resting on a broad basement membrane lies beneath the luminal vascular plexuses. In the apical part, epithelial cells contain large lipid droplets and secretory vacuoles. Microvilli face epithelial cells, and some tufts of kinociliae are also visible. The plexus is embedded in the helical system of different connective tissue fibers, which is comparable to a cavernous body [75,76]. The superior part of this helical system is the 12 mm intraosseous portion, and its lower 5 mm part is the membranous portion;
- The last surface that an active pharmaceutical ingredient encounters before its absorption into the blood is the capillary endothelium. This step is essential for systemically targeting active pharmaceutical ingredients [73].
4. The “New” Matrix
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kunsman, G.W.; Hartman, R.L. Human Performance Toxicology. In Principles of Forensic Toxicology; Levine, B.S., Kerrigan, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 15–33. [Google Scholar]
- Levine, B.S. Postmortem Forensic Toxicology. In Principles of Forensic Toxicology; Levine, B.S., Kerrigan, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–13. [Google Scholar]
- de Campos, E.G.; da Costa, B.R.B.; Dos Santos, F.S.; Monedeiro, F.; Alves, M.N.R.; Santos Junior, W.J.R.; De Martinis, B.S. Alternative matrices in forensic toxicology: A critical review. Forensic Toxicol. 2022, 40, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Louzao, M.C.; Costas, C. 4.1. 1 The Three Rs. In Environmental Toxicology: Non-Bacterial Toxins; Walter de Gruyter: Berlin, Germany, 2024; Volume 103. [Google Scholar]
- Cher, I. Fluids of the ocular surface: Concepts, functions and physics. Clin. Exp. Ophthalmol. 2012, 40, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, S. Biochemistry of human tear film: A review. Exp. Eye Res. 2022, 220, 109101. [Google Scholar] [CrossRef]
- Costa, A.X.d.; Gama, R.M.d.; Kitadai, S.P.S.; Andrade, E.P.d.; Ferro, G.B.R.; Gomes, J.Á.P. Drop volume of artificial tear solutions: Pharmacoeconomic study. Rev. Bras. Oftalmol. 2015, 74, 339–344. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Gumus, K.; Feuerman, J.; Alex, A. Tear Volume-based Diagnostic Classification for Tear Dysfunction. Int. Ophthalmol. Clin. 2017, 57, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Schaudig, U.; Shams, P.; Ducasse, A. Anatomy and Physiology of the Lacrimal System. In Oculoplastic, Lacrimal and Orbital Surgery: The ESOPRS Textbook: Volume 1; Springer: Cham, Switzerland, 2024; pp. 535–549. [Google Scholar]
- Price, K.M.; Richard, M.J. The tearing patient: Diagnosis and management. Am. Acad. Ophthalmol. 2009, 33–35. [Google Scholar]
- Ahmed, S.; Amin, M.M.; Sayed, S. Ocular Drug Delivery: A Comprehensive Review. AAPS PharmSciTech 2023, 24, 66. [Google Scholar] [CrossRef] [PubMed]
- Tai, J.; Han, M.; Lee, D.; Park, I.H.; Lee, S.H.; Kim, T.H. Different Methods and Formulations of Drugs and Vaccines for Nasal Administration. Pharmaceutics 2022, 14, 1073. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Aguilar, B.; Mangal, J.L.; Acharya, A.P. Oral drug delivery for immunoengineering. Bioeng. Transl. Med. 2022, 7, e10243. [Google Scholar] [CrossRef]
- Caselli, E.; Soffritti, I.; Lamberti, G.; D’Accolti, M.; Franco, F.; Demaria, D.; Contoli, M.; Passaro, A.; Contini, C.; Perri, P. Anti-SARS-CoV-2 IgA Response in Tears of COVID-19 Patients. Biology 2020, 9, 374. [Google Scholar] [CrossRef]
- Secchiero, P.; Lamberti, G.; Corallini, F.; Melloni, E.; Guarnotta, C.; Sebastiani, A.; Zauli, G. Conjunctival sac fluid contains elevated levels of soluble TRAIL: Implications for the anti-tumoral surveillance of the anterior surface of the eye. J. Cell. Physiol. 2009, 218, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.M.; Ajithaprasad, S.; Mithun, N.; Pavithran, M.S.; Chidangil, S.; Lukose, J. Raman spectroscopy assisted tear analysis: A label free, optical approach for noninvasive disease diagnostics. Exp. Eye Res. 2024, 243, 109913. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Sutani, T.; Nakai, H.; Shirahige, K.; Kinoshita, S. Human microbiome of eyelid skin, conjunctival sac, and meibum of the meibomian gland. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2748. [Google Scholar]
- Amini, P.; Okeme, J. Tear Fluid as a Matrix for Biomonitoring Environmental and Chemical Exposures. Curr. Environ. Health Rep. 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, S.Z.; Koh, S.K.; Chen, L.; Vaz, C.; Tanavde, V.; Li, X.R.; Beuerman, R.W. In-depth analysis of the human tear proteome. J. Proteom. 2012, 75, 3877–3885. [Google Scholar] [CrossRef]
- Chang, A.Y.; Purt, B. Biochemistry, Tear Film; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Van Santvliet, L.; Ludwig, A. Determinants of eye drop size. Surv. Ophthalmol. 2004, 49, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Barmada, A.; Shippy, S.A. Tear analysis as the next routine body fluid test. Eye 2020, 34, 1731–1733. [Google Scholar] [CrossRef] [PubMed]
- Bachhuber, F.; Huss, A.; Senel, M.; Tumani, H. Diagnostic biomarkers in tear fluid: From sampling to preanalytical processing. Sci. Rep. 2021, 11, 10064. [Google Scholar] [CrossRef]
- Yao, Y.N.; Di, D.; Yuan, Z.C.; Wu, L.; Hu, B. Schirmer Paper Noninvasive Microsampling for Direct Mass Spectrometry Analysis of Human Tears. Anal. Chem. 2020, 92, 6207–6212. [Google Scholar] [CrossRef]
- Milevoj Kopcinovic, L.; Culej, J.; Jokic, A.; Bozovic, M.; Kocijan, I. Laboratory testing of extravascular body fluids: National recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine. Part I—Serous fluids. Biochem. Med. 2020, 30, 010502. [Google Scholar] [CrossRef] [PubMed]
- Nioi, M.; Napoli, P.E.; Demontis, R.; Locci, E.; Fossarello, M.; d’Aloja, E. Postmortem Ocular Findings in the Optical Coherence Tomography Era: A Proof of Concept Study Based on Six Forensic Cases. Diagnostics 2021, 11, 413. [Google Scholar] [CrossRef] [PubMed]
- Vianney Ramírez Ojeda, S.; Hernandez Mier, C. Postmortem Interval Ocular Indicators. In Contemporary Issues in Clinical Bioethics—Medical, Ethical and Legal Perspectives; Peter, C., Kamil Hakan, D., Eds.; IntechOpen: Rijeka, Croatia, 2024; p. Ch. 6. [Google Scholar]
- Urban, P.L. Quantitative mass spectrometry: An overview. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150382. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z. Trace analysis of steroid hormones in tear films via liquid chromatography-high resolution mass spectrometry. Anal. Methods 2024, 16, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Berra, M.; Galperin, G.; Dawidowski, L.; Tau, J.; Marquez, I.; Berra, A. Impact of wildfire smoke in Buenos Aires, Argentina, on ocular surface. Arq. Bras. Oftalmol. 2015, 78, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Galperin, G.; Berra, M.; Marquez, M.I.; Mandaradoni, M.; Tau, J.; Berra, A. Impact of environmental pollution on the ocular surface of Sjogren’s syndrome patients. Arq. Bras. Oftalmol. 2018, 81, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Rummenie, V.T.; Matsumoto, Y.; Dogru, M.; Wang, Y.; Hu, Y.; Ward, S.K.; Igarashi, A.; Wakamatsu, T.; Ibrahim, O.; Goto, E.; et al. Tear cytokine and ocular surface alterations following brief passive cigarette smoke exposure. Cytokine 2008, 43, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, J.H.; Nam, W.H.; Yi, K.; Choi, D.G.; Hyon, J.Y.; Wee, W.R.; Shin, Y.J. Oral alcohol administration disturbs tear film and ocular surface. Ophthalmology 2012, 119, 965–971. [Google Scholar] [CrossRef]
- Gutierrez, M.L.A.; Colman Lerner, J.E.; Giuliani, D.S.; Porta, A.A.; Andrinolo, D. Comparative study of tear lipid composition in two human populations with different exposure to particulate matter in La Plata, Argentina. Environ. Sci. Pollut. Res. Int. 2019, 26, 6948–6956. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chen, Y.Y.; Lai, C.H. Clinical association between trace elements of tear and dry eye metrics. Sci. Rep. 2022, 12, 18052. [Google Scholar] [CrossRef]
- Peltonen, S.; Kari, O.; Jarva, H.; Mussalo-Rauhamaa, H.; Haahtela, T.; Meri, S. Complement activation in tear fluid during occupational mold challenge. Ocul. Immunol. Inflamm. 2008, 16, 224–229. [Google Scholar] [CrossRef]
- Matsuda, M.; Bonatti, R.; Marquezini, M.V.; Garcia, M.L.; Santos, U.P.; Braga, A.L.; Alves, M.R.; Saldiva, P.H.; Monteiro, M.L. Lacrimal Cytokines Assessment in Subjects Exposed to Different Levels of Ambient Air Pollution in a Large Metropolitan Area. PLoS ONE 2015, 10, e0143131. [Google Scholar] [CrossRef] [PubMed]
- Jing, D.; Jiang, X.; Zhou, P.; Ren, X.; Su, J.; Hao, R.; Zhang, M.; Wan, Y.; Li, X. Evidence of air pollution-related ocular signs and altered inflammatory cytokine profile of the ocular surface in Beijing. Sci. Rep. 2022, 12, 18359. [Google Scholar] [CrossRef]
- Paananen, R.O.; Rantamaki, A.H.; Parshintsev, J.; Holopainen, J.M. The Effect of Ambient Ozone on Unsaturated Tear Film Wax Esters. Investig. Ophthalmol. Vis. Sci. 2015, 56, 8054–8062. [Google Scholar] [CrossRef]
- Girshevitz, O.; Cohen-Sinai, N.; Zahavi, A.; Vardizer, Y.; Fixler, D.; Goldenberg-Cohen, N. Trace Elements in Tears: Comparison of Rural and Urban Populations Using Particle Induced X-ray Emission. J. Pers. Med. 2022, 12, 1633. [Google Scholar] [CrossRef]
- Avula, A.; Galor, A.; Blackwelder, P.; Carballosa-Gautam, M.; Hackam, A.S.; Jeng, B.; Kumar, N. Application of Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy for Analyzing Ocular Surface Particles on Schirmer Strips. Cornea 2017, 36, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, C.; Galor, A.; Blackwelder, P.; Hackam, A.S.; Jeng, B.H.; Menendez, D.; Kim, S.J.; Kumar, N. Human Ocular Surface Particulate Composition in the Clinical Versus Home Environment. Cornea 2019, 38, 1266–1272. [Google Scholar] [CrossRef]
- Pieczynski, J.; Szulc, U.; Harazna, J.; Szulc, A.; Kiewisz, J. Tear fluid collection methods: Review of current techniques. Eur. J. Ophthalmol. 2021, 31, 2245–2251. [Google Scholar] [CrossRef] [PubMed]
- Tham, M.L.; Mahmud, A.; Abdullah, M.; Md Saleh, R.; Mohammad Razali, A.; Cheah, Y.K.; Mohd Taib, N.; Ho, K.L.; Mahmud, M.; Mohd Isa, M. Tear Samples for Protein Extraction: Comparative Analysis of Schirmer’s Test Strip and Microcapillary Tube Methods. Cureus 2023, 15, e50972. [Google Scholar] [CrossRef]
- Recchioni, A.; Mocciardini, E.; Ponzini, E.; Tavazzi, S. Viscoelastic properties of the human tear film. Exp. Eye Res. 2022, 219, 109083. [Google Scholar] [CrossRef]
- del Amo, E.M. Topical ophthalmic administration: Can a drug instilled onto the ocular surface exert an effect at the back of the eye? Front. Drug Deliv. 2022, 2, 954771. [Google Scholar] [CrossRef]
- van Haeringen, N.J. Secretion of drugs in tears. Curr. Eye Res. 1985, 4, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, A.B.; Ward, D.A.; Cox, S.K.; Hendrix, D.V.H. Tear film concentrations of topically applied 0.5% oxytetracycline ointment in normal canine eyes. Vet. Ophthalmol. 2020, 23, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Abuhelwa, A.Y.; Williams, D.B.; Upton, R.N.; Foster, D.J. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017, 112, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Gaohua, L.; Miao, X.; Dou, L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert. Opin. Drug Metab. Toxicol. 2021, 17, 1103–1124. [Google Scholar] [CrossRef] [PubMed]
- Montes-Mico, R.; Cervino, A.; Ferrer-Blasco, T.; Garcia-Lazaro, S.; Madrid-Costa, D. The tear film and the optical quality of the eye. Ocul. Surf. 2010, 8, 185–192. [Google Scholar] [CrossRef]
- Semiz, F.; Lokaj, A.S.; Tanriverdi, G.; Caliskan, G.; Hima-Musa, N.; Semiz, C.E. Fresh Human Myopic Lenticule Intrastromal Implantation for Keratoconus Using SMILE Surgery in a Long-term Follow-up Study: Ultrastructural Analysis by Transmission Electron Microscopy. J. Refract. Surg. 2022, 38, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Shumway, C.L.; Motlagh, M.; Wade, M. Anatomy, Head and Neck, Eye Conjunctiva. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Santana, C.P.; Matter, B.A.; Patil, M.A.; Silva-Cunha, A.; Kompella, U.B. Corneal Permeability and Uptake of Twenty-Five Drugs: Species Comparison and Quantitative Structure-Permeability Relationships. Pharmaceutics 2023, 15, 1646. [Google Scholar] [CrossRef] [PubMed]
- Lanier, O.L.; Manfre, M.G.; Bailey, C.; Liu, Z.; Sparks, Z.; Kulkarni, S.; Chauhan, A. Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations. AAPS PharmSciTech 2021, 22, 107. [Google Scholar] [CrossRef]
- See, G.L.L. Unlocking the Potential of Eyelid Skin-Based Drug Delivery: A Filipino Pharmaceutical Scientist’s Journey. J. Pharm. Sci. Technol. Jpn. 2020, 80, 193–197. [Google Scholar]
- Derakhshani, A.; Hasani, S.; Navaei, T. Hemocompatible polymers for medical applications. In Handbook of Polymers in Medicine; Elsevier: Amsterdam, The Netherlands, 2023; pp. 143–175. [Google Scholar]
- Fayyaz, A.; Ranta, V.P.; Toropainen, E.; Vellonen, K.S.; Valtari, A.; Puranen, J.; Ruponen, M.; Gardner, I.; Urtti, A.; Jamei, M.; et al. Topical ocular pharmacokinetics and bioavailability for a cocktail of atenolol, timolol and betaxolol in rabbits. Eur. J. Pharm. Sci. 2020, 155, 105553. [Google Scholar] [CrossRef] [PubMed]
- Agrahari, V.; Mandal, A.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Ray, A.; Hadji, H.; Mitra, R.; Pal, D.; Mitra, A.K. A comprehensive insight on ocular pharmacokinetics. Drug Deliv. Transl. Res. 2016, 6, 735–754. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [CrossRef]
- Mofidfar, M.; Abdi, B.; Ahadian, S.; Mostafavi, E.; Desai, T.A.; Abbasi, F.; Sun, Y.; Manche, E.E.; Ta, C.N.; Flowers, C.W. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int. J. Pharm. 2021, 607, 120924. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Barras, A.; Boukherroub, R.; Tseng, C.-L.; Devos, D.; Burnouf, T.; Neuhaus, W.; Szunerits, S. Enhancing paracellular and transcellular permeability using nanotechnological approaches for the treatment of brain and retinal diseases. Nanoscale Horiz. 2024, 9, 14–43. [Google Scholar] [CrossRef] [PubMed]
- Tashima, T. Ocular Drug Delivery into the Eyes Using Drug-Releasing Soft Contact Lens. Future Pharmacol. 2024, 4, 336–351. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Jaanus, S.D. Clinical Ocular Pharmacology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Zhang, X.; Zhang, Y.; Luo, G.; Xie, R.; Li, H.; Cheng, W. Discussion on the Development of New Ophthalmic Dosage Forms of Ganciclovir and Its Pre-Development Evaluation. CONVERTER 2021, 2021, 165–174. [Google Scholar]
- Ramsay, E.; Del Amo, E.M.; Toropainen, E.; Tengvall-Unadike, U.; Ranta, V.P.; Urtti, A.; Ruponen, M. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye. Eur. J. Pharm. Sci. 2018, 119, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Iezhitsa, I.; Agarwal, P.; Abdul Nasir, N.A.; Razali, N.; Alyautdin, R.; Ismail, N.M. Liposomes in topical ophthalmic drug delivery: An update. Drug Deliv. 2016, 23, 1075–1091. [Google Scholar] [CrossRef]
- Cimolai, N. Neuropsychiatric Adverse Events from Topical Ophthalmic Timolol. Clin. Med. Res. 2019, 17, 90–96. [Google Scholar] [CrossRef]
- Lassaline, M. Disorders of the Eye and Vision. In Equine Internal Medicine; Reed, S.M., Bayly, W.M., Sellon, D.C., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2018; pp. 1139–1158. [Google Scholar]
- Nitro, L.; Pipolo, C.; Fadda, G.L.; Allevi, F.; Borgione, M.; Cavallo, G.; Felisati, G.; Saibene, A.M. Distribution of cocaine-induced midline destructive lesions: Systematic review and classification. Eur. Arch. Otorhinolaryngol. 2022, 279, 3257–3267. [Google Scholar] [CrossRef]
- Methods in Toxicology. In Toxicology and Risk Assessment; Wiley: Hoboken, NJ, USA, 2018; pp. 389–524.
- Kumar, V.; Bansal, V.; Madhavan, A.; Kumar, M.; Sindhu, R.; Awasthi, M.K.; Binod, P.; Saran, S. Active pharmaceutical ingredient (API) chemicals: A critical review of current biotechnological approaches. Bioengineered 2022, 13, 4309–4327. [Google Scholar] [CrossRef]
- Leal, J.; Smyth, H.D.C.; Ghosh, D. Physicochemical properties of mucus and their impact on transmucosal drug delivery. Int. J. Pharm. 2017, 532, 555–572. [Google Scholar] [CrossRef] [PubMed]
- Yartsev, V.D.; Atkova, E.L.; Ekaterinchev, M.A. Topographic and anatomical features of the nasolacrimal duct obstruction due to radioiodine treatment. Int. Ophthalmol. 2023, 43, 3385–3390. [Google Scholar] [CrossRef] [PubMed]
- Munjal, M.; Munjal, S.; Vohra, H.; Prabhakar, A.; Kumar, A.; Singh, S.; Soni, A.; Gupta, S.; Agarwal, M. Anatomy of the lacrimal apparatus from a rhinologist’s perspective: A review. Int. J. Otorhinolaryngol. Head Neck Surg. 2021, 7, 403. [Google Scholar] [CrossRef]
- Law, S.K.; Lee, D.A. Ocular pharmacology. In Glaucoma Medical Therapy-Principles and Management; Kugler Publications: Amsterdam, The Netherlands, 2020; Volume 2. [Google Scholar]
- Morton, S.; Crucian, B.; Hagan, S.; Satyamitra, M.; Daily, A. Pilot study on the investigation of tear fluid biomarkers as an indicator of ocular, neurological, and immunological health in astronauts. In Proceedings of the NASA Human Research Program Investigators’ Workshop (HRP IWS 2018), Galveston, TX, USA, 22–25 January 2018. [Google Scholar]
- Tomeckova, V.; Tkacikova, S.; Talian, I.; Fabriciova, G.; Hovan, A.; Kondrakhova, D.; Zakutanska, K.; Skirkova, M.; Komanicky, V.; Tomasovicova, N. Experimental Analysis of Tear Fluid and Its Processing for the Diagnosis of Multiple Sclerosis. Sensors 2023, 23, 5251. [Google Scholar] [CrossRef]
- Mann, R.D. An instructive example of a long-latency adverse drug reaction—Sclerosing peritonitis due to practolol. Pharmacoepidemiol. Drug Saf. 2007, 16, 1211–1216. [Google Scholar] [CrossRef]
- Ioannides, J.; Parker, J.; Kumaratunga, V.; Preston, J.; Donaldson, D.; MacFarlane, P.; Hartley, C. A prospective, masked, randomized, controlled superiority study comparing the incidence of corneal injury following general anesthesia in dogs with two methods of corneal protection. Vet. Ophthalmol. 2022, 25, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Rascón-Martínez, D.M.; Carrillo-Torres, O.; Ramos-Nataren, R.G.; Rendón-Jaramillo, L. Advantages of ketamine as a perioperative analgesic. Rev. Médica Del Hosp. Gen. De México 2018, 81, 253–261. [Google Scholar] [CrossRef]
- Suresh, A.B.; Rosani, A.; Patel, P.; Wadhwa, R. Rifampin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hasson, H. Generalized Onset Tonic-Clonic Seizures. MedLink. Available online: https://www.medlink.com/articles/generalized-onset-tonic-clonic-seizures (accessed on 14 July 2024).
- Bersani, F.S.; Corazza, O.; Simonato, P.; Mylokosta, A.; Levari, E.; Lovaste, R.; Schifano, F. Drops of madness? Recreational misuse of tropicamide collyrium; early warning alerts from Russia and Italy. Gen. Hosp. Psychiatry 2013, 35, 571–573. [Google Scholar] [CrossRef]
- Bellman, V.; Ukolova, A.; Erovichenkova, E.; Lam, S.; Srivastava, H.K.; Bruce, J.; Burgess, D.M. Abuse of tropicamide eye drops: Review of clinical data. Braz. J. Psychiatry 2022, 44, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Vindenes, V.; Lund, H.M.; Andresen, W.; Gjerde, H.; Ikdahl, S.E.; Christophersen, A.S.; Oiestad, E.L. Detection of drugs of abuse in simultaneously collected oral fluid, urine and blood from Norwegian drug drivers. Forensic Sci. Int. 2012, 219, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Roque Bravo, R.; Faria, A.C.; Brito-da-Costa, A.M.; Carmo, H.; Mladenka, P.; Dias da Silva, D.; Remiao, F.; On Behalf of The Oemonom, R. Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins 2022, 14, 278. [Google Scholar] [CrossRef] [PubMed]
- Dualde, P.; Miralles, P.; Peris-Martinez, C.; Yusa, V.; Coscolla, C. Untargeted analysis and tentative identification of unknown substances in human tears by ultra-high performance liquid chromatography-high resolution mass spectrometry: Pilot study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023, 1228, 123832. [Google Scholar] [CrossRef] [PubMed]
Analysis Method | Exposure | Collection Method | Chemical or Contaminant | Reference |
---|---|---|---|---|
Agar diffusion assay | Air pollution | Filter paper | Lysozymes | Berra et al., 2015 [25]; Galperín et al., 2018 [26] |
ELISA | Tobacco smoke | Capillary tube | Lysine adducts | Rummenie et al., 2008 [27] |
ELISA | Tobacco smoke | Capillary tube | Cytokines | Rummenie et al., 2008 [27] |
Ethanol assay kit | Alcohol | Capillary tube | Ethanol | Kim et al., 2012 [28] |
GC-MS | Air pollution | Schirmer paper | Lipids | Gutierrez et al., 2019 [29] |
ICP-MS | Trace elements | Capillary tube | Trace elements | Chen et al., 2022 [30] |
Immunoassay | Mold | Capillary tube | Complement components | Peltonen et al., 2008 [31] |
Immunoassay | Air pollution | Capillary tube | Cytokines | Matsuda et al., 2015 [32]; Jing et al., 2022 [33] |
LC-MS | Ozone | Capillary tube | Lipids | Paananen et al., 2015 [34] |
PIXE | Air pollution | Schirmer paper | Trace elements | Girshevitz et al., 2022 [35] |
PSMS | Smoke | Schirmer paper | Nicotine | Yao et al., 2020 [24] |
PSMS | Aerosols | Schirmer paper | Salbutamol | Yao et al., 2020 [24] |
PSMS | Drugs of abuse | Schirmer paper | Cocaine, ketamine | Yao et al., 2020 [24] |
PSMS | Volatile organic compounds | Schirmer paper | Arginine, glucose | Yao et al., 2020 [24] |
SEM/EDS | Particulate matter | Schirmer paper | Particulate matter | Avula et al., 2017 [36] |
SEM/EDS | Indoor environment | Schirmer paper | Particulate matter | Kaplan et al., 2019 [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šoša, I. Ocular Surface Fluid: More than a Matrix. Toxics 2024, 12, 513. https://doi.org/10.3390/toxics12070513
Šoša I. Ocular Surface Fluid: More than a Matrix. Toxics. 2024; 12(7):513. https://doi.org/10.3390/toxics12070513
Chicago/Turabian StyleŠoša, Ivan. 2024. "Ocular Surface Fluid: More than a Matrix" Toxics 12, no. 7: 513. https://doi.org/10.3390/toxics12070513
APA StyleŠoša, I. (2024). Ocular Surface Fluid: More than a Matrix. Toxics, 12(7), 513. https://doi.org/10.3390/toxics12070513