Previous Issue
Volume 11, August
 
 

Hydrology, Volume 11, Issue 9 (September 2024) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
22 pages, 10605 KiB  
Article
Concentrations of F, Na+, and K+ in Groundwater before and after an Earthquake: A Case Study on Tenerife Island, Spain
by Eduardo de Miguel-García and José Francisco Gómez-González
Hydrology 2024, 11(9), 138; https://doi.org/10.3390/hydrology11090138 - 3 Sep 2024
Abstract
Freshwater, vital for life and ecosystems, accounts for only 2.5% of Earth’s water, and is primarily located in polar caps, underground reservoirs, and surface water. Its quality varies due to environmental interactions, especially in groundwater. Tenerife, located in the Canary Islands, Spain, relies [...] Read more.
Freshwater, vital for life and ecosystems, accounts for only 2.5% of Earth’s water, and is primarily located in polar caps, underground reservoirs, and surface water. Its quality varies due to environmental interactions, especially in groundwater. Tenerife, located in the Canary Islands, Spain, relies mainly on underground aquifers and tunnels capturing 51.6 cubic hectometers annually. Ensuring safe drinking water is a global challenge due to health risks from poor water quality, including diseases and cancer. Fluoride, sodium, and potassium are essential for health, and are mainly derived from groundwater as fluoride ions (F) and sodium and potassium cations (Na+, K+). However, excessive F, Na+, and K+ in drinking water is harmful. The World Health Organization limits F to 1.5 mg/L, Na+ to 8.70 meq/L, and K+ to 0.31 meq/L. Geological, climatic, and human factors control the presence and transport of F, Na+, and K+ in groundwater. Seismic events can impact water quality, with long-term effects linked to aquifer structure and transient effects from gas and fluid expansion during earthquakes. This study was motivated by a 3.8 mbLg earthquake in Tenerife in 2012, which allowed its impact on groundwater quality, specifically F, Na+, and K concentrations, to be examined. Post-earthquake, F levels alarmingly increased to 8.367 meq/L, while Na+ and K+ showed no significant changes. This research quantifies the influence of earthquakes on increasing F levels and evaluates F reduction during low seismic activity, emphasizing the importance of water management on volcanic islands. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

21 pages, 2114 KiB  
Article
Livelihood Vulnerability from Drought among Smallholder Livestock Farmers in South Africa
by Yonas T. Bahta and Stephen Aniseth Nyaki
Hydrology 2024, 11(9), 137; https://doi.org/10.3390/hydrology11090137 - 1 Sep 2024
Viewed by 234
Abstract
The impacts of drought and climate change on agriculture have become increasingly apparent, and affect smallholder livestock farmers. Farmers’ livelihoods rely on agriculture; thus, they are vulnerable to the primary and secondary impacts of climate change. In South Africa, policies for increasing the [...] Read more.
The impacts of drought and climate change on agriculture have become increasingly apparent, and affect smallholder livestock farmers. Farmers’ livelihoods rely on agriculture; thus, they are vulnerable to the primary and secondary impacts of climate change. In South Africa, policies for increasing the resilience of smallholder livestock farmers who have suffered from agricultural drought have not paid sufficient attention to the level of livelihood vulnerability. This study assessed the level of livelihood vulnerability of smallholder livestock farmers in the drought-stricken Frances Baard District Municipality in the Northern Cape Province of South Africa. The livelihood vulnerability of 217 randomly selected farmers from the municipality were determined using the Livelihood Vulnerability Index (LVI) and Livelihood Vulnerability Index of the Intergovernmental Panel on Climate Change (LVI-IPCC), which includes seven components and 34 subcomponents addressing livelihood. A high level of livelihood vulnerability, with an LVI score of 0.436, was determined and attributed to high-risk livelihood strategies, food, social networks, health, water, sociodemographics, natural disasters, and climate change. The LVI-IPCC of 0.04 also showed moderate vulnerability due to high exposure, high sensitivity, and low adaptive capacity, especially for the Phokwane, Dikgatlong, and Magareng districts in the Frances Baard municipality. Given continued drought recurrences, it is crucial for the government and other stakeholders to implement strategic and targeted sustainable interventions. The resilience of smallholder livestock farmers should be enhanced by increasing their adaptive capacity through diversified livelihood options while decreasing exposure and sensitivity to agricultural drought risks. Full article
Show Figures

Figure 1

23 pages, 2574 KiB  
Article
Geo-Referenced Databases and SWOT Analysis for Assessing Flood Protection Structures, Measures, and Works at a River Basin Scale
by Eleni Tzanou and Charalampos Skoulikaris
Hydrology 2024, 11(9), 136; https://doi.org/10.3390/hydrology11090136 - 27 Aug 2024
Viewed by 538
Abstract
This research aims to evaluate the operational effectiveness of current flood protection infrastructure and measures in a flood-prone area using geo-referenced information systems and SWOT analysis. To achieve this, all existing flood protection measures and works in the case study basin, namely Strymonas [...] Read more.
This research aims to evaluate the operational effectiveness of current flood protection infrastructure and measures in a flood-prone area using geo-referenced information systems and SWOT analysis. To achieve this, all existing flood protection measures and works in the case study basin, namely Strymonas River basin in Greece, were mapped and recorded. These data, along with water-related spatial information, were stored in a geo-referenced database created within an open-source GIS environment. Additionally, the system was populated with the basin’s recorded historic floods, derived from the European Union’s Floods Directive implementation process. The outputs of the research, which include a spatial comparison of flood protection measures and works with flood event occurrences as well as analyses of the figures, density, and locations of flood protection works, were evaluated as an integrated system and further processed using SWOT analysis. The latter was informed by questionnaire results, and the identified strengths and weaknesses of the flood protection infrastructure were used to explore potential opportunities and threats, which could respectively reinforce or jeopardize the basin’s capacity to effectively respond to future floods. The research framework can be applied to any river basin and could provide important assets in flood protection planning at a basin scale. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

20 pages, 7624 KiB  
Article
An Analysis of the Spatiotemporal Variability of Key Water Quality Parameters in China
by Kexin Li, Qichun Yang and Xia Li
Hydrology 2024, 11(9), 135; https://doi.org/10.3390/hydrology11090135 - 26 Aug 2024
Viewed by 387
Abstract
Intensifying anthropogenic disturbances have caused water pollution in China in recent decades. China has a vast territory with diverse climate conditions, land use types, and human activities, leading to significant water quality variability. However, few studies have investigated nationwide spatiotemporal patterns of key [...] Read more.
Intensifying anthropogenic disturbances have caused water pollution in China in recent decades. China has a vast territory with diverse climate conditions, land use types, and human activities, leading to significant water quality variability. However, few studies have investigated nationwide spatiotemporal patterns of key water quality parameters. In this study, we analyze monthly water quality observations from 3647 gauge stations to understand how water quality changes over time and space in China. We group the stations by water resource regions and adopt Python and SPSS to analyze the spatiotemporal variability and intercorrelations of eight water quality parameters. Results indicate that the concentrations of biochemical oxygen demand of 5 days (BOD5), chemical oxygen demand (COD), dissolved oxygen (DO), ammonia nitrogen (NH3-N), total nitrogen (TN), and total phosphorus (TP) show similar spatial patterns, with higher concentrations in the northern parts than the southern regions of China. The concentrations of COD and TP are higher in the rainy season than in the dry season, while DO, NH3-N, and TN show the opposite seasonal patterns. Strong positive correlations were found between BOD and COD, NH3-N and TP. The annual cumulative distribution figures demonstrate that all parameters showed slightly lower concentrations in 2022 and 2023 than in 2021, except for DO and TN. The TN/TP ratios across different water resource regions in China are significantly higher than 16, indicating that phosphorus is the limiting factor of eutrophication. This investigation provides a comprehensive understanding of the spatiotemporal variability of water quality parameters across China. The results of this study are highly valuable for investigating mechanisms regulating water quality across large spatial scales, thus providing valuable implications for improving water quality and mitigating water pollution. Full article
(This article belongs to the Special Issue Novel Approaches in Contaminant Hydrology and Groundwater Remediation)
Show Figures

Figure 1

14 pages, 18123 KiB  
Article
A Monte Carlo Model for WWTP Effluent Flow Treatment through Enhanced Willow Evapotranspiration
by Aristoteles Tegos
Hydrology 2024, 11(9), 134; https://doi.org/10.3390/hydrology11090134 - 26 Aug 2024
Viewed by 640
Abstract
The effectiveness of using enhanced evapotranspiration rates of willow plantation is a modern environmentally friendly practice for advanced treatment of effluent WWTP flow. The key idea is that through advanced willow evapotranspiration rates, a significant proportion of the effluent flow can be transferred [...] Read more.
The effectiveness of using enhanced evapotranspiration rates of willow plantation is a modern environmentally friendly practice for advanced treatment of effluent WWTP flow. The key idea is that through advanced willow evapotranspiration rates, a significant proportion of the effluent flow can be transferred into the atmosphere through the physical process of evapotranspiration. This study further discusses the concept in a real-world problem using a wide dataset consisting of a recent PET monthly remote dataset namely RASPOTION, monthly recorded rainfall gauge, and experimental willow evapotranspiration surveys across Ireland, to identify the monthly cropping pattern. A Monte Carlo water balance model has been developed for the period 2003–2016. The model was applied in an existing willow plantation at Donard WWTP co. Wicklow, Ireland to identify the exceedance probability of willow plantation runoff against estimated low flows (i.e., Q95, Q99) at the adjacent small tributary. In this case study, any failure which can lead to river quality deterioration was not assessed. The overall framework aims to provide new insights considering the multiple sources of uncertainty (i.e., monthly willow cropping pattern and WWTP effluent flow) in associated environmental engineering problems. Full article
(This article belongs to the Special Issue Forest Hydrometeorology)
Show Figures

Figure 1

21 pages, 11032 KiB  
Article
Evaporation from Porous Rock: Deciphering the Importance of Measuring the Evaporation Front Depth
by Martin Slavík and Martin Lanzendörfer
Hydrology 2024, 11(9), 133; https://doi.org/10.3390/hydrology11090133 - 23 Aug 2024
Viewed by 409
Abstract
The study is concerned with the rate of evaporation from porous rock, including the second stage of evaporation characterised by the existence of a dry surface layer separated from the wet capillary zone by a sharp evaporation front. The main objective is to [...] Read more.
The study is concerned with the rate of evaporation from porous rock, including the second stage of evaporation characterised by the existence of a dry surface layer separated from the wet capillary zone by a sharp evaporation front. The main objective is to investigate the relationship between the depth of evaporation front and the rate of evaporation as the drying process progresses, and to compare measured evaporation rate with the corresponding calculated values. Sandstone core samples saturated with water were allowed to dry naturally under room conditions, while the changes in the evaporation rate and the depth of evaporation front, among other quantities, were measured. We demonstrate that the evaporation rate can be very accurately determined from the depth of the evaporation front and the ambient air temperature and relative humidity using Fick’s law for water-vapor diffusion. During the second stage of evaporation, the diffusion flux through the dry surface layer is computed using the water-vapor diffusion coefficient of the rock, determined from a separate wet cup experiment. In order to cover the first stage of evaporation, an additional parameter characterising the diffusion layer of air above the surface is required, either determined by the best fit to the measured evaporation rates, or adopted from previous studies. The calculated evaporation rate was in good agreement with measurements, with Pearson correlation coefficient 0.98 and relative error of the calculations averaging 15% over the evaporation front depths ranging from 0 to 29 mm. A workflow for determining the evaporation rate from sandstone outcrops is suggested, along with possible applications in sandstone weathering research. Full article
Show Figures

Figure 1

30 pages, 6101 KiB  
Article
Exploring the Added Value of Sub-Daily Bias Correction of High-Resolution Gridded Rainfall Datasets for Rainfall Erosivity Estimation
by Roland Yonaba, Lawani Adjadi Mounirou, Amadou Keïta, Tazen Fowé, Cheick Oumar Zouré, Axel Belemtougri, Moussa Bruno Kafando, Mahamadou Koïta, Harouna Karambiri and Hamma Yacouba
Hydrology 2024, 11(9), 132; https://doi.org/10.3390/hydrology11090132 - 23 Aug 2024
Viewed by 658
Abstract
This study evaluates the impact of sub-daily bias correction of gridded rainfall products (RPs) on the estimation rainfall erosivity in Burkina Faso (West African Sahel). Selected RPs, offering half-hourly to hourly rainfall, are assessed against 10 synoptic stations over the period 2001–2020 to [...] Read more.
This study evaluates the impact of sub-daily bias correction of gridded rainfall products (RPs) on the estimation rainfall erosivity in Burkina Faso (West African Sahel). Selected RPs, offering half-hourly to hourly rainfall, are assessed against 10 synoptic stations over the period 2001–2020 to appraise their accuracy. The optimal product (the integrated multi-satellite retrievals for GPM, IMERG) is further used as a reference for bias correction, to adjust the rainfall distribution in the remaining RPs. RPs-derived rainfall erosivity is compared to the global rainfall erosivity database (GloREDa) estimates. The findings indicate that bias correction improves the rainfall accuracy estimation for all RPs, in terms of quantitative, categorial metrics and spatial patterns. It also improved the distributions of rainfall event intensities and duration across all products, which further significantly improved the annual rainfall erosivity estimates at various timescales along with spatial patterns across the country, as compared to raw RPs. The study also highlights that bias correction is effective at aligning annual trends in rainfall with those in rainfall erosivity derived from RPs. The study therefore underscores the added value of bias correction as a practice for improving the rainfall representation in high-resolution RPs before long-term rainfall erosivity assessment, particularly in data-scarce regions vulnerable to land degradation. Full article
Show Figures

Figure 1

17 pages, 5499 KiB  
Article
An Experimental Investigation of Tsunami Bore Impact on Coastal Structures
by Kutsi S. Erduran, Yahya E. Akansu, Uğur Ünal and Olusola O. Adekoya
Hydrology 2024, 11(9), 131; https://doi.org/10.3390/hydrology11090131 - 23 Aug 2024
Viewed by 540
Abstract
This experimental study focused on the measurement and analysis of the impact force caused by a tsunami bore on a coastal structure. The bore wave was produced by a dam break mechanism. The water depth in the reservoir and the location of the [...] Read more.
This experimental study focused on the measurement and analysis of the impact force caused by a tsunami bore on a coastal structure. The bore wave was produced by a dam break mechanism. The water depth in the reservoir and the location of the coastal structures were varied to simulate different impact scenarios. The time history of the force resulting from the impact of the bore wave on the coastal structure was measured. The propagation of the bore wave along the flume was recorded and the video recordings were converted into digital data using an image-processing technique in order to determine the flow depth variations with time. The hydrostatic forces and the corresponding depth and time-averaged hydrodynamic forces as well as the maximum hydrodynamic forces were acquired for each scenario. The ratio of hydrodynamic to hydrostatic forces were obtained, and it was observed that the calculated averaged ratio was within the recommended design ratio. The results indicate that an increase in the reservoir level caused an increase in the magnitude and intensity of the impact forces, however, the relationship was non-linear. Moreover, it was found that the location of the structure did not play a significant role on the intensity of the impact forces. Full article
(This article belongs to the Special Issue Climate Change Effects on Coastal Management)
Show Figures

Figure 1

18 pages, 3713 KiB  
Article
Water Level Temporal Variability of Lake Mégantic during the Period 1920–2020 and Its Impacts on the Frequency of Heavy Flooding of the Chaudière River (Quebec, Canada)
by Samuel Goulet, Ali Arkamose Assani and Alexandre Roy
Hydrology 2024, 11(9), 130; https://doi.org/10.3390/hydrology11090130 - 23 Aug 2024
Viewed by 397
Abstract
The objective of this study is to analyze the temporal variability in water levels of Lake Mégantic (27.4 km2) during the period 1920–2020 in relation to anthropogenic and natural factors on the one hand, and its impact on the intensity and [...] Read more.
The objective of this study is to analyze the temporal variability in water levels of Lake Mégantic (27.4 km2) during the period 1920–2020 in relation to anthropogenic and natural factors on the one hand, and its impact on the intensity and frequency of heavy flooding (recurring floods ≥ 10 years) of the Chaudière River of which it is the source, on the other hand. The application of four different Mann–Kendall tests showed a significant decrease in lake water levels during this period. The Lombard test revealed two breaks in the average daily maximum and average water levels, but only one break in the average daily minimum water levels. The first shift, which was smoothed, occurred between 1957 and 1963. It was caused by the demolition in 1956 of the first dam built in 1893 and the significant storage of water in the dams built upstream of the lake between 1956 and 1975. The second shift, which was rather abrupt, occurred between 1990 and 1993. It was caused by the voluntary and controlled lowering of the lake’s water levels in 1993 to increase the surface area of the beaches for recreational purposes. However, despite this influence of anthropogenic factors on this drop in water levels, they are negatively correlated with the global warming climate index. It is therefore a covariation, due to anthropogenic factors whose impacts are exerted at different spatial scales, without a physical causal link. However, the winter daily minimum water levels, whose temporal variability has not been influenced by anthropogenic activities, are positively correlated with the NAO and AO indices, but negatively with PDO. Finally, since the transformation of Lake Mégantic into a reservoir following the construction of the Mégantic dam in 1893 and 1973 to control heavy flooding in the Chaudière River, all recurrent floods ≥ 10 years have completely disappeared in the section of this river located downstream of Lake Mégantic. However, the disappearance of these floods and the drop in water levels of Lake Mégantic have not significantly impacted the stationarity in the flow series of the Chaudière River since 1920. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop