Previous Issue
Volume 13, August
 
 

Toxics, Volume 13, Issue 9 (September 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 912 KB  
Review
Integration of “Omics”-Based Approaches in Environmental Risk Assessment to Establish Cause and Effect Relationships: A Review
by Kirsty F. Smith, Xavier Pochon, Steven D. Melvin, Thomas T. Wheeler and Louis A. Tremblay
Toxics 2025, 13(9), 714; https://doi.org/10.3390/toxics13090714 - 24 Aug 2025
Abstract
Marine and freshwater environments are under increasing pressure from anthropogenic stressors. The resulting impacts on exposed ecosystems are complex and challenging to characterise. The effects may be subtle and exhibited over long time periods. Effective and robust approaches are required to characterise the [...] Read more.
Marine and freshwater environments are under increasing pressure from anthropogenic stressors. The resulting impacts on exposed ecosystems are complex and challenging to characterise. The effects may be subtle and exhibited over long time periods. Effective and robust approaches are required to characterise the physiological and genetic processes that are impacted by pollutants to assess how populations and ecosystems may be adversely affected and at risk. The objective of the review is to provide an overview of “omics” methodologies used to assess the risk of stressors on exposed biota. This review covers the development of key omics approaches and how they have been used to contribute towards improved knowledge about the effects of environmental stressors, from molecular to whole-organism and community levels of biological organisation. We provide insights into how ecotoxicogenomics approaches can be used for various aspects of environmental risk assessment by characterising toxicological mechanisms of action. This information can be used to confirm cause-and-effect relationships required to better manage risks and protect the integrity and functionality of ecosystems. Full article
(This article belongs to the Special Issue Ecotoxicological Monitoring of Aquatic Systems)
Show Figures

Figure 1

19 pages, 2393 KB  
Article
Curcumin Can Inhibit Zearalenone-Induced Ferroptosis in Porcine Intestinal Epithelial Cells via the p53/SLC7A11/GPX4 Pathway
by Dongwei Xiong, Weidong Qi and Miao Long
Toxics 2025, 13(9), 713; https://doi.org/10.3390/toxics13090713 - 24 Aug 2025
Abstract
Zearalenone (ZEA) is a widely distributed estrogenic mycotoxin that can disrupt intestinal barrier integrity by inducing ferroptosis, thereby posing serious risks to animal health. Curcumin (CUR), as a natural polyphenolic compound with multi-target regulatory properties, has attracted increasing attention for its antioxidative and [...] Read more.
Zearalenone (ZEA) is a widely distributed estrogenic mycotoxin that can disrupt intestinal barrier integrity by inducing ferroptosis, thereby posing serious risks to animal health. Curcumin (CUR), as a natural polyphenolic compound with multi-target regulatory properties, has attracted increasing attention for its antioxidative and cytoprotective effects; however, its role in ZEA-induced ferroptosis remains poorly understood. In this study, the protective effects of curcumin (CUR) were evaluated in IPEC-J2 cells by co-treating the cells with zearalenone (ZEA) at its LC50 (75.23 μM) and curcumin (5 or 15 μM) for 24 h. CCK-8 assays showed that CUR significantly (p < 0.05) and highly significantly (p < 0.01) improved cell viability in the 5 μM and 15 μM groups, respectively, compared with ZEA alone. CUR co-treatment significantly (p < 0.01) restored glutathione (GSH) levels, and markedly (p < 0.01) reduced Fe2+ accumulation, reactive oxygen species (ROS) production, malondialdehyde (MDA) content, and lipid peroxidation (LPO). Transmission electron microscopy revealed pronounced mitochondrial cristae loss and membrane collapse in ZEA-treated cells, which were visibly alleviated by CUR. At the molecular level, ZEA downregulated GPX4 and SLC7A11 and upregulated ACSL4, FTH1, and p53 (all p < 0.01), whereas these changes were significantly reversed (p < 0.05 or p < 0.01) by CUR. In conclusion, CUR exerts cytoprotective effects against ZEA-induced ferroptosis, likely via modulation of the p53/SLC7A11/GPX4 signaling pathway. Full article
Show Figures

Figure 1

22 pages, 6937 KB  
Article
Water Quality Evaluation and Countermeasures of Pollution in Wan’an Reservoir Using Fuzzy Comprehensive Evaluation Model
by Gaoqi Duan, Li Peng, Chunrong Wang and Qiongqiong Lu
Toxics 2025, 13(9), 712; https://doi.org/10.3390/toxics13090712 - 23 Aug 2025
Abstract
Water quality evaluation is a crucial component of water source management and pollution prevention, essential for achieving regional water safety and sustainable development. The spatial distribution and trends of major water pollutants in Wan’an Reservoir were analyzed. Subsequently, a fuzzy membership model was [...] Read more.
Water quality evaluation is a crucial component of water source management and pollution prevention, essential for achieving regional water safety and sustainable development. The spatial distribution and trends of major water pollutants in Wan’an Reservoir were analyzed. Subsequently, a fuzzy membership model was employed to develop a comprehensive water quality evaluation method. This approach assessed spatial variations in water quality across the upper, middle, and lower reaches of the reservoir, identifying key factors influencing water quality. The results indicate that water quality in Wan’an Reservoir, primarily characterized by total nitrogen, was poor. Notably, 50% of the sampling points in the main stream were identified as highly polluted, with the highest exceedance rate observed in the middle reaches of the tributaries. Sampling points classified as Class I were predominantly located in the upper reaches, where water quality benefitted from clean incoming water and minimal disturbance. In contrast, the lower reaches experienced more severe pollution due to the cumulative effects of domestic sewage, industrial wastewater, and agricultural runoff. These findings are crucial for developing effective water environmental protection strategies and promoting the sustainable utilization and protection of water resources. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
19 pages, 800 KB  
Article
Chemical Dissection of PM2.5 in Cigarette Smoke: Main and Sidestream Emission Factors and Compositions
by Yujian Zhou, Hong Huang, Changwei Zou, Mengmeng Deng, Xiang Tu, Wei Deng, Chenglong Yu and Jianlong Li
Toxics 2025, 13(9), 711; https://doi.org/10.3390/toxics13090711 - 23 Aug 2025
Viewed by 51
Abstract
Despite increasing evidence that cigarette smoke is a significant source of indoor fine particulate matter (PM2.5), quantitative emission factors (EFs) for PM2.5 and its toxic chemical composition in mainstream (MS) and sidestream (SS) smoke are still not well defined. In [...] Read more.
Despite increasing evidence that cigarette smoke is a significant source of indoor fine particulate matter (PM2.5), quantitative emission factors (EFs) for PM2.5 and its toxic chemical composition in mainstream (MS) and sidestream (SS) smoke are still not well defined. In this study, we employed a custom-designed chamber to separately collect MS (intermittent puff) and SS (continuous sampling) smoke from eleven cigarette models, representing six brands and two product types, under controlled conditions. PM2.5 was collected on quartz-fiber filters and analyzed for carbon fractions (using the thermal–optical IMPROVE-A protocol), nine water-soluble inorganic ions (by ion chromatography), and twelve trace elements (via ICP-MS). SS smoke exhibited significantly higher mass fractions of total analyzed species (84.7% vs. 65.9%), carbon components (50.6% vs. 44.2%), water-soluble ions (17.1% vs. 13.7%), and elements (17.0% vs. 7.0%) compared to MS smoke. MS smoke is characterized by a high proportion of pyrolytic organic carbon fractions (OC1–OC3) and specific elements such as vanadium (V) and arsenic (As), while SS smoke shows elevated levels of elemental carbon (EC1), water-soluble ions (NH4+, NO3), and certain elements like zinc (Zn) and cadmium (Cd). The toxicity-weighted distribution indicates that MS smoke primarily induces membrane disruption and pulmonary inflammation through semi-volatile organics and elements, whereas SS smoke enhances oxidative stress and cardiopulmonary impairment via EC-mediated reactions and secondary aerosol formation. The mean OC/EC ratio of 132.4 in SS smoke is an order of magnitude higher than values reported for biomass or fossil-fuel combustion, indicative of extensive incomplete combustion unique to cigarettes and suggesting a high potential for oxidative stress generation. Emission factors (µg/g cigarette) revealed marked differences: MS delivered higher absolute EFs for PM2.5 (422.1), OC (8.8), EC (5.0), Na+ (32.6), and V (29.2), while SS emitted greater proportions of NH4+, NO3, Cl, and carcinogenic metals (As, Cd, Zn). These findings provide quantitative source profiles suitable for receptor-oriented indoor source-apportionment models and offer toxicological evidence to support the prioritization of comprehensive smoke-free regulations. Full article
(This article belongs to the Section Air Pollution and Health)
14 pages, 598 KB  
Article
Effects of Dioxin Exposure on Brain Regional Volumes of Fathers from Birth Cohorts in Herbicide-Sprayed and Unsprayed Areas in Vietnam
by Hai Minh Nguyen, Hoa Thi Vu, Thao Ngoc Pham, Tai Pham-The, Takashi Yokawa, Ryo Matsuda, Masafumi Nakamura, Muneko Nishijo, Yutaro Takahashi, Yoshikazu Nishino, Nghi Tran Ngoc and Hisao Nishijo
Toxics 2025, 13(9), 710; https://doi.org/10.3390/toxics13090710 - 23 Aug 2025
Viewed by 45
Abstract
We previously reported that the fathers of the Bien Hoa birth cohort in Vietnam showed altered brain regional gray matter volumes, as measured by magnetic resonance imaging, and social anxiety traits associated with perinatal dioxin exposure. In the present study, we aimed to [...] Read more.
We previously reported that the fathers of the Bien Hoa birth cohort in Vietnam showed altered brain regional gray matter volumes, as measured by magnetic resonance imaging, and social anxiety traits associated with perinatal dioxin exposure. In the present study, we aimed to compare gray matter volumes and social anxiety scale scores between dioxin-exposed fathers in Bien Hoa and unexposed controls in an unsprayed area. Fat-based bioassay-toxic equivalency levels in serum were used to indicate dioxin exposure in adulthood. Results indicated that the longer Bien Hoa residency group (≥30 years) exposed to dioxins during the perinatal period and early childhood showed higher gray matter volumes in the right and left temporal lobes than controls. However, no significant differences in temporal lobe gray matter volumes were found between the shorter Bien Hoa residency group (<30 years) and controls. Furthermore, the longer, but not shorter, Bien Hoa residency group showed higher social–emotional subscale scores than controls. Additionally, fat-based bioassay-toxic equivalency levels were inversely correlated with gray matter volumes in several right temporal gyri. These findings suggest biphasic life stage-dependent adverse effects of dioxin exposure: perinatal dioxin exposure increases gray matter volumes, especially in the temporal lobe, which leads to neurodevelopmental disorders with socio-emotional disturbances, whereas dioxin exposure after brain development decreases cortical gray matter volumes, possibly leading to cognitive dysfunction. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
17 pages, 723 KB  
Article
Direct and In-Utero Exposure to Quaternary Ammonium Disinfectants Alters Sperm Parameters and mRNA Expression of Epigenetic Enzymes in the Testes of Male CD-1 Mice
by Vanessa E. Melin and Terry C. Hrubec
Toxics 2025, 13(9), 709; https://doi.org/10.3390/toxics13090709 - 23 Aug 2025
Viewed by 36
Abstract
Quaternary ammonium compounds (QACs) are a class of chemicals used for their antimicrobial, surfactant, and antistatic properties. QACs are present in many consumer products, and people are regularly exposed to them. We have previously shown reproductive toxicity in mice exposed to the disinfectants [...] Read more.
Quaternary ammonium compounds (QACs) are a class of chemicals used for their antimicrobial, surfactant, and antistatic properties. QACs are present in many consumer products, and people are regularly exposed to them. We have previously shown reproductive toxicity in mice exposed to the disinfectants alkyl dimethyl benzyl ammonium chloride (ADBAC) and dodecyl dimethyl ammonium chloride (DDAC). To assess the long-term reproductive impacts, a generational reproductive study was conducted. Sperm parameters were determined by CASA and epigenetic enzyme mRNA expression was determined by pathway-focused RT-PCR. Mice ambiently exposed to ADBAC+DDAC exhibited decreases in reproductive indices that persisted through the F1 generation. Male mice (F0) dosed with 120 mg/kg/day of ADBAC+DDAC exhibited decreased sperm concentration and motility that persisted through the F1 generation. Changes in the mRNA expression of chromatin-modifying enzymes in the testes were seen. Two histone acetyltransferases (Hat1 and Kat2b) were upregulated, and one lysine-specific demethylase (Kdm6b) was downregulated in the F0 generation. The DNA methyltransferase Dnmt1 was downregulated in F1 males. These changes in chromatin-modifying enzymes are known to decrease fertility and could be a mechanism for ADBAC+DDAC reproductive toxicity. In all experiments, the F2 generation was similar to the controls, showing multi-generational but not trans-generational epigenetic inheritance. Full article
(This article belongs to the Special Issue Reproductive and Developmental Toxicity of Environmental Factors)
13 pages, 1740 KB  
Article
Fulvic Acid Promotes the Reduction of Hexavalent Chromium by Shewanella putrefaciens via N-acylated-L-homoserine Lactones-Mediated Quorum Sensing
by Xusheng Zheng, Xiaoyue Li, Yanping Liu, Guangqing Liu, Ziyi Yang and Dexun Zou
Toxics 2025, 13(9), 708; https://doi.org/10.3390/toxics13090708 - 22 Aug 2025
Viewed by 126
Abstract
Extracellular electron transfer is crucial in the microbial reduction of hexavalent chromium [Cr(VI)], and N-acylated-L-homoserine lactones (AHLs) could accelerate this process. In this study, fulvic acid (FA) was used as an electron shuttle to enhance the microbial reduction process via stimulating [...] Read more.
Extracellular electron transfer is crucial in the microbial reduction of hexavalent chromium [Cr(VI)], and N-acylated-L-homoserine lactones (AHLs) could accelerate this process. In this study, fulvic acid (FA) was used as an electron shuttle to enhance the microbial reduction process via stimulating extracellular electron transfer efficiency. Compared with 9,10-anthraquinone-2-sulfonic acid (AQS), FA had a stronger positive effect on Cr(VI) reduction by S. putrefaciens, showing the ability of stimulating S. putrefaciens to release AHLs. The concentrations of C6-HSL, C8-HSL and 3OC10-HSL increased by 11.79 ng/L, 19.82 ng/L and 3.01 ng/L after the addition of 2% FA. The bioinformation analysis indicated that AHLs could regulate the synthesis of electron shuttles by S. putrefaciens, such as riboflavin. And the addition of exogenous C6-HSL, C8-HSL, C10-HSL, C12-HSL and 3OC10-HSL increased the Cr(VI) reduction rates by 1.73%, 2.39%, 4.18%, 1.45% and 2.70%, because they could promote the release of riboflavin. It revealed a new pathway by which FA promoted microbial Cr(VI) reduction. This study also provides a novel approach for enhancing the microbial Cr(VI) reduction and a deeper understanding of the communication mechanism among microorganisms. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

12 pages, 490 KB  
Review
A Scoping Review on Male-Mediated Developmental Toxicity
by Lidia Caporossi, Paola Castellano, Enrico Paci and Daniela Pigini
Toxics 2025, 13(9), 707; https://doi.org/10.3390/toxics13090707 - 22 Aug 2025
Viewed by 154
Abstract
Background: Developmental toxicity is defined as adverse effects induced either during pregnancy or as a result of parental exposure. While considerable attention has been devoted to maternal exposure to such chemicals, the role of paternal exposure has often been regarded as less significant. [...] Read more.
Background: Developmental toxicity is defined as adverse effects induced either during pregnancy or as a result of parental exposure. While considerable attention has been devoted to maternal exposure to such chemicals, the role of paternal exposure has often been regarded as less significant. Objective: This study aims to highlight the impact of male-mediated developmental toxicity. Methods: An online search was conducted using PubMed, Scopus, and Google Scholar to identify studies focusing on developmental toxicity in offspring associated with paternal exposure during the preconception period. Results: The scientific literature—ranging from studies on pharmaceutical use to substances of abuse (notably tobacco, alcohol, opioids, and cannabinoids), as well as occupational and environmental exposure to specific compounds (e.g., phthalates, certain organic solvents, pesticides)—indicates that paternal exposure to developmental toxicants can adversely affect offspring health through various biochemical mechanisms. Conclusions: There is substantial experimental evidence of male-mediated developmental toxicity for various chemicals, demonstrating a particular vulnerability of the male germ line to transmissible effects. Several mechanisms have been proposed to explain the biochemical pathways underlying this toxicity. Evidence in humans is more challenging to interpret; however, numerous findings—both concerning substances of abuse and occupational exposures—raise concerns regarding the potential developmental risks to offspring. Full article
Show Figures

Figure 1

15 pages, 4805 KB  
Article
Exploring Different Toxic Effects of UV-Aged and Bio-Aged Microplastics on Growth and Oxidative Stress of Escherichia coli
by Juntong Gao, Qimeng Yang, Xiarui Fan, Xinwei Zhou and Peng Ren
Toxics 2025, 13(9), 706; https://doi.org/10.3390/toxics13090706 - 22 Aug 2025
Viewed by 151
Abstract
Toxicological effects of microplastics (MPs) have been confirmed in a variety of microorganisms in aquatic environments, and they are closely correlated with the physicochemical properties of the MPs. In a natural environment, different aging treatments always induce different alterations in the physicochemical properties [...] Read more.
Toxicological effects of microplastics (MPs) have been confirmed in a variety of microorganisms in aquatic environments, and they are closely correlated with the physicochemical properties of the MPs. In a natural environment, different aging treatments always induce different alterations in the physicochemical properties of MPs, thus influencing their environmental behaviors and biotoxicity. In this work, physicochemical properties and toxicity towards Escherichia coli (E. coli) were investigated in polystyrene (PS) MPs (3 and 10 μm) before and after aging by UV irradiation and biofilm formation, respectively. The results show that UV irradiation and biofilm formation led to different alterations in the surface morphologies and functional groups of PS. The UV-aged 3 μm PS had the strongest inhibitory effect on E. coli growth, and the bio-aged 10 μm PS had the strongest beneficial effect on E. coli growth. Also, the ATPase activity, production of intercellular ROS, and MDA content of the E. coli were affected differently. UV aging enhanced the toxicity of PS towards E. coli, while bio-aging had an opposite weakening effect. Overall, our research verified the remarkable differences in the physicochemical properties and biotoxicity of PS induced by UV aging and bio-aging. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

Previous Issue
Back to TopTop