Assessing Heavy Metal Contamination in Food: Implications for Human Health and Environmental Safety
Abstract
:1. Introduction
2. Materials and Methods
2.1. Contamination Sources
2.1.1. Mercury Contamination
2.1.2. Cadmium Contamination
2.1.3. Lead Contamination
2.1.4. Arsenic Contamination
- Integumentary system: hyperpigmentation, leukoderma, and cutaneous lesions, including keratosis and skin cancer.
- Urinary system: degeneration of proximal renal tubules, cortical and papillary necrosis, and increased risk of urothelial carcinoma.
- Nervous system: encephalopathy affecting the central nervous system, and peripheral neuropathy characterized by sensory and motor deficits.
- Liver: hepatomegaly, cirrhosis, and disrupted heme metabolism, contributing to hepatotoxicity.
- Endocrine system: increased risk of diabetes mellitus due to arsenic-induced pancreatic β-cell dysfunction.
- Hematopoietic system: suppression of bone marrow function, leading to anemia and leukopenia.
2.1.5. Tin Contamination
- Cardiovascular effects: Research indicates that exposure to Sn vapors negatively impacts myocardial function, particularly by inducing left ventricular diastolic dysfunction [180].
- Respiratory effects: Exposure to inorganic Sn compounds has been associated with stannosis, a benign pneumoconiosis that does not impair lung function. However, organotin compounds, such as tributyltin (TBT) and dibutyltin (DBT), can cause severe respiratory distress, sometimes necessitating artificial ventilation, though these effects typically do not result in lasting respiratory complications [181,182].
- Ocular effects: A study reports that tributyltin chloride exposure in rats resulted in periorbital edema and conjunctivitis [184].
- Neurological effects: Organotin compounds have been linked to neurotoxicity, behavioral changes, headaches, and memory deterioration in humans [187].
2.2. Strategies for Risk Reduction
- As: The total urinary arsenic median level is 8.4 µg/L, though this varies depending on seafood consumption.
- Cd: The median blood cadmium concentration is 0.3 µg/L, with higher levels in smokers due to tobacco-related exposure.
- Hg: The median blood mercury level is 0.86 µg/L, though this is significantly higher in populations with frequent fish consumption.
- Pb: The median blood lead level is 0.85 µg/dL, reflecting a decline due to regulatory efforts but still posing risks in vulnerable populations.
- Careful selection of food products: Some species of fish and seafood, such as large predatory fish, tend to accumulate higher levels of toxic metals or metalloids like mercury (Hg2+) and arsenic (AsIII and AsV). Fish with lower mercury levels, such as salmon, tilapia, sardines, cod, sole, trout, and herring, should be preferred [201]. To minimize exposure to a single contaminant, consuming a diverse range of fruits and vegetables is recommended, ideally opting for organic produce when possible.
- Water filtration: In areas where water quality falls below recommended standards, the use of certified filtration systems capable of removing metal or metalloid ions like Pb2+, Cd2+, and AsIII is essential.
- Soil testing and remediation: Regular testing of agricultural soil for heavy metal contamination, followed by remediation strategies such as phytoremediation or soil amendments to immobilize metal or metalloid ions like Pb2+, Cd2+, and AsIII, is essential [202].
- Crop selection: Growing crops that are less prone to accumulating heavy metals, especially in areas with known contamination risks, can minimize exposure to toxic species such as Cd2+ and Pb2+.
- Regulation of industrial emissions: Strict guidelines must be enforced to regulate industrial emissions of heavy metals, including Pb2+, Cd2+, and Hg2+, from factories, mining operations, and power plants, to reduce atmospheric deposition into the environment.
- Green buffer zones: Establishing green buffer zones around industrial areas can limit the drift of heavy metal ions, such as Pb2+, into agricultural fields.
- Public education campaigns: Raising awareness about the sources and risks of heavy metal exposure, particularly the toxicity of ions such as Pb2+, Cd2+, AsIII, and Hg2+, is essential to mitigating health risks.
- Certified food products: Encouraging consumers to select certified organic or heavy metal-tested food products can help reduce exposure to harmful metals or metalloids like AsIII, Pb2+, and Cd2+.
- Improving indoor air quality: The use of air purifiers can minimize inhalation of heavy metal particles, especially in urban or industrial areas, which may contain Pb2+ and Cd2+.
- Food monitoring programs: Strengthening government-led monitoring programs for heavy metal contamination in food products, especially monitoring for Pb2+, Cd2+, AsIII, and Hg2+, can help track and mitigate risks to public health.
- Environmental cleanup initiatives: National and regional programs focused on cleaning contaminated rivers, lakes, and industrial waste sites are necessary to reduce exposure to toxic metal species such as Pb2+ and Cd2+.
- Bioremediation technologies: Exploring microbial and enzymatic solutions for detoxifying environments contaminated with heavy metals like AsIII, Hg2+, and Pb2+ is a promising strategy.
- Food storage recommendations: Avoiding the use of ceramic or colored glassware that may contain Pb2+ and opting for glass or stainless-steel containers for food storage can help limit exposure to Pb2+.
- Maintaining a balanced diet: A diet rich in antioxidant vitamins (C and E), Zn2+, and Se can mitigate the harmful effects of heavy metals by reducing oxidative stress and supporting detoxification [207,208]. Optimal selenium levels can reduce toxicity caused by AsIII and Cd2+ [209]. Ca2+ and Mg2+ ions compete with Pb2+ and Cd2+ for binding at enzymatic sites, reducing their toxicity [210].
- Increasing fiber intake: Dietary fiber can bind heavy metals like Pb2+, Cd2+, and AsIII in the digestive tract and aid in their excretion [211].
- Optimal hydration: Adequate water intake is essential for supporting the body’s natural detoxification processes, facilitating the excretion of heavy metal ions like AsIII and Hg2+.
2.3. Establishing Causality Between Human Exposure to Toxic Metals and the Etiology of Neurological and Neurodevelopmental Disorders
2.4. Broader Context and Limitations
2.5. Future Perspectives
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Karri, V.; Kumar, V.; Ramos, D.; Oliveira, E. Comparative In Vitro Toxicity Evaluation of Heavy Metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol. Trace Elem. Res. 2018, 184, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Munir, N.; Jahangeer, M.; Bouyahya, A.; El Omari, N.; Ghchime, R.; Balahbib, A.; Aboulaghras, S.; Mahmood, Z.; Akram, M.; Shah, S.M.A.; et al. Heavy Metal Contamination of Natural Foods Is a Serious Health Issue: A Review. Sustainability 2022, 14, 161. [Google Scholar] [CrossRef]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Lamas, G.A.; Bhatnagar, A.; Jones, M.R.; Mann, K.K.; Nasir, K.; Tellez-Plaza, M.; Ujueta, F.; Navas-Acien, A.; American Heart Association Council on Epidemiology and Prevention; Council on Cardiovascular and Stroke Nursing; et al. Contaminant Metals as Cardiovascular Risk Factors: A Scientific Statement from the American Heart Association. J. Am. Heart Assoc. 2023, 12, 29852. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Kim, M.J. Emissions of lead and zinc from candles with metal-core wicks. Sci. Total Environ. 2000, 250, 37–41. [Google Scholar] [CrossRef]
- Hartmann, A.C.; Kieu, E.; Farris, F.F. Obesogens. Encycl. Toxicol. 2024, 7, 9–18. [Google Scholar] [CrossRef]
- Dietary Supplements Guidance Documents & Regulatory Information. Available online: https://www.fda.gov/food/guidance-documents-regulatory-information-topic-food-and-dietary-supplements/dietary-supplements-guidance-documents-regulatory-information (accessed on 20 March 2025).
- Mineral Oil Hydrocarbons (MOH). Available online: https://food.ec.europa.eu/food-safety/chemical-safety/contaminants/catalogue_en (accessed on 20 March 2025).
- FDA Bottled Water Regulations. Available online: https://bottledwater.org/fda-bottled-water-regulations/ (accessed on 20 March 2025).
- US EPA. Drinking Water Regulations (Safe Drinking Water Act). 2017. Available online: https://www.epa.gov/dwreginfo/drinking-water-regulations (accessed on 20 March 2025).
- Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017.
- Guidance for Industry: Juice HACCP and the FDA Food Safety Modernization Act. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-juice-haccp-and-fda-food-safety-modernization-act (accessed on 20 March 2025).
- Available online: https://www.fda.gov/search?s=Limits+Toxic+Lead+in+Some+Baby+Foods (accessed on 20 March 2025).
- Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj/eng (accessed on 20 March 2025).
- Available online: https://www2.bgs.ac.uk/groundwater/health/arsenic/Bangladesh/ (accessed on 20 March 2025).
- Available online: https://www2.bgs.ac.uk/groundwater/downloads/bangladesh/reports/Vol1Summary.pdf (accessed on 20 March 2025).
- BGS; DPHE. Arsenic Contamination of Groundwater in Bangladesh; Kinniburgh, D.G., Smedley, P.L., Eds.; British Geological Survey Technical Report WC/00/19; British Geological Survey: Keyworth, UK, 2001; Available online: https://www2.bgs.ac.uk/groundwater/downloads/bangladesh/reports/Vol2MainBook.pdf (accessed on 20 March 2025).
- Mahajan, M.; Gupta, P.K.; Singh, A.; Vaish, B.; Singh, P.; Kothari, R.; Singh, R.P. A comprehensive study on aquatic chemistry, health risk and remediation techniques of cadmium in groundwater. Sci. Total Environ. 2022, 818, 151784. [Google Scholar] [CrossRef]
- The Flint Water Crisis: What’s Really Going On? Available online: https://www.acs.org/education/chemmatters/past-issues/2016-2017/december-2016/flint-water-crisis (accessed on 20 March 2025).
- Basic Information about Lead in Drinking Water. Available online: https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water (accessed on 20 March 2025).
- Zhang, L.; Wong, M.H. Environmental mercury contamination in China: Sources and impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Off. J. Eur. Union 2006, L364/5. Available online: https://eur-lex.europa.eu (accessed on 20 March 2025).
- U.S. Food and Drug Administration (FDA). Lead in Candy Products. 2013. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-lead-candy-likely-be-consumed-frequently-small-children (accessed on 20 March 2025).
- Thomas, R. Regulating Heavy Metals in Baby Food: The Challenges of Food Manufacturers and the FDA Being on the Same Page. Spectroscopy 2021, 36, 10–16. [Google Scholar]
- U.S. Food and Drug Administration (FDA). Arsenic in Food and Drinking Water. 2013. Available online: https://www.fda.gov/food/environmental-contaminants-food/arsenic-food (accessed on 20 March 2025).
- Das, T.K.; Poater, A. Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses. Int. J. Mol. Sci. 2021, 22, 13383. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils. Heavy Met. Soils 2013, 11–50. [Google Scholar] [CrossRef]
- Xu, P.; Liu, A.; Li, F.; Tinkov, A.A.; Liu, L.; Zhou, J.C. Associations between Metabolic Syndrome and Four Heavy Metals: A Systematic Review and Meta-Analysis. Environ. Pollut. 2021, 273, 116480. [Google Scholar] [CrossRef]
- Di Pietro, G.; Forcucci, F.; Chiarelli, F. Endocrine Disruptor Chemicals and Children’s Health. Int. J. Mol. Sci. 2023, 24, 2671. [Google Scholar] [CrossRef]
- Álvarez-Lloret, P.; Benavides-Reyes, C.; Lee, C.M.; Martínez, M.P.; Conti, M.I.; Rodríguez-Navarro, A.B.; González-López, S.; Perez-Huerta, A.; Terrizzi, A.R. Chronic Lead Exposure Alters Mineral Properties in Alveolar Bone. Minerals 2021, 11, 642. [Google Scholar] [CrossRef]
- Stillman, M.J.; Cai, W.; Zelazowski, A.J. Cadmium binding to metallothioneins. Domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd2+. J. Biol. Chem. 1987, 262, 4538–4548. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.; Zhang, T.; Stoffella, P. Heavy Metal Contamination of Soils: Sources, Indicators and Assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- Jiang, S.; Dong, X.; Han, Z.; Zhao, J.; Zhang, Y. Emissions and Atmospheric Dry and Wet Deposition of Trace Metals from Natural and Anthropogenic Sources in Mainland China. Atmosphere 2024, 15, 402. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Atanda, S.A.; Shaibu, R.O.; Agunbiade, F.O. Nanoparticles in agriculture: Balancing food security and environmental sustainability. Discov. Agric. 2025, 3, 26. [Google Scholar] [CrossRef]
- Brocza, F.M.; Rafaj, P.; Sander, R.; Wagner, F.; Jones, J.M. Global scenarios of anthropogenic mercury emissions. Atmos. Chem. Phys. 2024, 24, 7385–7404. [Google Scholar] [CrossRef]
- Pandey, M.; Tirkey, A.; Tiwari, A.; Lee, S.S.; Dubey, R.; Kim, K.H.; Pandey, S.K. The Environmental Significance of Contaminants of Concern in the Soil–Vegetable Interface: Sources, Accumulation, Health Risks, and Mitigation through Biochar. Sustainability 2022, 14, 14539. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Han, Y.J.; Chen, C.Y.; Evers, D.C.; Lambert, K.F.; Holsen, T.M.; Kamman, N.C.; Munson, R.K. Mercury Contamination in Forest and Freshwater Ecosystems in the Northeastern United States. Bioscience 2007, 57, 17–28. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Ali, G.A.M.; Hassanein, A.; Attia, A.M.; Marzouk, E.R. Toxicity and Uptake of CuO Nanoparticles: Evaluation of an Emerging Nanofertilizer on Wheat (Triticum aestivum L.) Plant. Sustainability 2022, 14, 4914. [Google Scholar] [CrossRef]
- Food Safety Authority of Ireland. Mercury, Lead, Cadmium, Tin and Arsenic in Food. Available online: https://www.fsai.ie/publications/mercury-lead-cadmium-tin-and-arsenic-in-food (accessed on 6 December 2024).
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Perković, S.; Paul, C.; Vasić, F.; Helming, K. Human Health and Soil Health Risks from Heavy Metals, Micro(nano)plastics, and Antibiotic Resistant Bacteria in Agricultural Soils. Agronomy 2022, 12, 2945. [Google Scholar] [CrossRef]
- Murtaza, G.; Murtaza, B.; Khan Niazi, N.; Sabir, M. Soil Contaminants: Sources, Effects, and Approaches for Remediation. Improv. Crops Era Clim. Changes 2014, 2, 171–196. [Google Scholar] [CrossRef]
- Vasilachi, I.C.; Stoleru, V.; Gavrilescu, M. Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils. Agriculture 2023, 13, 1983. [Google Scholar] [CrossRef]
- Goel, R.; Chaturvedi, P.; Kumar, S.; Soni, R.; Suyal, D.C. Editorial: Hazardous pollutants in agricultural soil and environment. Front. Microbiol. 2024, 15, 1411735. [Google Scholar] [CrossRef] [PubMed]
- Fowler, B.A.; Alexander, J.; Oskarsson, A. Toxic Metals in Food. In Handbook on the Toxicology of Metals, 4th ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 1, pp. 123–140. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Bibi, S. Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future. Sustainability 2022, 14, 4746. [Google Scholar] [CrossRef]
- El-Sharkawy, M.; Alotaibi, M.O.; Li, J.; Du, D.; Mahmoud, E. Heavy Metal Pollution in Coastal Environments: Ecological Implications and Management Strategies: A Review. Sustainability 2025, 17, 701. [Google Scholar] [CrossRef]
- Oliveira, R.A.A.d.; Pinto, B.D.; Rebouças, B.H.; Ciampi de Andrade, D.; Vasconcellos, A.C.S.d.; Basta, P.C. Neurological Impacts of Chronic Methylmercury Exposure in Munduruku Indigenous Adults: Somatosensory, Motor, and Cognitive Abnormalities. Int. J. Environ. Res. Public Health 2021, 18, 10270. [Google Scholar] [CrossRef]
- Satarug, S. Is Chronic Kidney Disease Due to Cadmium Exposure Inevitable and Can It Be Reversed? Biomedicines 2024, 12, 718. [Google Scholar] [CrossRef]
- Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. Biomed. Res. Int. 2014, 2014, 840547. [Google Scholar] [CrossRef]
- Speer, R.M.; Zhou, X.; Volk, L.B.; Liu, K.J.; Hudson, L.G. Arsenic and cancer: Evidence and mechanisms. Adv. Pharmacol. 2023, 96, 151–202. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Waalkes, M.P.; Fox, D.A.; States, J.C.; Patierno, S.R.; McCabe, M.J. Metals and Disorders of Cell Accumulation: Modulation of Apoptosis and Cell Proliferation. Toxicol. Sci. 2000, 56, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Rahaman, M.S.; Mise, N.; Ichihara, S. Arsenic contamination in food chain in Bangladesh: A review on health hazards, socioeconomic impacts and implications. Hyg. Environ. Health Adv. 2022, 2, 100004. [Google Scholar] [CrossRef]
- Quansah, R.; Armah, F.A.; Essumang, D.K.; Luginaah, I.; Clarke, E.; Marfoh, K.; Cobbina, S.J.; Nketiah-Amponsah, E.; Namujju, P.B.; Obiri, S.; et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: A systematic review and meta-analysis. Environ. Health Perspect. 2015, 123, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Hauptman, M.; Bruccoleri, R.; Woolf, A.D. An Update on Childhood Lead Poisoning. Clin. Pediatr. Emerg. Med. 2017, 18, 181–192. [Google Scholar] [CrossRef]
- Ramírez Ortega, D.; González Esquivel, D.F.; Blanco Ayala, T.; Pineda, B.; Gómez Manzo, S.; Marcial Quino, J.; Carrillo Mora, P.; Pérez de la Cruz, V. Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity. Toxics 2021, 9, 23. [Google Scholar] [CrossRef]
- Lead Poisoning. Available online: https://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 20 March 2025).
- Ruckart, P.Z.; Ettinger, A.S.; Hanna-Attisha, M.; Jones, N.; Davis, S.I.; Breysse, P.N. The Flint Water Crisis: A Coordinated Public Health Emergency Response and Recovery Initiative. J. Public Health Manag. Pract. 2019, 25 (Suppl. 1), S84–S90. [Google Scholar] [CrossRef]
- Yorifuji, T.; Kadowaki, T.; Yasuda, M.; Kado, Y. Neurological and Neurocognitive Impairments in Adults with a History of Prenatal Methylmercury Poisoning: Minamata Disease. Int. J. Environ. Res. Public Health 2023, 20, 6173. [Google Scholar] [CrossRef]
- Hong, Y.S.; Kim, Y.M.; Lee, K.E. Methylmercury exposure and health effects. J. Prev. Med. Public Health 2012, 45, 353–363. [Google Scholar] [CrossRef]
- Aoshima, K. [Itai-itai disease: Cadmium-induced renal tubular osteomalacia]. Nihon Eiseigaku Zasshi 2012, 67, 455–463. (In Japanese) [Google Scholar] [CrossRef]
- Nishijo, M.; Nakagawa, H.; Suwazono, Y.; Nogawa, K.; Kido, T. Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: A nested case-control analysis of a follow-up study in Japan. BMJ Open 2017, 7, e015694. [Google Scholar] [CrossRef]
- Zulaikhah, S.T.; Wahyuwibowo, J.; Pratama, A.A. Mercury and Its Effect on Human Health: A Review of the Literature. Int. J. Public Health Sci. (IJPHS) 2020, 9, 103–114. [Google Scholar] [CrossRef]
- Kimáková, T.; Nasser, B.; Issa, M.; Uher, I. Mercury Cycling in the Terrestrial, Aquatic and Atmospheric Environment of the Slovak Republic—An Overview. Ann. Agric. Environ. Med. 2019, 26, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.J.; Kim, B.G.; Jeon, M.J.; Kim, S.Y.; Kim, H.C.; Jang, T.W.; Chae, H.J.; Choi, W.J.; Ha, M.N.; Hong, Y.S. Evaluation of Mercury Exposure Level, Clinical Diagnosis and Treatment for Mercury Intoxication. Ann. Occup. Environ. Med. 2016, 28, 5. [Google Scholar] [CrossRef]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low Dose Mercury Toxicity and Human Health. Environ. Toxicol. Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef]
- Elafify, M.; EL-Toukhy, M.; Sallam, K.I.; Sadoma, N.M.; Mohammed Abd-Elghany, S.; Abdelkhalek, A.; El-Baz, A.H. Heavy Metal Residues in Milk and Some Dairy Products with Insight into Their Health Risk Assessment and the Role of Lactobacillus Rhamnosus in Reducing the Lead and Cadmium Load in Cheese. Food Chem. Adv. 2023, 2, 100261. [Google Scholar] [CrossRef]
- Langford, N.J.; Ferner, R.E. Toxicity of Mercury. J. Hum. Hypertens. 1999, 13, 651–656. [Google Scholar] [CrossRef]
- Abdullah, N. Mercury in the Diet, Absorption and Bioaccessibility. Open Access Libr. J. 2020, 7, 1–15. [Google Scholar] [CrossRef]
- Chen, C.Y.; Driscoll, C.; Lambert, K.; Mason, R.; Rardin, L.R.; Schmitt, C.V.; Serrell, N.; Sunderland, E. Sources to Seafood: Mercury Pollution in the Marine Environment; Toxic Metals Superfund Research Program, Dartmouth College: Hanover, NH, USA, 2012. [Google Scholar]
- Jinadasa, B.K.K.K.; Jayasinghe, G.D.T.M.; Pohl, P.; Fowler, S.W. Mitigating the Impact of Mercury Contaminants in Fish and Other Seafood-A Review. Mar. Pollut. Bull. 2021, 171, 112710. [Google Scholar] [CrossRef]
- Le Croizier, G.; Schaal, G.; Point, D.; Le Loc’h, F.; Machu, E.; Fall, M.; Munaron, J.M.; Boyé, A.; Walter, P.; Laë, R.; et al. Stable Isotope Analyses Revealed the Influence of Foraging Habitat on Mercury Accumulation in Tropical Coastal Marine Fish. Sci. Total Environ. 2019, 650, 2129–2140. [Google Scholar] [CrossRef]
- Zupo, V.; Graber, G.; Kamel, S.; Plichta, V.; Granitzer, S.; Gundacker, C.; Wittmann, K.J. Mercury Accumulation in Freshwater and Marine Fish from the Wild and from Aquaculture Ponds. Environ. Pollut. 2019, 255, 112975. [Google Scholar] [CrossRef]
- Carocci, A.; Rovito, N.; Sinicropi, M.S.; Genchi, G. Mercury Toxicity and Neurodegenerative Effects. Rev. Environ. Contam. Toxicol. 2014, 229, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bernhoft, R.A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef]
- Bjørklund, G.; Chirumbolo, S.; Dadar, M.; Pivina, L.; Lindh, U.; Butnariu, M.; Aaseth, J. Mercury Exposure and Its Effects on Fertility and Pregnancy Outcome. Basic. Clin. Pharmacol. Toxicol. 2019, 125, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Poreba, R.; Skoczyńska, A.; Gać, P.; Turczyn, B.; Wojakowska, A. Left Ventricular Diastolic Function in Workers Occupationally Exposed to Mercury Vapour without Clinical Presentation of Cardiac Involvement. Toxicol. Appl. Pharmacol. 2012, 263, 368–373. [Google Scholar] [CrossRef]
- Pan, Z.; Gong, T.; Liang, P. Heavy Metal Exposure and Cardiovascular Disease. Circ. Res. 2024, 134, 1160–1178. [Google Scholar] [CrossRef]
- Gad, S.C. Methylmercury. In Encyclopedia of Toxicology, 3rd ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 318–320. [Google Scholar] [CrossRef]
- Berlin, M.; Carlson, J.; Norseth, T. Dose-Dependence of Methylmercury Metabolism. Arch. Environ. Health Int. J. 1975, 30, 307–313. [Google Scholar] [CrossRef]
- Vandewater, L.J.S.; Racz, W.J.; Norris, A.R.; Buncel, E. Methylmercury Distribution, Metabolism, and Neurotoxicity in the Mouse Brain. Can. J. Physiol. Pharmacol. 2011, 61, 1487–1493. [Google Scholar] [CrossRef]
- Dutta, S.; Ruden, D.M. Heavy Metals in Umbilical Cord Blood: Effects on Epigenetics and Child Development. Cells 2024, 13, 1775. [Google Scholar] [CrossRef]
- Park, Y.; Lee, A.; Choi, K.; Kim, H.J.; Lee, J.J.; Choi, G.; Kim, S.; Kim, S.Y.; Cho, G.J.; Suh, E.; et al. Exposure to Lead and Mercury through Breastfeeding during the First Month of Life: A CHECK Cohort Study. Sci. Total Environ. 2018, 612, 876–883. [Google Scholar] [CrossRef]
- Ogura, H.; Takeuchi, T.; Morimoto, K. A Comparison of the 8-Hydroxydeoxyguanosine, Chromosome Aberrations and Micronucleus Techniques for the Assessment of the Genotoxicity of Mercury Compounds in Human Blood Lymphocytes. Mutat. Res. 1996, 340, 175–182. [Google Scholar] [CrossRef]
- Rani, L.; Basnet, B.; Kumar, A. Mercury Toxicity. Encycl. Environ. Health 2011, 3, 705–712. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of Mercury: Molecular Evidence. Chemosphere 2020, 245, 125586. [Google Scholar] [CrossRef] [PubMed]
- Cariccio, V.L.; Samà, A.; Bramanti, P.; Mazzon, E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol. Trace Elem. Res. 2018, 187, 341–356. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, X. Chronic Mercury Poisoning From Daily Cosmetics: Case Report and Brief Literature Review. Cureus 2021, 13, e19916. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Carocci, A.; Lauria, G.; Catalano, A. Mercury Exposure and Heart Diseases. Int. J. Environ. Res. Public Health 2017, 14, 74. [Google Scholar] [CrossRef]
- Hightower, J.M.; Moore, D. Mercury Levels in High-End Consumers of Fish. Environ. Health Perspect. 2003, 111, 604–608. [Google Scholar] [CrossRef]
- Chan, H.M.; Singh, K.; Batal, M.; Maruska, L.; Tikhonov, C.; Sadik, T.; Schwartz, H.; Ing, A.; Fediuk, K. Levels of Metals and Persistent Organic Pollutants in Traditional Foods Consumed by First Nations Living On-Reserve in Canada. Can. J. Public Health 2021, 112, 81. [Google Scholar] [CrossRef]
- Scutarașu, E.C.; Trincă, L.C. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 2023, 12, 3340. [Google Scholar] [CrossRef]
- Plessi, M.; Bertelli, D.; Monzani, A. Mercury and Selenium Content in Selected Seafood. J. Food Compos. Anal. 2001, 14, 461–467. [Google Scholar] [CrossRef]
- Barone, G.; Storelli, A.; Quaglia, N.C.; Garofalo, R.; Meleleo, D.; Busco, A.; Storelli, M.M. Trace Metals in Pork Meat Products Marketed in Italy: Occurrence and Health Risk Characterization. Biol. Trace Elem. Res. 2021, 199, 2826–2836. [Google Scholar] [CrossRef]
- Næss, S.; Aakre, I.; Lundebye, A.K.; Ørnsrud, R.; Kjellevold, M.; Markhus, M.W.; Dahl, L. Mercury, Lead, Arsenic, and Cadmium in Norwegian Seafood Products and Consumer Exposure. Food Addit. Contam. Part B 2020, 13, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Brodziak-Dopierała, B.; Fischer, A. Analysis of the Mercury Content in Fish for Human Consumption in Poland. Toxics 2023, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Jung, S.Y.; Son, Y.J.; Choi, S.J.; Kim, M.S.; Kim, J.G.; Park, S.H.; Lee, S.M.; Chae, Y.Z.; Kim, M.Y. Total Mercury, Methylmercury and Ethylmercury in Marine Fish and Marine Fishery Products Sold in Seoul, Korea. Food Addit. Contam. Part B 2011, 4, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.; Gochfeld, M. Mercury in Canned Tuna: White versus Light and Temporal Variation. Environ. Res. 2004, 96, 239–249. [Google Scholar] [CrossRef]
- Cadmium|UNEP—UN Environment Programme. Available online: https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health/heavy-metals/cadmium (accessed on 5 December 2024).
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Zhai, Q.; Narbad, A.; Chen, W. Dietary Strategies for the Treatment of Cadmium and Lead Toxicity. Nutrients 2014, 7, 552. [Google Scholar] [CrossRef]
- Grioni, S.; Agnoli, C.; Krogh, V.; Pala, V.; Rinaldi, S.; Vinceti, M.; Contiero, P.; Vescovi, L.; Malavolti, M.; Sieri, S. Dietary Cadmium and Risk of Breast Cancer Subtypes Defined by Hormone Receptor Status: A Prospective Cohort Study. Int. J. Cancer 2019, 144, 2153–2160. [Google Scholar] [CrossRef]
- Ninkov, M.; Popov Aleksandrov, A.; Demenesku, J.; Mirkov, I.; Mileusnic, D.; Petrovic, A.; Grigorov, I.; Zolotarevski, L.; Tolinacki, M.; Kataranovski, D.; et al. Toxicity of Oral Cadmium Intake: Impact on Gut Immunity. Toxicol. Lett. 2015, 237, 89–99. [Google Scholar] [CrossRef]
- Oros, A.; Pantea, E.-D.; Ristea, E. Heavy Metal Concentrations in Wild Mussels Mytilus Galloprovincialis (Lamarck, 1819) during 2001–2023 and Potential Risks for Consumers: A Study on the Romanian Black Sea Coast. Sci 2024, 6, 45. [Google Scholar] [CrossRef]
- Cadmium in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium Toxicity and Treatment: An Update. Casp. J. Intern. Med. 2017, 8, 135. [Google Scholar] [CrossRef]
- Cataldi, M.; Vigliotti, C.; Sblendorio, V.; Ferrara, C. Cadmium. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Tinkov, A.A.; Gritsenko, V.A.; Skalnaya, M.G.; Cherkasov, S.V.; Aaseth, J.; Skalny, A.V. Gut as a Target for Cadmium Toxicity. Environ. Pollut. 2018, 235, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Tinkov, A.A.; Filippini, T.; Ajsuvakova, O.P.; Skalnaya, M.G.; Aaseth, J.; Bjørklund, G.; Gatiatulina, E.R.; Popova, E.V.; Nemereshina, O.N.; Huang, P.T.; et al. Cadmium and Atherosclerosis: A Review of Toxicological Mechanisms and a Meta-Analysis of Epidemiologic Studies. Environ. Res. 2018, 162, 240–260. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, Q.; Asif, M.; Shaheen, S.; Hayat, M.T.; Ali, S. Cadmium Contamination in Water and Soil. In Cadmium Toxicity and Tolerance in Plants: From Physiology to Remediation; Academic Press: Cambridge, MA, USA, 2019; pp. 141–161. [Google Scholar] [CrossRef]
- Pritzker, K.P.H.; Kessler, M.J. Arthritis, Muscle, Adipose Tissue, and Bone Diseases of Nonhuman Primates. In Nonhuman Primates in Biomedical Research, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 2, pp. 629–697. [Google Scholar] [CrossRef]
- Agents Classified by the IARC Monographs, Volumes 1–137—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 6 December 2024).
- Wang, Z.; Sun, Y.; Yao, W.; Ba, Q.; Wang, H. Effects of Cadmium Exposure on the Immune System and Immunoregulation. Front. Immunol. 2021, 12, 695484. [Google Scholar] [CrossRef]
- Wang, H.; Gan, X.; Tang, Y. Mechanisms of Heavy Metal Cadmium (Cd)-Induced Malignancy. Biol. Trace Elem. Res. 2024, 2024, 1–16. [Google Scholar] [CrossRef]
- Eriksen, K.T.; Halkjær, J.; Meliker, J.R.; McElroy, J.A.; Sørensen, M.; Tjønneland, A.; Raaschou-Nielsen, O. Dietary Cadmium Intake and Risk of Prostate Cancer: A Danish Prospective Cohort Study. BMC Cancer 2015, 15, 177. [Google Scholar] [CrossRef]
- Rapisarda, V.; Miozzi, E.; Loreto, C.; Matera, S.; Fenga, C.; Avola, R.; Ledda, C. Cadmium Exposure and Prostate Cancer: Insights, Mechanisms and Perspectives. Front. Biosci. (Landmark Ed.) 2018, 23, 1687–1700. [Google Scholar] [CrossRef]
- Potts, R.J.; Watkin, R.D.; Hart, B.A. Cadmium Exposure Down-Regulates 8-Oxoguanine DNA Glycosylase Expression in Rat Lung and Alveolar Epithelial Cells. Toxicology 2003, 184, 189–202. [Google Scholar] [CrossRef]
- Rasheed, H.; Slack, R.; Kay, P. Human Health Risk Assessment for Arsenic: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1529–1583. [Google Scholar] [CrossRef]
- Islam, M.M.; Karim, M.R.; Zheng, X.; Li, X. Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical Review. Int. J. Environ. Res. Public Health 2018, 15, 2825. [Google Scholar] [CrossRef]
- Ahmad, M.K.; Islam, S.; Rahman, M.S.; Haque, M.R.; Islam, M.M. Heavy Metals in Water, Sediment and Some Fishes of Buriganga River, Bangladesh. Int. J. Environ. Res. 2010, 4, 321–332. [Google Scholar] [CrossRef]
- Islam, S.; Habibullah-Al-Mamun, M. Accumulation of Trace Elements in Sediment and Fish Species of Paira River, Bangladesh. AIMS Environ. Sci. 2017, 4, 310–322. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Habibullah-Al-Mamun, M. Determination of Heavy Metals in Fish and Vegetables in Bangladesh and Health Implications. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 986–1006. [Google Scholar] [CrossRef]
- Ahmad, J.U.; Goni, M.A. Heavy Metal Contamination in Water, Soil, and Vegetables of the Industrial Areas in Dhaka, Bangladesh. Environ. Monit. Assess. 2010, 166, 347–357. [Google Scholar] [CrossRef]
- Vromman, V.; Waegeneers, N.; Cornelis, C.; de Boosere, I.; van Holderbeke, M.; Vinkxd, C.; Smolders, E.; Huyghebaert, A.; Pussemier, L. Dietary Cadmium Intake by the Belgian Adult Population. Food Addit. Contam. Part A 2010, 27, 1665–1673. [Google Scholar] [CrossRef]
- Shi, Z.; Carey, M.; Meharg, C.; Williams, P.N.; Signes-Pastor, A.J.; Triwardhani, E.A.; Pandiangan, F.I.; Campbell, K.; Elliott, C.; Marwa, E.M.; et al. Rice Grain Cadmium Concentrations in the Global Supply-Chain. Expo. Health 2020, 12, 869–876. [Google Scholar] [CrossRef]
- Almela, C.; Jesús Clemente, M.; Vélez, D.; Montoro, R. Total Arsenic, Inorganic Arsenic, Lead and Cadmium Contents in Edible Seaweed Sold in Spain. Food Chem. Toxicol. 2006, 44, 1901–1908. [Google Scholar] [CrossRef]
- Dağcilar, K.; Gezer, C. Heavy Metal Residues in Milk and Dairy Products Produced in Northern Cyprus. Prog. Nutr. 2021, 23, e2021019. [Google Scholar] [CrossRef]
- Luka, M.F.; Akun, E. Investigation of Trace Metals in Different Varieties of Olive Oils from Northern Cyprus and Their Variation in Accumulation Using ICP-MS and Multivariate Techniques. Environ. Earth Sci. 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Schwarz, M.A.; Lindtner, O.; Blume, K.; Heinemeyer, G.; Schneider, K. Cadmium Exposure from Food: The German LExUKon Project. Food Addit. Contam. Part A 2014, 31, 1038–1051. [Google Scholar] [CrossRef]
- Anual, Z.F.; Ahmad, N.I.; Anak Robun, C.; Ahmad Suhaimi, L.R.; Surawi, N.H.; Sudin, K.; Mustaffa, A.F.; Zainudeen, A.A.H.; Mohd Zaini, S.; Mamat, N.A. Heavy Metals in Offal and Canned Food Sold in the Malaysian Market. Food Addit. Contam. Part A—Chem. Anal. Control Expo. Risk Assess. 2023, 40, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Cilloni, S.; Malavolti, M.; Violi, F.; Malagoli, C.; Tesauro, M.; Bottecchi, I.; Ferrari, A.; Vescovi, L.; Vinceti, M. Dietary Intake of Cadmium, Chromium, Copper, Manganese, Selenium and Zinc in a Northern Italy Community. J. Trace Elem. Med. Biol. 2018, 50, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Mititelu, M.; Udeanu, D.I.; Docea, A.O.; Tsatsakis, A.; Calina, D.; Arsene, A.L.; Nedelescu, M.; Neacsu, S.M.; Velescu, B.Ș.; Ghica, M. New Method for Risk Assessment in Environmental Health: The Paradigm of Heavy Metals in Honey. Environ. Res. 2023, 236, 115194. [Google Scholar] [CrossRef]
- Magdalena, M.; Nicolescu, T.O.; Ioniță, C.A.; Nicolescu, F. Heavy Metals Analysis of Some Wild Edible Mushrooms. J. Environ. Prot. Ecol. 2012, 13, 875–879. [Google Scholar]
- Mititelu, M.; Ghica, M.; Ionită, A.C.; Morosan, E. The Influence of Heavy Metals Contamination in Soil on the Composition of Some Wild Edible Mushrooms. Farmacia 2019, 67, 398–404. [Google Scholar] [CrossRef]
- Mititelu, M.; Nicolescu, F.; Ionita, C.-A.; Nicolescu, T.-O. Study of Heavy Metals and Organic Pollutants in Some Fishes of the Danube River. J. Environ. Prot. Ecol. 2012, 13, 869–874. [Google Scholar]
- Škrbić, B.; Živančev, J.; Mrmoš, N. Concentrations of Arsenic, Cadmium and Lead in Selected Foodstuffs from Serbian Market Basket: Estimated Intake by the Population from the Serbia. Food Chem. Toxicol. 2013, 58, 440–448. [Google Scholar] [CrossRef]
- Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Gabarrell, X.; Rieradevall, J. A Study on Air Quality and Heavy Metals Content of Urban Food Produced in a Mediterranean City (Barcelona). J. Clean. Prod. 2018, 195, 385–395. [Google Scholar] [CrossRef]
- Temiz, H.; Soylu, A. Heavy Metal Concentrations in Raw Milk Collected from Different Regions of Samsun, Turkey. Int. J. Dairy. Technol. 2012, 65, 516–522. [Google Scholar] [CrossRef]
- Ostrovska, S.S.; Agarkov, S.F.; Trushenko, O.S.; Fedchenko, M.P.; Kopatska, M.V.; Davydenko, I.V.; Velikorodni, V.I. Lead Toxicity and Its Effect on Food Chains and Remediation Techniques (Literature Review). Ukraïnsʹkij Žurnal Med. Bìologìï Ta Sportu 2022, 7, 248–253. [Google Scholar] [CrossRef]
- Charkiewicz, A.E.; Backstrand, J.R. Lead Toxicity and Pollution in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4385. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Wang, L.; He, J.; Wang, Z. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways. Int. J. Environ. Res. Public Health 2016, 13, 365. [Google Scholar] [CrossRef] [PubMed]
- Rădulescu, A.; Lundgren, S. A Pharmacokinetic Model of Lead Absorption and Calcium Competitive Dynamics. Sci. Rep. 2019, 9, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Pounds, J.G.; Long, G.J.; Rosen, J.F. Cellular and Molecular Toxicity of Lead in Bone. Environ. Health Perspect. 1991, 91, 17. [Google Scholar] [CrossRef]
- Lead Poisoning: Causes, Symptoms, Testing & Prevention. Available online: https://my.clevelandclinic.org/health/diseases/11312-lead-poisoning (accessed on 6 April 2024).
- Washington State Department of Health. Common Sources of Lead Poisoning. Available online: https://doh.wa.gov/community-and-environment/contaminants/lead/common-sources-lead-poisoning (accessed on 6 April 2024).
- Kim, J.H.; Na, J.E.; Lee, J.; Park, Y.E.; Lee, J.; Choi, J.H.; Heo, N.Y.; Park, J.; Kim, T.O.; Jang, H.J.; et al. Blood Concentrations of Lead, Cadmium, and Mercury Are Associated With Alcohol-Related Liver Disease. J. Korean Med. Sci. 2023, 38, e412. [Google Scholar] [CrossRef]
- Adie, G.U.; Oyebade, E.O.; Atanda, B.M. Preliminary Study of Heavy Metals in Low-Cost Jewelry Items Available in Nigerian Markets. J. Health Pollut. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Shein Revenue and Usage Statistics—Business of Apps. 2024. Available online: https://www.businessofapps.com/data/shein-statistics/ (accessed on 7 December 2024).
- Statista. Mobile App Usage—Statistics & Facts. Available online: https://www.statista.com/topics/1002/mobile-app-usage/ (accessed on 7 December 2024).
- Park, S.K.; Schwartz, J.; Weisskopf, M.; Sparrow, D.; Vokonas, P.S.; Wright, R.O.; Coull, B.; Nie, H.; Hu, H. Low-Level Lead Exposure, Metabolic Syndrome, and Heart Rate Variability: The VA Normative Aging Study. Environ. Health Perspect. 2006, 114, 1718–1724. [Google Scholar] [CrossRef]
- FDA. Bottled Water Everywhere: Keeping It Safe. Available online: https://www.fda.gov/consumers/consumer-updates/bottled-water-everywhere-keeping-it-safe (accessed on 6 December 2024).
- FDA. Supporting Document for Recommended Maximum Level for Lead in Candy Likely to Be Consumed Frequently by Small Children. Available online: https://www.fda.gov/food/environmental-contaminants-food/supporting-document-recommended-maximum-level-lead-candy-likely-be-consumed-frequently-small (accessed on 6 December 2024).
- Islam, M.; Hoque, M.F. Concentrations of Heavy Metals in Vegetables around the Industrial Area of Dhaka City, Bangladesh and Health Risk Assessment. Int. Food Res. J. 2014, 21, 2121–2126. [Google Scholar]
- De Vasconcelos Neto, M.C.; Silva, T.B.C.; de Araújo, V.E.; de Souza, S.V.C. Lead Contamination in Food Consumed and Produced in Brazil: Systematic Review and Meta-Analysis. Food Res. Int. 2019, 126, 108671. [Google Scholar] [CrossRef]
- Jin, Y.L.; Liu, P.; Wu, Y.N.; Min, J.; Wang, C.N.; Sun, J.F.; Zhang, Y.F. A Systematic Review on Food Lead Concentration and Dietary Lead Exposure in China. Chin. Med. J. 2014, 127, 2844–2849. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The Uptake and Bioaccumulation of Heavy Metals by Food Plants, Their Effects on Plants Nutrients, and Associated Health Risk: A Review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef] [PubMed]
- Ampem, G.; Le Gresley, A.; Grootveld, M.; De Mars, S.; Naughton, D.P. The Impact of Partial Oil Substitution and Trace Metal Ions on the Evolution of Peroxidation Products in Thermally Stressed Culinary Oils. Food Chem. 2022, 375, 131823. [Google Scholar] [CrossRef] [PubMed]
- Guérin, T.; Le Calvez, E.; Zinck, J.; Bemrah, N.; Sirot, V.; Leblanc, J.C.; Chekri, R.; Hulin, M.; Noël, L. Levels of Lead in Foods from the First French Total Diet Study on Infants and Toddlers. Food Chem. 2017, 237, 849–856. [Google Scholar] [CrossRef]
- Malavolti, M.; Fairweather-Tait, S.J.; Malagoli, C.; Vescovi, L.; Vinceti, M.; Filippini, T. Lead Exposure in an Italian Population: Food Content, Dietary Intake and Risk Assessment. Food Res. Int. 2020, 137, 109370. [Google Scholar] [CrossRef]
- Cantoral, A.; Betanzos-Robledo, L.; Collado-López, S.; García-Martínez, B.A.; Lamadrid-Figueroa, H.; Mariscal-Moreno, R.M.; Díaz-Ruiz, A.; Ríos, C.; Téllez-Rojo, M.M. Lead Levels in the Most Consumed Mexican Foods: First Monitoring Effort. Toxics 2024, 12, 318. [Google Scholar] [CrossRef]
- Watanabe, T.; Hirano, S. Metabolism of Arsenic and Its Toxicological Relevance. Arch. Toxicol. 2012, 87, 969–979. [Google Scholar] [CrossRef]
- O’Connor, C.; Keele, G.R.; Martin, W.; Stodola, T.; Gatti, D.; Hoffman, B.R.; Korstanje, R.; Churchill, G.A.; Reinholdt, L.G. Unraveling the Genetics of Arsenic Toxicity with Cellular Morphology QTL. PLoS Genet. 2024, 20, e1011248. [Google Scholar] [CrossRef]
- Ficker, E.; Kuryshev, Y.A.; Dennis, A.T.; Obejero-Paz, C.; Wang, L.; Hawryluk, P.; Wible, B.A.; Brown, A.M. Mechanisms of Arsenic-Induced Prolongation of Cardiac Repolarization. Mol. Pharmacol. 2004, 66, 33–44. [Google Scholar] [CrossRef]
- Moon, K.A.; Zhang, Y.; Guallar, E.; Francesconi, K.A.; Goessler, W.; Umans, J.G.; Best, L.G.; Howard, B.V.; Devereux, R.B.; Okin, P.M.; et al. Association of Low-Moderate Urine Arsenic and QT Interval: Cross-Sectional and Longitudinal Evidence from the Strong Heart Study. Environ. Pollut. 2018, 240, 894–902. [Google Scholar] [CrossRef]
- Mohammed Abdul, K.S.; Jayasinghe, S.S.; Chandana, E.P.S.; Jayasumana, C.; De Silva, P.M.C.S. Arsenic and Human Health Effects: A Review. Environ. Toxicol. Pharmacol. 2015, 40, 828–846. [Google Scholar] [CrossRef] [PubMed]
- Das, H.K.; Mitra, A.K.; Sengupta, P.K.; Hossain, A.; Islam, F.; Rabbani, G.H. Arsenic Concentrations in Rice, Vegetables, and Fish in Bangladesh: A Preliminary Study. Environ. Int. 2004, 30, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Williams, P.N.; Adomako, E.; Lawgali, Y.Y.; Deacon, C.; Villada, A.; Cambell, R.C.J.; Sun, G.; Zhu, Y.G.; Feldmann, J.; et al. Geographical Variation in Total and Inorganic Arsenic Content of Polished (White) Rice. Environ. Sci. Technol. 2009, 43, 1612–1617. [Google Scholar] [CrossRef] [PubMed]
- Anacleto, P.; Lourenço, H.M.; Ferraria, V.; Afonso, C.; Luísa Carvalho, M.; Fernanda Martins, M.; Leonor Nunes, M. Total Arsenic Content in Seafood Consumed in Portugal. J. Aquat. Food Prod. Technol. 2009, 18, 32–45. [Google Scholar] [CrossRef]
- Meharg, A.A.; Sun, G.; Williams, P.N.; Adomako, E.; Deacon, C.; Zhu, Y.G.; Feldmann, J.; Raab, A. Inorganic Arsenic Levels in Baby Rice Are of Concern. Environ. Pollut. 2008, 152, 746–749. [Google Scholar] [CrossRef]
- Tin and Compounds | ToxFAQsTM | ATSDR. Available online: https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=542&toxid=98 (accessed on 7 April 2024).
- HEALTH EFFECTS—Toxicological Profile for Tin and Tin Compounds—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK599932/ (accessed on 7 April 2024).
- Gunay, N.; Aksoy, M.; Davutoglu, V.; Yildirim, C.; Ege, I. Cardiac Damage Secondary to Occupational Exposure to Tin Vapor. Inhal. Toxicol. 2006, 18, 53–56. [Google Scholar] [CrossRef]
- Baur, X.; Sanyal, S.; Abraham, J.L. Mixed-Dust Pneumoconiosis: Review of Diagnostic and Classification Problems with Presentation of a Work-Related Case. Sci. Total Environ. 2019, 652, 413–421. [Google Scholar] [CrossRef]
- Akira, M.; Suganuma, N. Imaging Diagnosis of Pneumoconiosis with Predominant Nodular Pattern: HRCT and Pathologic Findings. Clin. Imaging 2023, 97, 28–33. [Google Scholar] [CrossRef]
- Boogaard, P.J.; Boisset, M.; Blunden, S.; Davies, S.; Ong, T.J.; Taverne, J.P. Comparative Assessment of Gastrointestinal Irritant Potency in Man of Tin(II) Chloride and Tin Migrated from Packaging. Food Chem. Toxicol. 2003, 41, 1663–1670. [Google Scholar] [CrossRef]
- Ogata, R.; Omura, M.; Shimasaki, Y.; Kubo, K.; Oshima, Y.; Shuji, A.; Inoue, N. Two-Generation Reproductive Toxicity Study of Tributyltin Chloride in Female Rats. J. Toxicol. Environ. Health A 2001, 63, 127–144. [Google Scholar] [CrossRef]
- Zheng, K.; Zeng, Z.; Tian, Q.; Huang, J.; Zhong, Q.; Huo, X. Epidemiological Evidence for the Effect of Environmental Heavy Metal Exposure on the Immune System in Children. Sci. Total Environ. 2023, 868, 161691. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.S.; Fontenot, A.P. Interplay of Innate and Adaptive Immunity in Metal-Induced Hypersensitivity. Curr. Opin. Immunol. 2016, 42, 25. [Google Scholar] [CrossRef] [PubMed]
- da Silva, I.F.; Freitas-Lima, L.C.; Graceli, J.B.; Rodrigues, L.C.d.M. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review. Front. Endocrinol. 2018, 8, 366. [Google Scholar] [CrossRef]
- Biégo, G.H.; Joyeux, M.; Hartemann, P.; Debry, G. Determination of Dietary Tin Intake in an Adult French Citizen. Arch. Environ. Contam. Toxicol. 1999, 36, 227–232. [Google Scholar] [CrossRef]
- Filippini, T.; Tancredi, S.; Malagoli, C.; Cilloni, S.; Malavolti, M.; Violi, F.; Vescovi, L.; Bargellini, A.; Vinceti, M. Aluminum and Tin: Food Contamination and Dietary Intake in an Italian Population. J. Trace Elem. Med. Biol. 2019, 52, 293–301. [Google Scholar] [CrossRef]
- Markmanuel, D.P.; Amos-Tautau, B.M.W.; Songca, S.P. Tin Concentrations and Human Health Risk Assessment for Children and Adults in Seafood and Canned Fish Commonly Consumed in Bayelsa State, Nigeria. J. Appl. Sci. Environ. Manag. 2022, 26, 1263–1269. [Google Scholar] [CrossRef]
- Nicholas, E.S.; Ukoha, P. Tin and Aluminium Concentration in Canned Foods, Drinks and Beverages Sold in Nigerian Markets. Chem. Mater. Res. 2013, 3, 32–40. [Google Scholar]
- Sherlock, J.C.; Smart, G.A. Tin in Foods and the Diet. Food Addit. Contam. 1984, 1, 277–282. [Google Scholar] [CrossRef]
- Asgari Lajayer, B.; Ghorbanpour, M.; Nikabadi, S. Heavy Metals in Contaminated Environment: Destiny of Secondary Metabolite Biosynthesis, Oxidative Status and Phytoextraction in Medicinal Plants. Ecotoxicol. Environ. Saf. 2017, 145, 377–390. [Google Scholar] [CrossRef]
- Pandey, V.C.; Bajpai, O. Phytoremediation: From Theory Toward Practice. In Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–49. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Guo, S.; Ma, Y.; Zhang, Y. Associations between patterns of blood heavy metal exposure and health outcomes: Insights from NHANES 2011–2016. BMC Public Health 2024, 24, 558. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). National Health and Nutrition Examination Survey (NHANES). Available online: https://www.cdc.gov/nchs/nhanes/?CDC_AAref_Val=https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 20 March 2025).
- U.S. Environmental Protection Agency (EPA). Lead and Copper Rule. Available online: https://www.epa.gov/dwreginfo/lead-and-copper-rule (accessed on 20 March 2025).
- Ioniță-Mîndrican, C.-B.; Mititelu, M.; Musuc, A.M.; Oprea, E.; Ziani, K.; Neacșu, S.M.; Grigore, N.D.; Negrei, C.; Dumi-trescu, D.-E.; Mireșan, H.; et al. Honey and Other Beekeeping Products Intake among the Romanian Population and Their Therapeutic Use. Appl. Sci. 2022, 12, 9649. [Google Scholar] [CrossRef]
- Pop, A.L.; Henteș, P.; Pali, M.-A.; Oșanu, L.; Ciobanu, A.; Nasui, B.A.; Mititelu, M.; Crișan, S.; Peneș, O.N. Study regarding a new extended-release calcium ascorbate and hesperidin solid oral formulation. Farmacia 2022, 70, 151–157. [Google Scholar] [CrossRef]
- Mititelu, M.; Moroșan, E.; Nicoară, A.C.; Secăreanu, A.A.; Musuc, A.M.; Atkinson, I.; Cusu, J.P.; Nițulescu, G.M.; Ozon, E.A.; Sarbu, I.; et al. Development of immediate release tablets containing calcium lactate synthetized from Black Sea mussel shells. Mar. Drugs 2022, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Mititelu, M.; Moroşan, E.; Neacsu, S.M.; Ioniţă, E.I. Research regarding the pollution degree from romanian Black Sea coast. Farmacia 2018, 66, 1059–1063. [Google Scholar] [CrossRef]
- Ioniţă, A.C.; Mititelu, M.; Moroşan, E. Analysis of heavy metals and organic pollutants from some Danube river fishes. Farmacia 2014, 62, 299–305. [Google Scholar]
- Top 15 Low and High Mercury Fish. Available online: https://globalseafoods.com/blogs/news/low-mercury-seafood?srsltid=AfmBOoqsT81XCGDB0L27VYEtjLR-kKdu75IArjvMpYVCs65VIfi9RnhC (accessed on 7 December 2024).
- Hu, Y.; Wang, J.; Yang, Y.; Li, S.; Wu, Q.; Nepovimova, E.; Zhang, X.; Kuca, K. Revolutionizing Soil Heavy Metal Remediation: Cutting-Edge Innovations in Plant Disposal Technology. Sci. Total Environ. 2024, 918, 170577. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.; Wang, H.; Hu, Y.; Cheng, H. The Leaching Behavior of Heavy Metal from Contaminated Mining Soil: The Effect of Rainfall Conditions and the Impact on Surrounding Agricultural Lands. Sci. Total Environ. 2024, 914, 169877. [Google Scholar] [CrossRef]
- Fazlzadeh, M.; Salarifar, M.; Hassanvand, M.S.; Nabizadeh, R.; Shamsipour, M.; Naddafi, K. Health Benefits of Using Air Purifier to Reduce Exposure to PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Heavy Metals and Ions. J. Clean. Prod. 2022, 352, 131457. [Google Scholar] [CrossRef]
- Bocca, B.; Pino, A.; Alimonti, A.; Forte, G. Toxic Metals Contained in Cosmetics: A Status Report. Regul. Toxicol. Pharmacol. 2014, 68, 447–467. [Google Scholar] [CrossRef]
- Luo, L.; Wang, B.; Jiang, J.; Fitzgerald, M.; Huang, Q.; Yu, Z.; Li, H.; Zhang, J.; Wei, J.; Yang, C.; et al. Heavy Metal Contaminations in Herbal Medicines: Determination, Comprehensive Risk Assessments, and Solutions. Front. Pharmacol. 2021, 11, 595335. [Google Scholar] [CrossRef]
- Zakeri, N.; Kelishadi, M.R.; Asbaghi, O.; Naeini, F.; Afsharfar, M.; Mirzadeh, E.; Naserizadeh, S.K. Selenium Supplementation and Oxidative Stress: A Review. PharmaNutrition 2021, 17, 100263. [Google Scholar] [CrossRef]
- Ryan, M.J.; Dudash, H.J.; Docherty, M.; Geronilla, K.B.; Baker, B.A.; Haff, G.G.; Cutlip, R.G.; Alway, S.E. Vitamin E and C Supplementation Reduces Oxidative Stress, Improves Antioxidant Enzymes and Positive Muscle Work in Chronically Loaded Muscles of Aged Rats. Exp. Gerontol. 2010, 45, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Zwolak, I. The Role of Selenium in Arsenic and Cadmium Toxicity: An Updated Review of Scientific Literature. Biol. Trace Elem. Res. 2019, 193, 44. [Google Scholar] [CrossRef] [PubMed]
- Donald, N.A.; Raphael, B.P.; Olumide, J.O.; Amarachukwu, F.O. The Synopsis of Environmental Heavy Metal Pollution. Am. J. Environ. Sci. 2022, 5, 18. [Google Scholar] [CrossRef]
- Raji, Z.; Karim, A.; Karam, A.; Khalloufi, S. A Review on the Heavy Metal Adsorption Capacity of Dietary Fibers Derived from Agro-Based Wastes: Opportunities and Challenges for Practical Applications in the Food Industry. Trends Food Sci. Technol. 2023, 137, 74–91. [Google Scholar] [CrossRef]
- Chen, S.; Ding, Y. Tackling Heavy Metal Pollution: Evaluating Governance Models and Frameworks. Sustainability 2023, 15, 15863. [Google Scholar] [CrossRef]
- Das, S.; Sultana, K.W.; Ndhlala, A.R.; Mondal, M.; Chandra, I. Heavy Metal Pollution in the Environment and Its Impact on Health: Exploring Green Technology for Remediation. Environ Health Insights. 2023, 17, 11786302231201259. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Gaur, P.; Varjani, S.; Ngo, H.H.; Guo, W.; Chaturvedi, P.; Singhania, R.R. Sustainable mitigation of heavy metals from effluents: Toxicity and fate with recent technological advancements. Bioengineered. 2021, 12, 7297–7313. [Google Scholar] [CrossRef]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy Metal Induced Oxidative Stress Mitigation and ROS Scavenging in Plants. Plants 2023, 12, 3003. [Google Scholar] [CrossRef]
- Pruteanu, L.L.; Bailey, D.S.; Grădinaru, A.C.; Jäntschi, L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants 2023, 12, 860. [Google Scholar] [CrossRef]
- Iddrisu, L.; Danso, F.; Cheong, K.-L.; Fang, Z.; Zhong, S. Polysaccharides as Protective Agents against Heavy Metal Toxicity. Foods 2024, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Min. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Pop, M.S.; Cheregi, D.C.; Onose, G.; Munteanu, C.; Popescu, C.; Rotariu, M.; Turnea, M.-A.; Dogaru, G.; Ionescu, E.V.; Oprea, D.; et al. Exploring the Potential Benefits of Natural Calcium-Rich Mineral Waters for Health and Wellness: A Systematic Review. Nutrients 2023, 15, 3126. [Google Scholar] [CrossRef] [PubMed]
- Carbajo, J.M.; Maraver, F. Sulphurous Mineral Waters: New Applications for Health. Evid. Based Complement Altern. Med. 2017, 2017, 8034084. [Google Scholar] [CrossRef]
- FAO; WHO. Code of Practice for Fish and Fishery Products; FAO: Rome, Italy, 2020; Available online: https://openknowledge.fao.org/items/bdee3dc7-c138-4f3a-952a-dc8a60a76c4e (accessed on 7 April 2024).
- Lan, J.; Liu, P.; Hu, X.; Zhu, S. Harmful Algal Blooms in Eutrophic Marine Environments: Causes, Monitoring, and Treatment. Water 2024, 16, 2525. [Google Scholar] [CrossRef]
- Ungureanu, E.L.; Mocanu, A.L.; Stroe, C.A.; Duță, D.E.; Mustățea, G. Assessing Health Risks Associated with Heavy Metals in Food: A Bibliometric Analysis. Foods 2023, 12, 3974. [Google Scholar] [CrossRef]
- Gibb, H.J.; Barchowsky, A.; Bellinger, D.; Bolger, P.M.; Carrington, C.; Havelaar, A.H.; Oberoi, S.; Zang, Y.; O’Leary, K.; Devleesschauwer, B. Estimates of the 2015 global and regional disease burden from four foodborne metals-arsenic, cadmium, lead and methylmercury. Environ. Res. 2019, 174, 188–194. [Google Scholar] [CrossRef]
- Laoye, B.; Olagbemide, P.; Ogunnusi, T.; Akpor, O. Heavy Metal Contamination: Sources, Health Impacts, and Sustainable Mitigation Strategies with Insights from Nigerian Case Studies [version 1; peer review: 1 approved with reservations]. F1000Research 2025, 14, 134. [Google Scholar] [CrossRef]
- IFRC GO. Available online: https://go.ifrc.org/emergencies/6953/details (accessed on 7 April 2024).
- WHO. SDG Target 3.9 Mortality from Environmental Pollution. Available online: https://www.who.int/data/gho/data/themes/topics/sdg-target-3_9-mortality-from-environmental-pollution (accessed on 7 April 2024).
- WHO. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution. Available online: https://www.who.int/publications/i/item/9789289071796 (accessed on 7 April 2024).
- Cammilleri, G.; Galluzzo, F.G.; Randazzo, V.; La Russa, F.; Di Pasquale, M.L.; Gambino, D.; Gargano, V.; Castronovo, C.; Bacchi, E.; Giarratana, F.; et al. Distribution of trace metals and metalloids in tissues of Eurasian Woodcock (Scolopax rusticola) from Southern Italy. Sci. Total Environ. 2024, 947, 174712. [Google Scholar] [CrossRef]
- Messina, E.M.D.; Naccari, C.; Alfano, C.; Galluzzo, F.G.; Cammilleri, G.; Pantano, L.; Buscemi, M.D.; Macaluso, A.; Cicero, N.; Calabrese, V.; et al. Multivariate analysis of trace metals and metalloids contents in edible land snails Cornu aspersum and Eobania vermiculata from Southern Italy. J. Food Compos. Anal. 2025, 139, 107159. [Google Scholar] [CrossRef]
- Adesina, K.E.; Burgos, C.J.; Grier, T.R.; Sayam, A.S.M.; Specht, A.J. Ways to Measure Metals: From ICP-MS to XRF. Curr. Environ. Health Rep. 2025, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Motshakeri, M.; Angoro, B.; Phillips, A.R.J.; Svirskis, D.; Kilmartin, P.A.; Sharma, M. Advancements in Mercury-Free Electrochemical Sensors for Iron Detection: A Decade of Progress in Electrode Materials and Modifications. Sensors 2025, 25, 1474. [Google Scholar] [CrossRef] [PubMed]
- Anoja, N.; De Silva, R.C.L.; Prabagar, J. An in-depth review of analytical methods for cadmium detection in seawater through graphite furnace atomic absorption spectrometry. Discov. Chem. 2024, 1, 49. [Google Scholar] [CrossRef]
- Newell, M.E.; Babbrah, A.; Aravindan, A.; Rathnam, R.; Kiernan, R.; Driver, E.M.; Bowes, D.A.; Halden, R.U. Prevalence rates of neurodegenerative diseases versus human exposures to heavy metals across the United States. Sci. Total Environ. 2024, 928, 172260. [Google Scholar] [CrossRef]
- Karri, V.; Ramos, D.; Martinez, J.B.; Odena, A.; Oliveira, E.; Coort, S.L.; Evelo, C.T.; Mariman, E.C.M.; Schuhmacher, M.; Kumar, V. Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases. J. Proteom. 2018, 187, 106–125. [Google Scholar] [CrossRef]
- Lee, J.; Freeman, J.L. Exposure to the Heavy-Metal Lead Induces DNA Copy Number Alterations in Zebrafish Cells. Chem. Res. Toxicol. 2020, 33, 2047–2053. [Google Scholar] [CrossRef]
- Costa, L.G. Developmental Exposure to Metals and its Contribution to Age-Related Neurodegeneration. In Biometals in Neurodegenerative Diseases: Mechanisms and Therapeutics; Academic Press: Cambridge, MA, USA, 2017; pp. 217–229. [Google Scholar] [CrossRef]
- Dickerson, A.S.; Rotem, R.S.; Christian, M.K.A.; Nguyen, V.T.; Specht, A.J. Potential Sex Differences Relative to Autism Spectrum Disorder and Metals. Curr. Environ. Health Rep. 2017, 4, 405–414. [Google Scholar] [CrossRef]
- Jarsjö, J.; Andersson-Sköld, Y.; Fröberg, M.; Pietroń, J.; Borgström, R.; Löv, Å.; Kleja, D.B. Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level. Sci. Total Environ. 2020, 712, 135560. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, Y.; Tysklind, M.; Hao, F.; Liu, H.; Hao, X.; Xu, Y.; Lin, C.; Su, L. Heavy metal accumulation, geochemical fractions, and loadings in two agricultural watersheds with distinct climate conditions. J. Hazard. Mater. 2020, 389, 122125. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Shan, N.; Guo, H. The Impacts of Elevated CO2 Levels on Environmental Risk of Heavy Metal Pollution in Agricultural Soils: Applicable Remediation Approaches for Integrated Benefits. Agriculture 2023, 13, 1607. [Google Scholar] [CrossRef]
- Hasani Nourian, Y.; Beh-Pajooh, A.; Aliomrani, M.; Amini, M.; Sahraian, M.A.; Hosseini, R.; Mohammadi, S.; Ghahremani, M.H. Changes in DNA methylation in APOE and ACKR3 genes in multiple sclerosis patients and the relationship with their heavy metal blood levels. NeuroToxicology 2021, 87, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Aliomrani, M.; Sahraian, M.A.; Shirkhanloo, H.; Sharifzadeh, M.; Khoshayand, M.R.; Ghahremani, M.H. Correlation between heavy metal exposure and GSTM1 polymorphism in Iranian multiple sclerosis patients. Neurol. Sci. 2017, 38, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiang, L.; Sze-Yin Leung, K.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef] [PubMed]
Heavy Metal | Food Type | Maximum Level (mg/kg or mg/L) | Regulatory Agency | Reference |
---|---|---|---|---|
Lead (Pb) | Cereals and grains | 0.02 mg/kg | FDA, EFSA | [9,10] |
Vegetables | 0.10 mg/kg | EFSA | [10] | |
Fruits | 0.10 mg/kg | EFSA | [10] | |
Meat and offal | 0.10 mg/kg | EFSA | [10] | |
Fish and seafood | 0.30 mg/kg | EFSA | [10] | |
Milk and dairy products | 0.02 mg/kg | EFSA | [10] | |
Bottled water/drinking water | 0.005 mg/L (5 ppb); | FDA | [11] | |
0.01 mg/L (EPA) | EPA, WHO | [12,13] | ||
Juice | 0.05 mg/L (50 ppb) | FDA | [14] | |
Candy | 0.1 mg/kg (100 ppb) | FDA | [9] | |
Baby foods (fruits, vegetables, yogurts, dry cereals) | 0.01 mg/kg (10 ppb) | FDA (proposed) | [15] | |
Cadmium (Cd) | Cereals and grains | 0.1 mg/kg | EFSA | [10] |
Leafy vegetables | 0.20 mg/kg | EFSA | [10] | |
Root and tuber vegetables | 0.10 mg/kg | EFSA | [10] | |
Legumes | 0.10 mg/kg | EFSA | [10] | |
Fish and seafood | 0.05 mg/kg | EFSA | [10] | |
Meat (excluding offal) | 0.05 mg/kg | EFSA | [10] | |
Bottled water/drinking water | 0.005 mg/L (5 ppb); | FDA | [11] | |
0.003 mg/L (EPA) | EPA, WHO | [12,13] | ||
Mercury (Hg) | Fish and seafood (general) | 0.5 mg/kg | Commission Regulation (EU) | [16] |
Large predatory fish (e.g., tuna, shark) | 1.0 mg/kg | Commission Regulation (EU) | [16] | |
Bottled water/drinking water | 0.002 mg/L (2 ppb); | FDA | [11] | |
0.001 mg/L (EPA) | EPA, WHO | [12,13] | ||
Fish (e.g., king mackerel, shark, swordfish, tilefish) | Avoid consumption by pregnant women and young children | FDA | [15] | |
Arsenic (As) | Rice and rice-based products | 0.1 mg/kg | EFSA | [10] |
Bottled water/drinking water | 0.01 mg/L (10 ppb) | FDA, EPA, WHO | [11,12,13] | |
Rice cereals for infants | 0.1 mg/kg (100 ppb) | FDA | [15] | |
Chromium (Cr VI) | All food (total Cr) | 0.05 mg/kg | EFSA | [10] |
Nickel (Ni) | Chocolate and cocoa products | 0.80 mg/kg | EFSA | [10] |
Nuts and seeds | 0.50 mg/kg | EFSA | [10] | |
Cereal-based products | 0.20 mg/kg | EFSA | [10] |
Heavy Metal | Country | Contaminated Food | Identified Level | Reference |
---|---|---|---|---|
Mercury | Canada | Arctic char | 0.92 mg/kg | [98] |
Mercury | Canada | Harp seal meat | 1.06 mg/kg | [98] |
Mercury | Cyprus | UHT Milk | 3.66 mg/kg | [99] |
Mercury | Italy | Different species of fish | 0.7–1 mg/kg | [100] |
Mercury | Italy | Pork meat products (baked ham, raw ham, mortadella, cured sausage, salami) | 0.01–0.02 mg/kg | [101] |
Mercury | Italy | Shellfish | 0.023–0.150 mg/kg | [100] |
Mercury | Norway | Fish burgers/cakes | 0.016–0.035 mg/kg | [102] |
Mercury | Norway | Saithe products | 0.015–0.018 mg/kg | [102] |
Mercury | Poland | Freshwater fish | 0.063 mg/kg | [103] |
Mercury | Poland | Saltwater fish | 0.100 mg/kg | [103] |
Mercury | Republic of Korea | Fish | 0.04–1.5 mg/kg | [104] |
Mercury | Republic of Korea | Fishery products (canned) | 0.02–0.13 mg/kg | [104] |
Mercury | Turkey | Raw cow milk | 0.18 μg/kg | [99] |
Mercury | USA | Canned tuna (includes tuna in water or oil) | 0.096–0.431 mg/kg | [105] |
Heavy Metal | Country | Contaminated Food | Identified Level | Reference |
---|---|---|---|---|
Cadmium | Africa | Red meat | 74.69–94.66 μg/kg | [125] |
Cadmium | Bangladesh | Different species of fish | 0.01–1.09 mg/kg | [126,127,128] |
Cadmium | Bangladesh | Onion | 0.2 mg/kg | [129] |
Cadmium | Bangladesh | Tomato | 0.056–2.39 mg/kg | [130] |
Cadmium | Belgium | Chocolate | 0.010–0.090 mg/kg | [131] |
Cadmium | Belgium | Fish | 0.001–1.5 mg/kg | [131] |
Cadmium | Belgium | Potatoes | 0.005–0.140 mg/kg | [131] |
Cadmium | Bolivia | Rice grain | 23.05 μg/kg | [132] |
Cadmium | Canada | Beaver kidney | 21.6 mg/kg | [98] |
Cadmium | Canada | Moose kidney | 9.8 mg/kg | [98] |
Cadmium | Canada | Mussels | 0.56 mg/kg | [98] |
Cadmium | Canada | Oysters | 1.85 mg/kg | [98] |
Cadmium | China | Red seaweed | 0.408–1.05 mg/kg | [133] |
Cadmium | Cyprus | Halloumi cheese | 44.33 μg/kg | [134] |
Cadmium | Cyprus | Olive oil | 0.02–0.09 mg/kg | [135] |
Cadmium | Cyprus | UHT milk | 5.00 μg/kg | [134] |
Cadmium | Germany | Cereals | 29.18 μg/kg | [136] |
Cadmium | Germany | Seeds and oleaginous fruits | 20.33 μg/kg | [136] |
Cadmium | Ghana | Rice grain | 13.4 μg/kg | [132] |
Cadmium | Malaysia | Chicken liver | 0.01–0.22 mg/kg | [137] |
Cadmium | Malaysia | Pig liver | 0.00–0.34 mg/kg | [137] |
Cadmium | India | Rice grain | 27. 55 μg/kg | [132] |
Cadmium | Italy | Cereals | 6.24–54.52 μg/kg | [138] |
Cadmium | Italy | Dry foods | 0.00–272.50 μg/kg | [138] |
Cadmium | Italy | Fish and seafood | 0.13–136.71 μg/kg | [138] |
Cadmium | Italy | Meat | 0.07–25.72 μg/kg | [138] |
Cadmium | Japan | Brown seaweed | 0.343–1.55 mg/kg | [133] |
Cadmium | Japan | Red seaweed | 0.089–0.877 mg/kg | [133] |
Cadmium | Norway | Fish fingers | 0.005–0.007 mg/kg | [102] |
Cadmium | Norway | Spread canned mackerel in tomato sauce | 0.007–0.016 mg/kg | [102] |
Cadmium | Romania | Honey | 0.006–0.083 μg/g | [139] |
Cadmium | Romania | Wild edible mushrooms | 0.33–1.21 μg/g 1.5–6.20 μg/g | [140,141] |
Cadmium | Romania | Fish | 0.010–0.091 μg/g | [142] |
Cadmium | Serbia | Chocolate | 0.034 mg/kg | [143] |
Cadmium | Serbia | Meat (beef, chicken, pork) | <0.0003 mg/kg | [143] |
Cadmium | Serbia | Paprika | 0.118 mg/kg | [143] |
Cadmium | Serbia | Sugar | 0.060 mg/kg | [143] |
Cadmium | South Korea | Red seaweed | 2.91–3.19 mg/kg | [133] |
Cadmium | Spain | Lettuce | <0.005 mg/kg | [144] |
Cadmium | Turkey | Raw cow milk | 0.53 μg/kg | [145] |
Heavy Metal | Country | Contaminated Foodstuff | Identified Level | Reference |
---|---|---|---|---|
Lead | Africa | Red meat | 840.64–1094.42 μg/kg | [125] |
Lead | Bangladesh | Banana | 0.05–0.003 mg/kg | [161] |
Lead | Bangladesh | Different species of fish | 0.11–12.32 mg/kg | [126,127,128] |
Lead | Bangladesh | Tomato | 14.15 mg/kg | [130] |
Lead | Brazil | Grains, cereals and products | 0.056 mg/kg | [162] |
Lead | Brazil | Oils and fat spreads | 0.078 mg/kg | [162] |
Lead | Brazil | Sugar | 0.048 mg/kg | [108] |
Lead | Canada | Bison meat | 0.01 mg/kg | [162] |
Lead | Canada | Duck heart | 4.67 mg/kg | [98] |
Lead | Canada | Squirrel meat | 1.46 mg/kg | [98] |
Lead | China | Edible fungi | 0.240 mg/kg | [163] |
Lead | China | Grain, maize | 0.02-0.013 mg/kg | [164] |
Lead | China | Preserved egg | 1.212 mg/kg | [163] |
Lead | China | Tea | 1.937 mg/kg | [163] |
Lead | Cyprus | Olive oil | 0.15–1.48 mg/kg | [135] |
Lead | England | Coconut oil | 0.158 mg/kg | [165] |
Lead | England | Olive oil | 0.143 mg/kg | [165] |
Lead | England | Rapeseed oil | 0.181 mg/kg | [165] |
Lead | England | Sunflower oil | 0.274 mg/kg | [165] |
Lead | France | Butter | 2.16 μg/kg | [166] |
Lead | France | Cheese | 6.4 μg/kg | [166] |
Lead | France | Croissant-like pastries | 8.2 μg/kg | [166] |
Lead | France | Sweet and savory biscuits and bars | 9.6 μg/kg | [166] |
Lead | Italy | Cereals and cereal products | 11.427 μg/kg | [167] |
Lead | Italy | Citrus fruit | 4.618 μg/kg | [167] |
Lead | Italy | Dry fruit | 32.254 μg/kg | [167] |
Lead | Italy | Eggs | 0.442 μg/kg | [167] |
Lead | Italy | Fish and seafood | 18.713 μg/kg | [167] |
Lead | Italy | Leafy vegetables | 38.953 μg/kg | [167] |
Lead | Italy | Meat and meat products | 12.520 μg/kg | [167] |
Lead | Italy | Milk and dairy products | 6.792 μg/kg | [167] |
Lead | Italy | Mushrooms | 24.997 μg/kg | [167] |
Lead | Italy | Nuts and seeds | 4.425 μg/kg | [167] |
Lead | Italy | Oils and fats | 1.658 μg/kg | [167] |
Lead | Italy | Pulses | 7.615 μg/kg | [167] |
Lead | Italy | Red wine | 17.164 μg/kg | [167] |
Lead | Italy | Sweets, chocolate, cakes | 15.306 μg/kg | [167] |
Lead | Japan | Brown seaweed | 0.106–0.885 mg/kg | [133] |
Lead | Japan | Red seaweed | 0.123–1.52 mg/kg | [133] |
Lead | Malaysia | Cattle liver | 0.04–1.52 mg/kg | [137] |
Lead | Malaysia | Chicken liver | 0.05–0.23 mg/kg | [137] |
Lead | Malaysia | Pig liver | 0.04–0.13 mg/kg | [137] |
Lead | Mexico | Black pepper | 0.239 mg/kg | [168] |
Lead | Mexico | Infant rice cereal | 1.005 mg/kg | [168] |
Lead | Mexico | Pre-cooked rice | 0.276 mg/kg | [168] |
Lead | Mexico | Turmeric | 0.176 mg/kg | [168] |
Lead | Mexico | Whole wheat bread | 0.447 mg/kg | [168] |
Lead | Romania | Honey | 0.12–0.52 μg/g | [139] |
Lead | Romania | Wild edible mushrooms | 0.31–0.85 μg/g 0.70–2.80 μg/g | [141] [140] |
Lead | Romania | Fish | 0.19–0.65 μg/g | [142] |
Lead | Serbia | Candy | 0.323 mg/kg | [143] |
Lead | Serbia | Lettuce | 0.080 mg/kg | [143] |
Lead | Serbia | Meat (beef, pork, chicken) | 0.020–0.098 mg/kg | [143] |
Lead | South Korea | Brown seaweed | 0.648 mg/kg | [133] |
Lead | Spain | Red seaweed | 0.123–0.817 mg/kg | [133] |
Heavy Metal | Country | Contaminated Foodstuff | Identified Level | Reference |
---|---|---|---|---|
Arsenic | Bangladesh | Different species of fish | 0.19–0.73 mg/kg | [126,127,128] |
Arsenic | Bangladesh | Onion | 0.1 mg/kg | [129] |
Arsenic | Bangladesh | Potatoes | 0.07–1.39 mg/kg | [174] |
Arsenic | Bangladesh | Spinach | 0.26 mg/kg | [130] |
Arsenic | Canada | Crabs | 7.83 mg/kg | [98] |
Arsenic | Canada | Prawns | 8.48 mg/kg | [98] |
Arsenic | Canada | Seaweed | 31.00 mg/kg | [98] |
Arsenic | Chile | Brown seaweed | 15.2 mg/kg | [133] |
Arsenic | Egypt | White rice | 0.01–0.58 mg/kg | [175] |
Arsenic | France | White rice | 0.09–0.56 mg/kg | [175] |
Arsenic | Japan | Brown seaweed | 4.1–149 mg/kg | [133] |
Arsenic | Japan | White rice | 0.07–0.42 mg/kg | [175] |
Arsenic | Norway | Fish burgers/cakes | 0.37–1.92 mg/kg | [102] |
Arsenic | Norway | Fish fingers | 1.21–3.01 mg/kg | [102] |
Arsenic | Norway | Spread salmon/trout | 0.28–0.6 mg/kg | [102] |
Arsenic | Portugal | Norway lobster | 23.1–51.2 mg/kg | [176] |
Arsenic | Portugal | Sardine | 4.2–5.6 mg/kg | [176] |
Arsenic | Serbia | Canned fish | 0.43 mg/kg | [143] |
Arsenic | Serbia | Oil and margarine | 0.03 mg/kg | [143] |
Arsenic | Serbia | Sausage | 0.04 mg/kg | [143] |
Arsenic | South Korea | Red seaweed | 18.4–23.5 mg/kg | [133] |
Arsenic | Spain | Red seaweed | 34.5 mg/kg | [133] |
Arsenic | United Kingdom | Baby rice | 0.11 mg/kg | [123] |
Arsenic | United States of America | White rice | 0.03–0.66 mg/kg | [175] |
Heavy Metal | Country | Contaminated Foodstuff | Identified Level | Reference |
---|---|---|---|---|
Tin | France | Preserved foods in unlacquered cans: | [188] | |
Tomatoes | 46–156 mg/kg | |||
Mushrooms | 24–45 mg/kg | |||
Pineapples | 44–136 mg/kg | |||
Fruit cocktail | 88–107 mg/kg | |||
Preserved foods in lacquered cans: | ||||
Tomatoes | 3.2–8.8 mg/kg | |||
Mushrooms | 0.4–13.4 mg/kg | |||
Meats | 1.1–9.4 mg/kg | |||
Fishes | 0.3–0.9 mg/kg | |||
Carrots | 0.08 mg/kg | |||
Alcoholic beverages | <0.003 mg/L | |||
Tin | Italy | Aged cheese | 5.05 μg/kg | [189] |
Tin | Italy | Beverages: | [189] | |
Coffee and tea | 1.81 μg/kg | |||
Wines | 1.17 μg/kg | |||
Spirits and liqueurs | 3.58 μg/kg | |||
Fruit juices | 0.39 μg/kg | |||
Soft drinks | 0.21 μg/kg | |||
Tin | Italy | Cereals and cereal products (pasta, rice, bread, salty snacks) | 3.6 μg/kg | [189] |
Tin | Italy | Meat and meat products (red, white and processed meat) | 5.73 μg/kg | [135] |
Tin | Italy | Oils and fats | 2.04 μg/kg | [189] |
Tin | Italy | Potatoes | 2.19 μg/kg | [189] |
Tin | Italy | Preserved and tinned fish | 10.41 μg/kg | [189] |
Tin | Italy | Sweets, chocolate, cakes and other pastries | 6.01 μg/kg | [189] |
Tin | Malaysia | Canned meat and poultry | 0.01–0.34 mg/kg | [137] |
Tin | Malaysia | Canned seafood | 0.00–2.06 mg/kg | [137] |
Tin | Malaysia | Canned vegetables | 96–937 mg/kg | [137] |
Tin | Nigeria | Costa mackerel | 5.93–6.01 mg/kg | [190] |
Tin | Nigeria | Freshwater fish | 0.91–1.04 mg/kg | [190] |
Tin | Nigeria | Heineken beer | <0.01 mg/kg | [191] |
Tin | Nigeria | Saltwater fish | 0.79–1.08 mg/kg | [190] |
Tin | Nigeria | Titus sardines | 11.94–12.01 mg/kg | [190] |
Tin | UK | Corned beef | 19 mg/kg | [192] |
Tin | UK | Fruits: | [192] | |
Orange | 124 mg/kg | |||
Grapefruit | 112 mg/kg | |||
Pear | 64 mg/kg | |||
Red fruits (raspberries, blackcurrants, red plums, blackberries) | 37 mg/kg | |||
Tin | UK | Potatoes | 13 mg/kg | [192] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mititelu, M.; Neacșu, S.M.; Busnatu, Ș.S.; Scafa-Udriște, A.; Andronic, O.; Lăcraru, A.-E.; Ioniță-Mîndrican, C.-B.; Lupuliasa, D.; Negrei, C.; Olteanu, G. Assessing Heavy Metal Contamination in Food: Implications for Human Health and Environmental Safety. Toxics 2025, 13, 333. https://doi.org/10.3390/toxics13050333
Mititelu M, Neacșu SM, Busnatu ȘS, Scafa-Udriște A, Andronic O, Lăcraru A-E, Ioniță-Mîndrican C-B, Lupuliasa D, Negrei C, Olteanu G. Assessing Heavy Metal Contamination in Food: Implications for Human Health and Environmental Safety. Toxics. 2025; 13(5):333. https://doi.org/10.3390/toxics13050333
Chicago/Turabian StyleMititelu, Magdalena, Sorinel Marius Neacșu, Ștefan Sebastian Busnatu, Alexandru Scafa-Udriște, Octavian Andronic, Andreea-Elena Lăcraru, Corina-Bianca Ioniță-Mîndrican, Dumitru Lupuliasa, Carolina Negrei, and Gabriel Olteanu. 2025. "Assessing Heavy Metal Contamination in Food: Implications for Human Health and Environmental Safety" Toxics 13, no. 5: 333. https://doi.org/10.3390/toxics13050333
APA StyleMititelu, M., Neacșu, S. M., Busnatu, Ș. S., Scafa-Udriște, A., Andronic, O., Lăcraru, A.-E., Ioniță-Mîndrican, C.-B., Lupuliasa, D., Negrei, C., & Olteanu, G. (2025). Assessing Heavy Metal Contamination in Food: Implications for Human Health and Environmental Safety. Toxics, 13(5), 333. https://doi.org/10.3390/toxics13050333