An Analysis of the Spatiotemporal Variability of Key Water Quality Parameters in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Spatial Pattern of Water Quality Parameters
3.2. Temporal Variability of Water Quality Parameters
3.3. Spatiotemporal Variability of Water Quality Parameters
3.4. Intercorrelations among Parameters
4. Discussion
4.1. Overall Water Quality Condition in China
4.2. Factors Affecting the Variability of Water Quality Parameters
4.3. Intercorrelation among Water Quality Parameters
4.4. Processes Leading to High Concentrations of Water Quality Parameters
4.5. Implications for Pollution Control and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vörösmarty, C.J.; Sahagian, D. Anthropogenic Disturbance of the Terrestrial Water Cycle. Bioscience 2000, 50, 753–765. [Google Scholar] [CrossRef]
- Ma, T.; Zhao, N.; Ni, Y.; Yi, J.; Wilson, J.P.; He, L.; Du, Y.; Pei, T.; Zhou, C.; Song, C.; et al. China’s Improving Inland Surface Water Quality since 2003. Sci. Adv. 2020, 6, eaau3798. [Google Scholar] [CrossRef] [PubMed]
- Pesce, S.F.; Wunderlin, D.A. Use of Water Quality Indices to Verify the Impact of Córdoba City (Argentina) on Suquía River. Water Res. 2000, 34, 2915–2926. [Google Scholar] [CrossRef]
- Moore, K.; Jennings, E.; Allott, N.; May, L.; Järvinen, M.; Arvola, L.; Tamm, T.; Järvet, A.; Nõges, T.; Pierson, D.; et al. Modelling the Effects of Climate Change on the Supply of Inorganic Nitrogen. In The Impact of Climate Change on European Lakes; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Niu, L.; van Gelder, P.; Luo, X.; Cai, H.; Zhang, T.; Yang, Q. Implications of Nutrient Enrichment and Related Environmental Impacts in the Pearl River Estuary, China: Characterizing the Seasonal Influence of Riverine Input. Water 2020, 12, 3245. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; McCarthy, M.J.; Peierls, B.L.; Wilhelm, S.W. Algal Blooms: Noteworthy Nitrogen. Science 2014, 346, 175. [Google Scholar] [CrossRef]
- Qin, B.; Paerl, H.W.; Brookes, J.D.; Liu, J.; Jeppesen, E.; Zhu, G.; Zhang, Y.; Xu, H.; Shi, K.; Deng, J. Why Lake Taihu Continues to Be Plagued with Cyanobacterial Blooms through 10 years (2007–2017) Efforts. Sci. Bull. 2019, 64, 354–356. [Google Scholar] [CrossRef]
- Harada, M. Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit. Rev. Toxicol. 1995, 25, 1–24. [Google Scholar] [CrossRef]
- Kasuya, M.; Teranishi, H.; Aoshima, K.; Katoh, T.; Horiguchi, H.; Morikawa, Y.; Nishijo, M.; Iwata, K. Water Pollution by Cadmium and the Onset of Itai-Itai Disease. Water Sci. Technol. 1992, 25, 149–156. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.J.; Ali, A.; DeLaune, R.D. Heavy Metal Distribution and Water Quality Characterization of Water Bodies in Louisiana’s Lake Pontchartrain Basin, USA. Environ. Monit. Assess. 2016, 188, 628. [Google Scholar] [CrossRef]
- Qiaoqiao, Z.H.O.U.; Bo, R.E.N.; Youzhi, L.I.; Yandong, N.I.U.; Xiaohui, D.I.N.G.; Xin, Y.A.O.; Hualin, B.I.A.N. Trends and Sources of Dissolved Heavy Metal Pollution in Water of Rivers and Lakes in China. Environ. Chem. 2020, 8, 2044–2054. [Google Scholar] [CrossRef]
- Duan, H.; Loiselle, S.A.; Zhu, L.; Feng, L.; Zhang, Y.; Ma, R. Distribution and Incidence of Algal Blooms in Lake Taihu. Aquat. Sci. 2015, 77, 9–16. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D.; Li, H. Spatio-Temporal Dynamics of Water Quality and Their Linkages with the Watershed Landscape in Highly Disturbed Headwater Watersheds in China. Environ. Sci. Pollut. Res. 2018, 25, 35287–35300. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Liu, L.; Li, H.; Peng, D.; Wu, Y.; Xia, H.; Zhang, Z.; Zhu, Q. A Data-Driven Framework for Spatiotemporal Characteristics, Complexity Dynamics, and Environmental Risk Evaluation of River Water Quality. Sci. Total Environ. 2021, 785, 147134. [Google Scholar] [CrossRef]
- Paerl, H.W. Assessing and Managing Nutrient-Enhanced Eutrophication in Estuarine and Coastal Waters: Interactive Effects of Human and Climatic Perturbations. Ecol. Eng. 2006, 26, 40–54. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, X.; Huo, S.; Ma, C.; Li, W.; Liu, Y.; Tong, Y.; Wu, F. Changes in China’s River Water Quality since 1980: Management Implications from Sustainable Development. NPJ Clean Water 2023, 6, 45. [Google Scholar] [CrossRef]
- Fan, X.; Cui, B.; Zhao, H.; Zhang, Z.; Zhang, H. Assessment of River Water Quality in Pearl River Delta Using Multivariate Statistical Techniques. Procedia Environ. Sci. 2010, 2, 1220–1234. [Google Scholar] [CrossRef]
- Wunderlin, D.A.; María Del Pilar, D.; María Valeria, A.; Fabiana, P.S.; Cecilia, H.A.; de Los Ángeles, B.M. Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study:: Suquía River Basin (Córdoba–Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Li, J.; Xia, C. Drivers of Spatial and Temporal Dynamics in Water Turbidity of China Yangtze River Basin. Water 2023, 15, 1264. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.Y.; Zhan, C.; Ye, A. Water Quality Management in China: The Case of the Huai River Basin. Int. J. Water Resour. Dev. 2011, 27, 167–180. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and Innovative Trend Method for Water Quality Parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Chen, Y.; Zou, S.; Wang, Y.; Nover, D.; Chen, W.; Yang, G. Identification of Long-Term Trends and Seasonality in High-Frequency Water Quality Data from the Yangtze River Basin, China. PLoS ONE 2018, 13, e0188889. [Google Scholar] [CrossRef]
- Huo, S.; Ma, C.; Li, W.; He, Z.; Zhang, H.; Yu, L.; Liu, Y.; Cao, X.; Wu, F. Spatiotemporal Differences in Riverine Nitrogen and Phosphorus Fluxes and Associated Drivers across China from 1980 to 2018. Chemosphere 2023, 310, 136827. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, H.; Tusher, M.A.; Rahat, I.S.; Khasim, S.; Mohanty, S.N. Water Quality Assessment Through Predictive Machine Learning. In Lecture Notes in Networks and Systems; Springer: Singapore, 2023; Volume 699 LNNS. [Google Scholar] [CrossRef]
- Dong, L.; Gong, C.; Huai, H.; Wu, E.; Lu, Z.; Hu, Y.; Li, L.; Yang, Z. Retrieval of Water Quality Parameters in Dianshan Lake Based on Sentinel-2 MSI Imagery and Machine Learning: Algorithm Evaluation and Spatiotemporal Change Research. Remote Sens. 2023, 15, 5001. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Liu, Z.; Guo, W.; Gao, N. Water Pollution Characteristics and Assessment of Lower Reaches in Haihe River Basin. Procedia Environ. Sci. 2010, 2, 199–206. [Google Scholar] [CrossRef]
- Wang, E.; Li, Q.; Hu, H.; Peng, F.; Zhang, P.; Li, J. Spatial Characteristics and Influencing Factors of River Pollution in China. Water Environ. Res. 2019, 91, 351–363. [Google Scholar] [CrossRef]
- Bu, H.; Meng, W.; Zhang, Y. Spatial and Seasonal Characteristics of River Water Chemistry in the Taizi River in Northeast China. Environ. Monit. Assess. 2014, 186, 3619–3632. [Google Scholar] [CrossRef]
- Dou, M.; Zhang, Y.; Li, G. Temporal and Spatial Characteristics of the Water Pollutant Concentration in Huaihe River Basin from 2003 to 2012, China. Env. Monit Assess 2016, 188, 522. [Google Scholar] [CrossRef]
- Li, K.; Wang, L.; Li, Z.; Xie, Y.; Wang, X.; Fang, Q. Exploring the Spatial-Seasonal Dynamics of Water Quality, Submerged Aquatic Plants and Their Influencing Factors in Different Areas of a Lake. Water 2017, 9, 707. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, S.P.; He, L.Y.; Wang, Y.C.; Yue, Y.; Zeng, H.; Xu, N. Assessing Water Quality in the Pearl River for the Last Decade Based on Clustering: Characteristic, Evolution and Policy Implications. Water Res. 2023, 244, 120492. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Y.; Zhang, Z.; Wang, P.; Song, X.; Wei, X.; Feng, B. The Spatio-Temporal Variations of Surface Water Quality in China during the “Eleventh Five-Year Plan”. Environ. Monit. Assess. 2015, 187, 64. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gu, S.; Liu, W.; Han, H.; Zhang, Q. Water Quality in Relation to Land Use and Land Cover in the Upper Han River Basin, China. Catena 2008, 75, 216–222. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, J.; Zhang, Y.; Qin, B.; Jeppesen, E.; Shi, K.; Brookes, J.D.; Spencer, R.G.M.; Zhu, G.; Gao, G. Improving Water Quality in China: Environmental Investment Pays Dividends. Water Res. 2017, 118, 152–159. [Google Scholar] [CrossRef]
- Stets, E.G.; Sprague, L.A.; Oelsner, G.P.; Johnson, H.M.; Murphy, J.C.; Ryberg, K.; Vecchia, A.V.; Zuellig, R.E.; Falcone, J.A.; Riskin, M.L. Landscape Drivers of Dynamic Change in Water Quality of U.S. Rivers. Environ. Sci. Technol. 2020, 54, 4336–4343. [Google Scholar] [CrossRef] [PubMed]
- Risal, A.; Parajuli, P.B.; Dash, P.; Ouyang, Y.; Linhoss, A. Sensitivity of Hydrology and Water Quality to Variation in Land Use and Land Cover Data. Agric. Water Manag. 2020, 241, 106366. [Google Scholar] [CrossRef]
- Poonam, T.; Tanushree, B.; Sukalyan, C. Water Quality Indices-Important Tools for Water Quality Assessment: A Review. Int. J. Adv. Chem. 2013, 1, 15–28. [Google Scholar]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of River Water Quality Indices—A Review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef]
- Tunc Dede, O.; Telci, I.T.; Aral, M.M. The Use of Water Quality Index Models for the Evaluation of Surface Water Quality: A Case Study for Kirmir Basin, Ankara, Turkey. Water Qual. Expo. Health 2013, 5, 41–56. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, Y.; Bing, H.; Peng, J.; Dong, F.; Gao, J.; Arhonditsis, G.B. Characterizing the River Water Quality in China: Recent Progress and on-Going Challenges. Water Res. 2021, 201, 117309. [Google Scholar] [CrossRef]
- Hu, G.; Bakhtavar, E.; Hewage, K.; Mohseni, M.; Sadiq, R. Heavy Metals Risk Assessment in Drinking Water: An Integrated Probabilistic-Fuzzy Approach. J. Environ. Manag. 2019, 250, 109514. [Google Scholar] [CrossRef]
- Pearson, K. Note on Regression and Inheritance in the Case of Two Parents. Proc. R. Soc. Lond. 1895, 58, 240–242. [Google Scholar] [CrossRef]
- Hogg, R.V.; McKean, J.W.; Craig, A.T. Introduction to Mathematical Statistics, 7th ed.; Pearson: Boston, MA, USA, 2013. [Google Scholar]
- Li, J.; Meng, X.; Zhang, Y.; Li, J.; Xia, L.; Zheng, H. Analysis of the Temporal and Spatial Distribution of Water Quality in China’s Major River Basins, and Trends between 2005 and 2010. Front. Earth Sci. 2015, 9, 463–472. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, S.; Li, S.; Zhang, L.; Wang, G.; Zhang, L.; Wang, J.; Li, Z. The Cycle of Nitrogen in River Systems: Sources, Transformation, and Flux. Environ.Sci. Process. Impacts 2018, 20, 863–891. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The Impacts of Climate Change on Water Resources and Agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Guan, J.; Ba, Y.; Chen, W.; Huang, J.; Cheng, Y.; Zhang, Y.; Qu, Q.; Zhao, M. Spatial Distribution Pattern and Driving Mechanism of Heavy Metal Elements in Soils of Middle-Alpine Hilly Region, Yunnan Province. Geol. China 2024, 51, 304–326. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Stuart Chapin, F.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global Consequences of Land Use. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of Eutrophication and Water Quality in the Estuarine Area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Yang, S.L.; Milliman, J.D.; Xu, K.H.; Deng, B.; Zhang, X.Y.; Luo, X.X. Downstream Sedimentary and Geomorphic Impacts of the Three Gorges Dam on the Yangtze River. Earth Sci. Rev. 2014, 138, 469–486. [Google Scholar] [CrossRef]
- Wang, L.; Jiao, Y.; Ming, Q.; He, L.; Zhou, H. Evaluation of Heavy Metal Pollution in Bijiang Basin in Yunnan Province. Res. Environ. Sci. 2009, 22, 595–600. [Google Scholar]
- Yang, C.; Yang, P.; Geng, J.; Yin, H.; Chen, K. Sediment Internal Nutrient Loading in the Most Polluted Area of a Shallow Eutrophic Lake (Lake Chaohu, China) and Its Contribution to Lake Eutrophication. Environ. Pollut. 2020, 262, 114292. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H. Water Pollution during China’s Industrial Transition. Environ. Dev. 2013, 8, 57–73. [Google Scholar] [CrossRef]
- Lou, H.Z.; Wu, X.J.; Hao, F.H.; Yang, S.; Zhang, X. Research Progress of Non-Point Source Pollution in China over the Past 30 Years and Discussion of the Future Direction Development. Acta Sci. Circumstantiae 2020, 40, 1535–1949. [Google Scholar]
- He, X.; Li, P. Surface Water Pollution in the Middle Chinese Loess Plateau with Special Focus on Hexavalent Chromium (Cr6+): Occurrence, Sources and Health Risks. Expo. Health 2020, 12, 385–401. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, K.; Li, Y.; Sun, Y.; Li, H.; Yang, G. Human Activities Increase the Nitrogen in Surface Water on the Eastern Loess Plateau. Geofluids 2021, 2021, 9957731. [Google Scholar] [CrossRef]
- Ringler, C.; Cai, X.; Wang, J.; Ahmed, A.; Xue, Y.; Xu, Z.; Yang, E.; Jianshi, Z.; Zhu, T.; Cheng, L.; et al. Yellow River Basin: Living with Scarcity. Water Int. 2010, 35, 681–701. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, J.; Chen, B.; Huang, B.; Zeng, X.; Zhan, J.; Pan, X. Toxic Metal Contamination and Distribution in Soils and Plants of a Typical Metallurgical Industrial Area in Southwest of China. Environ. Earth Sci. 2014, 72, 2101–2109. [Google Scholar] [CrossRef]
- Liu, W.; Li, S.; Bu, H.; Zhang, Q.; Liu, G. Eutrophication in the Yunnan Plateau Lakes: The Influence of Lake Morphology, Watershed Land Use, and Socioeconomic Factors. Environ. Sci. Pollut. Res. 2012, 19, 858–870. [Google Scholar] [CrossRef]
- Pehme, K.M.; Burlakovs, J.; Kriipsalu, M.; Pilecka, J.; Grinfelde, I.; Tamm, T.; Yahya, J.; Hogland, W. Urban hydrology research fundamentals for waste management practices. Res. Rural Dev. 2019, 1, 160–167. [Google Scholar] [CrossRef]
Parameters 1 | Classes | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
BOD≤ | 3 | 3 | 4 | 6 | 10 |
COD≤ | 15 | 15 | 20 | 30 | 40 |
Cr6≤ | 0.01 | 0.05 | 0.05 | 0.05 | 0.1 |
DO≥ | 7.5 | 6 | 5 | 3 | 2 |
NH3-N≤ | 0.15 | 0.5 | 1.0 | 1.5 | 2.0 |
Pb≤ | 0.01 | 0.01 | 0.05 | 0.05 | 0.1 |
TN≤ | 0.2 | 0.5 | 1.0 | 1.5 | 2.0 |
TP≤ | 0.02 | 0.1 | 0.2 | 0.3 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Yang, Q.; Li, X. An Analysis of the Spatiotemporal Variability of Key Water Quality Parameters in China. Hydrology 2024, 11, 135. https://doi.org/10.3390/hydrology11090135
Li K, Yang Q, Li X. An Analysis of the Spatiotemporal Variability of Key Water Quality Parameters in China. Hydrology. 2024; 11(9):135. https://doi.org/10.3390/hydrology11090135
Chicago/Turabian StyleLi, Kexin, Qichun Yang, and Xia Li. 2024. "An Analysis of the Spatiotemporal Variability of Key Water Quality Parameters in China" Hydrology 11, no. 9: 135. https://doi.org/10.3390/hydrology11090135
APA StyleLi, K., Yang, Q., & Li, X. (2024). An Analysis of the Spatiotemporal Variability of Key Water Quality Parameters in China. Hydrology, 11(9), 135. https://doi.org/10.3390/hydrology11090135