A Review on Canine and Human Soft Tissue Sarcomas: New Insights on Prognosis Factors and Treatment Measures
Abstract
:Simple Summary
Abstract
1. Introduction
Canine Model for Advancement in Soft Tissue Sarcoma Treatment
2. Role of Tumor Microenvironment (TME) in the Onset and Progression of Canine and Human Soft Tissue Sarcomas
2.1. Cancer-Associated Fibroblasts (CAFs), Extracellular Matrix (ECM), and Hypoxia
2.2. Tumor-Associated Macrophages (TAMs) and Tumor-Infiltrating Lymphocites (TILs)
2.3. Novel Prognostic Factors and Molecular Markers Associated with Canine and Human STSs
2.4. Genes as Predictors of STSs
2.5. RNAs as Possible Diagnostic Factors
3. New Therapies for Canines and Human Soft Tissue Sarcoma
Immunotherapy Strategies for Canine STS Treatments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Das, S.; Idate, R.; Lana, S.E.; Regan, D.P.; Duval, D.L. Integrated Analysis of Canine Soft Tissue Sarcomas Identifies Recurrent Mutations in TP53, KMT Genes and PDGFB Fusions. Sci. Rep. 2023, 13, 10422. [Google Scholar] [CrossRef]
- Gustafson, D.L.; Duval, D.L.; Regan, D.P.; Thamm, D.H. Canine Sarcomas as a Surrogate for the Human Disease. Pharmacol. Ther. 2018, 188, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.M.; McSporran, K.D.; Bacon, N.J.; Schulman, F.Y.; Foster, R.A.; Powers, B.E. Prognostic Factors for Cutaneous and Subcutaneous Soft Tissue Sarcomas in Dogs. Vet. Pathol. 2011, 48, 73–84. [Google Scholar] [CrossRef]
- Cloutier, J.M.; Charville, G.W. Diagnostic Classification of Soft Tissue Malignancies: A Review and Update from a Surgical Pathology Perspective. Curr. Probl. Cancer 2019, 43, 250–272. [Google Scholar] [CrossRef] [PubMed]
- Bray, J. Soft Tissue Sarcoma in the Dog: An Update. In Pract. 2018, 40, 383–395. [Google Scholar] [CrossRef]
- Damerell, V.; Pepper, M.S.; Prince, S. Molecular Mechanisms Underpinning Sarcomas and Implications for Current and Future Therapy. Signal Transduct. Target. Ther. 2021, 6, 246. [Google Scholar] [CrossRef]
- Paoloni, M.; Khanna, C. Translation of New Cancer Treatments from Pet Dogs to Humans. Nat. Rev. Cancer 2008, 8, 147–156. [Google Scholar] [CrossRef]
- Nacev, B.A.; Sanchez-Vega, F.; Smith, S.A.; Antonescu, C.R.; Rosenbaum, E.; Shi, H.; Tang, C.; Socci, N.D.; Rana, S.; Gularte-Mérida, R.; et al. Clinical Sequencing of Soft Tissue and Bone Sarcomas Delineates Diverse Genomic Landscapes and Potential Therapeutic Targets. Nat. Commun. 2022, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society Key Statistics for Soft Tissue Sarcomas. Key Statistics Soft Tissue Sarcomas; The American Cancer Society: Atlanta, GA, USA, 2018; pp. 1–10. [Google Scholar]
- Hohenhaus, A.E.; Kelsey, J.L.; Haddad, J.; Barber, L.; Palmisano, M.; Farrelly, J.; Soucy, A. Canine Cutaneous and Subcutaneous Soft Tissue Sarcoma: An Evidence-Based Review of Case Management. J. Am. Anim. Hosp. Assoc. 2016, 52, 77–89. [Google Scholar] [CrossRef]
- Goldschmidt, M.; Peña, L.; Rasotto, R.; Zappulli, V. Classification and Grading of Canine Mammary Tumors. Vet. Pathol. 2011, 48, 117–131. [Google Scholar] [CrossRef]
- Aupperle-Lellbach, H.; Grassinger, J.M.; Floren, A.; Törner, K.; Beitzinger, C.; Loesenbeck, G.; Müller, T. Tumour Incidence in Dogs in Germany: A Retrospective Analysis of 109,616 Histopathological Diagnoses (2014–2019). J. Comp. Pathol. 2022, 198, 33–55. [Google Scholar] [CrossRef]
- Grüntzig, K.; Graf, R.; Boo, G.; Guscetti, F.; Hässig, M.; Axhausen, K.W.; Fabrikant, S.; Welle, M.; Meier, D.; Folkers, G.; et al. Swiss Canine Cancer Registry 1955-2008: Occurrence of the Most Common Tumour Diagnoses and Influence of Age, Breed, Body Size, Sex and Neutering Status on Tumour Development. J. Comp. Pathol. 2016, 155, 156–170. [Google Scholar] [CrossRef]
- Dobson, J.M. Breed-Predispositions to Cancer in Pedigree Dogs. ISRN Vet. Sci. 2013, 2013, 941275. [Google Scholar] [CrossRef]
- Edmunds, G.L.; Smalley, M.J.; Beck, S.; Errington, R.J.; Gould, S.; Winter, H.; Brodbelt, D.C.; O’Neill, D.G. Dog Breeds and Body Conformations with Predisposition to Osteosarcoma in the UK: A Case-Control Study. Canine Med. Genet. 2021, 8, 2. [Google Scholar] [CrossRef]
- Bray, J.P. Soft Tissue Sarcoma in the Dog—Part 1: A Current Review. J. Small Anim. Pract. 2016, 57, 510–519. [Google Scholar] [CrossRef]
- Pillozzi, S.; Bernini, A.; Palchetti, I.; Crociani, O.; Antonuzzo, L.; Campanacci, D.; Scoccianti, G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers 2021, 13, 44. [Google Scholar] [CrossRef]
- Arendt, M.L.; Dobson, J.M. Sarcoma Predisposition in Dogs with a Comparative View to Human Orthologous Disease. Vet. Sci. 2023, 10, 476. [Google Scholar] [CrossRef]
- Snow, A.; Ring, A.; Struycken, L.; Mack, W.; Koç, M.; Lang, J.E. Incidence of Radiation Induced Sarcoma Attributable to Radiotherapy in Adults: A Retrospective Cohort Study in the SEER Cancer Registries across 17 Primary Tumor Sites. Cancer Epidemiol. 2021, 70, 101857. [Google Scholar] [CrossRef]
- Edwards, D.; Voronina, A.; Attwood, K.; Grand’Maison, A. Association between Occupational Exposures and Sarcoma Incidence and Mortality: Systematic Review and Meta-Analysis. Syst. Rev. 2021, 10, 231. [Google Scholar] [CrossRef]
- Arnold, C. Sick as a Dog: How Understanding Canine Diseases Will Save Human Lives. Nat. Med. 2022, 28, 1970–1973. [Google Scholar] [CrossRef]
- Gardner, H.L.; Fenger, J.M.; London, C.A. Dogs as a Model for Cancer. Annu. Rev. Anim. Biosci. 2016, 4, 199–222. [Google Scholar] [CrossRef]
- Séguin, B. Canine Soft Tissue Sarcomas: Can Being a Dog’s Best Friend Help a Child? Front. Oncol. 2017, 7, 285. [Google Scholar] [CrossRef]
- Rodrigues, L.; Watson, J.; Feng, Y.; Lewis, B.; Harvey, G.; Post, G.; Megquier, K.; White, M.E.; Lambert, L.; Miller, A.; et al. Shared Hotspot Mutations in Oncogenes Position Dogs as an Unparalleled Comparative Model for Precision Therapeutics. Sci. Rep. 2023, 13, 10935. [Google Scholar] [CrossRef]
- Lam, L.; Tien, T.; Wildung, M.; White, L.; Sellon, R.K.; Fidel, J.L.; Shelden, E.A. Comparative Whole Transcriptome Analysis of Gene Expression in Three Canine Soft Tissue Sarcoma Types. PLoS ONE 2022, 17, e0273705. [Google Scholar] [CrossRef]
- Endo, M.; Lin, P.P. Surgical Margins in the Management of Extremity Soft Tissue Sarcoma. Chinese Clin. Oncol. 2018, 7, 37. [Google Scholar] [CrossRef]
- Panagi, M.; Pilavaki, P.; Constantinidou, A.; Stylianopoulos, T. Immunotherapy in Soft Tissue and Bone Sarcoma: Unraveling the Barriers to Effectiveness. Theranostics 2022, 12, 6106–6129. [Google Scholar] [CrossRef]
- DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef]
- Van Norman, G.A. Drugs, Devices, and the FDA: Part 1: An Overview of Approval Processes for Drugs. JACC. Basic Transl. Sci. 2016, 1, 170–179. [Google Scholar] [CrossRef]
- Van Norman, G.A. Phase II Trials in Drug Development and Adaptive Trial Design. JACC. Basic to Transl. Sci. 2019, 4, 428–437. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The Tumor Microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Rahimi, A.; Esmaeili, Y.; Dana, N.; Dabiri, A.; Rahimmanesh, I.; Jandaghian, S.; Vaseghi, G.; Shariati, L.; Zarrabi, A.; Haghjooy Javanmard, S.; et al. A Comprehensive Review on Novel Targeted Therapy Methods and Nanotechnology-Based Gene Delivery Systems in Melanoma. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2023, 187, 106476. [Google Scholar] [CrossRef] [PubMed]
- Bergholz, J.S.; Wang, Q.; Kabraji, S.; Zhao, J.J. Integrating Immunotherapy and Targeted Therapy in Cancer Treatment: Mechanistic Insights and Clinical Implications. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 5557–5566. [Google Scholar] [CrossRef] [PubMed]
- Dow, S. A Role for Dogs in Advancing Cancer Immunotherapy Research. Front. Immunol. 2020, 10, 2935. [Google Scholar] [CrossRef]
- Maeda, S. Second Era of Molecular-Targeted Cancer Therapies in Dogs. J. Vet. Med. Sci. 2023, 85, 790–798. [Google Scholar] [CrossRef]
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the Tumor Immune Microenvironment (TIME) for Effective Therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor Microenvironment Complexity and Therapeutic Implications at a Glance. Cell Commun. Signal. 2020, 18, 59. [Google Scholar] [CrossRef]
- Tsagozis, P.; Gonzalez-Molina, J.; Georgoudaki, A.-M.; Lehti, K.; Carlson, J.; Lundqvist, A.; Haglund, F.; Ehnman, M. Sarcoma Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1296, 319–348. [Google Scholar] [CrossRef] [PubMed]
- Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers 2022, 14, 3906. [Google Scholar] [CrossRef]
- Crane, J.N.; Graham, D.S.; Mona, C.E.; Nelson, S.D.; Samiei, A.; Dawson, D.W.; Dry, S.M.; Masri, M.G.; Crompton, J.G.; Benz, M.R.; et al. Fibroblast Activation Protein Expression in Sarcomas. Sarcoma 2023, 2023, 2480493. [Google Scholar] [CrossRef]
- Ben-Ami, E.; Perret, R.; Huang, Y.; Courgeon, F.; Gokhale, P.C.; Laroche-Clary, A.; Eschle, B.K.; Velasco, V.; Le Loarer, F.; Algeo, M.-P.; et al. LRRC15 Targeting in Soft-Tissue Sarcomas: Biological and Clinical Implications. Cancers 2020, 12, 757. [Google Scholar] [CrossRef] [PubMed]
- Kudo, A.; Yoshimoto, S.; Yoshida, H.; Izumi, Y.; Takagi, S. Biological Features of Canine Cancer-Associated Fibroblasts and Their Influence on Cancer Cell Invasion. J. Vet. Med. Sci. 2022, 84, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Monteran, L.; Erez, N. The Dark Side of Fibroblasts: Cancer-Associated Fibroblasts as Mediators of Immunosuppression in the Tumor Microenvironment. Front. Immunol. 2019, 10, 1835. [Google Scholar] [CrossRef] [PubMed]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Li, Y.; Zhang, S.; Wang, X.; Dou, H.; Yu, X.; Zhang, Z.; Yang, S.; Xiao, M. Extracellular Matrix Remodeling in Tumor Progression and Immune Escape: From Mechanisms to Treatments. Mol. Cancer 2023, 22, 48. [Google Scholar] [CrossRef]
- Mortezaee, K.; Majidpoor, J. The Impact of Hypoxia on Immune State in Cancer. Life Sci. 2021, 286, 120057. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Stewart, R.L.; Chen, J.; Gao, T.; Scott, T.L.; Samayoa, L.M.; O’Connor, K.; Lane, A.N.; Xu, R. Collagen Prolyl 4-Hydroxylase 1 Is Essential for HIF-1α Stabilization and TNBC Chemoresistance. Nat. Commun. 2018, 9, 4456. [Google Scholar] [CrossRef] [PubMed]
- Saatci, O.; Kaymak, A.Ö.; Raza, U.; Ersan, P.G.; Akbulut, O.; Banister, C.E.; Sikirzhytski, V.; Tokat, U.M.; Aykut, G.; Ansari, S.A.; et al. Targeting Lysyl Oxidase (LOX) Overcomes Chemotherapy Resistance in Triple Negative Breast Cancer. Nat. Commun. 2020, 11, 2416. [Google Scholar] [CrossRef] [PubMed]
- Forker, L.J.; Bibby, B.; Yang, L.; Lane, B.; Irlam, J.; Mistry, H.; Khan, M.; Valentine, H.; Wylie, J.; Shenjere, P.; et al. Technical Development and Validation of a Clinically Applicable Microenvironment Classifier as a Biomarker of Tumour Hypoxia for Soft Tissue Sarcoma. Br. J. Cancer 2023, 128, 2307–2317. [Google Scholar] [CrossRef]
- Heinrich, F.; Lehmbecker, A.; Raddatz, B.B.; Kegler, K.; Tipold, A.; Stein, V.M.; Kalkuhl, A.; Deschl, U.; Baumgärtner, W.; Ulrich, R.; et al. Morphologic, Phenotypic, and Transcriptomic Characterization of Classically and Alternatively Activated Canine Blood-Derived Macrophages in Vitro. PLoS ONE 2017, 12, e0183572. [Google Scholar] [CrossRef]
- Tamura, R.; Tanaka, T.; Yamamoto, Y.; Akasaki, Y.; Sasaki, H. Dual Role of Macrophage in Tumor Immunity. Immunotherapy 2018, 10, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ye, Z.; Song, F.; He, Y.; Liu, J. The Role of TAMs in Tumor Microenvironment and New Research Progress. Stem Cells Int. 2022, 2022, 5775696. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.P.; Perrott, M.R.; Munday, J.S. Immunostaining for VEGF and Decorin Predicts Poor Survival and Recurrence in Canine Soft Tissue Sarcoma. Vet. Sci. 2023, 10, 256. [Google Scholar] [CrossRef] [PubMed]
- Pakos, E.E.; Goussia, A.C.; Tsekeris, P.G.; Papachristou, D.J.; Stefanou, D.; Agnantis, N.J. Expression of Vascular Endothelial Growth Factor and Its Receptor, KDR/Flk-1, in Soft Tissue Sarcomas. Anticancer Res. 2005, 25, 3591–3596. [Google Scholar]
- Chao, C.; Al-Saleem, T.; Brooks, J.J.; Rogatko, A.; Kraybill, W.G.; Eisenberg, B. Vascular Endothelial Growth Factor and Soft Tissue Sarcomas: Tumor Expression Correlates with Grade. Ann. Surg. Oncol. 2001, 8, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Healey, J.; Ogura, K.; Yoshida, A.; Kondo, H.; Hata, T.; Kure, M.; Tazawa, H.; Nakata, E.; Kunisada, T.; et al. Role of Tumor-Associated Macrophages in Sarcomas. Cancers 2021, 13, 1086. [Google Scholar] [CrossRef]
- Li, C.; Jiang, P.; Wei, S.; Xu, X.; Wang, J. Regulatory T Cells in Tumor Microenvironment: New Mechanisms, Potential Therapeutic Strategies and Future Prospects. Mol. Cancer 2020, 19, 116. [Google Scholar] [CrossRef]
- Soliman, H.; Rawal, B.; Fulp, J.; Lee, J.-H.; Lopez, A.; Bui, M.M.; Khalil, F.; Antonia, S.; Yfantis, H.G.; Lee, D.H.; et al. Analysis of Indoleamine 2-3 Dioxygenase (IDO1) Expression in Breast Cancer Tissue by Immunohistochemistry. Cancer Immunol. Immunother. 2013, 62, 829–837. [Google Scholar] [CrossRef]
- Smolle, M.A.; Herbsthofer, L.; Goda, M.; Granegger, B.; Brcic, I.; Bergovec, M.; Scheipl, S.; Prietl, B.; El-Heliebi, A.; Pichler, M.; et al. Influence of Tumor-Infiltrating Immune Cells on Local Control Rate, Distant Metastasis, and Survival in Patients with Soft Tissue Sarcoma. Oncoimmunology 2021, 10, 1896658. [Google Scholar] [CrossRef]
- Watanabe, S.; Shimoi, T.; Nishikawa, T.; Kawachi, A.; Okuma, H.S.; Tokura, M.; Yazaki, S.; Mizoguchi, C.; Arakaki, M.; Saito, A.; et al. Lymphocyte-to-Monocyte Ratio as a Prognostic and Potential Tumor Microenvironment Indicator in Advanced Soft Tissue Sarcoma Treated with First-Line Doxorubicin Therapy. Sci. Rep. 2023, 13, 10734. [Google Scholar] [CrossRef]
- Withers, S.S.; Skorupski, K.A.; York, D.; Choi, J.W.; Woolard, K.D.; Laufer-Amorim, R.; Sparger, E.E.; Rodriguez, C.O.; McSorley, S.J.; Monjazeb, A.M.; et al. Association of Macrophage and Lymphocyte Infiltration with Outcome in Canine Osteosarcoma. Vet. Comp. Oncol. 2019, 17, 49–60. [Google Scholar] [CrossRef]
- Wunder, J.S.; Lee, M.J.; Nam, J.; Lau, B.Y.; Dickson, B.C.; Pinnaduwage, D.; Bull, S.B.; Ferguson, P.C.; Seto, A.; Gokgoz, N.; et al. Osteosarcoma and Soft-Tissue Sarcomas with an Immune Infiltrate Express PD-L1: Relation to Clinical Outcome and Th1 Pathway Activation. Oncoimmunology 2020, 9, 1737385. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in Patients with TRK Fusion-Positive Solid Tumours: A Pooled Analysis of Three Phase 1/2 Clinical Trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Cree, I.A.; Tan, P.H.; Travis, W.D.; Wesseling, P.; Yagi, Y.; White, V.A.; Lokuhetty, D.; Scolyer, R.A. Counting Mitoses: SI(Ze) Matters! Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc 2021, 34, 1651–1657. [Google Scholar] [CrossRef]
- Pimentel, P.A.B.; Giuliano, A.; Bęczkowski, P.M.; Horta, R.D.S. Molecular Profile of Canine Hemangiosarcoma and Potential Novel Therapeutic Targets. Vet. Sci. 2023, 10, 387. [Google Scholar] [CrossRef]
- Silver, K.I.; Patkar, S.; Mazcko, C.; Berger, E.P.; Beck, J.A.; LeBlanc, A.K. Patterns of Metastatic Progression and Association with Clinical Outcomes in Canine Osteosarcoma: A Necropsy Study of 83 Dogs. Vet. Comp. Oncol. 2023, 21, 646–655. [Google Scholar] [CrossRef]
- Qi, L.; Zhang, W.; Ren, X.; Xu, R.; Yang, Z.; Chen, R.; Tu, C.; Li, Z. Cross-Talk of Multiple Types of RNA Modification Regulators Uncovers the Tumor Microenvironment and Immune Infiltrates in Soft Tissue Sarcoma. Front. Immunol. 2022, 13, 921223. [Google Scholar] [CrossRef]
- Han, J.; Hu, Y.; Liu, S.; Jiang, J.; Wang, H. A Newly Established Cuproptosis-Associated Long Non-Coding RNA Signature for Predicting Prognosis and Indicating Immune Microenvironment Features in Soft Tissue Sarcoma. J. Oncol. 2022, 2022, 8489387. [Google Scholar] [CrossRef]
- Ye, Z.; Zheng, Z.; Peng, L. MicroRNA Profiling of Serum Exosomes in Patients with Osteosarcoma by High-Throughput Sequencing. J. Investig. Med. Off. Publ. Am. Fed. Clin. Res. 2020, 68, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Fujiwara, T.; Yoshida, A.; Uotani, K.; Kiyono, M.; Yokoo, S.; Hasei, J.; Kunisada, T.; Ozaki, T. Clinical Relevance and Functional Significance of Cell-Free MicroRNA-1260b Expression Profiles in Infiltrative Myxofibrosarcoma. Sci. Rep. 2020, 10, 9414. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Chen, F.; Wang, L.; Yang, Z.; Zhang, W.; Li, Z.H. Identification of Anoikis-Related Molecular Patterns to Define Tumor Microenvironment and Predict Immunotherapy Response and Prognosis in Soft-Tissue Sarcoma. Front. Pharmacol. 2023, 14, 1136184. [Google Scholar] [CrossRef]
- Bray, J.P.; Munday, J.S. Development of a Nomogram to Predict the Outcome for Patients with Soft Tissue Sarcoma. Vet. Sci. 2023, 10, 266. [Google Scholar] [CrossRef]
- Ehrhart, N. Soft-Tissue Sarcomas in Dogs: A Review. J. Am. Anim. Hosp. Assoc. 2005, 41, 241–246. [Google Scholar] [CrossRef]
- Bray, J.P. Soft Tissue Sarcoma in the Dog—Part 2: Surgical Margins, Controversies and a Comparative Review. J. Small Anim. Pract. 2017, 58, 63–72. [Google Scholar] [CrossRef]
- Abrams, B.E.; Putterman, A.B.; Ruple, A.; Wavreille, V.A.; Selmic, L.E. Tumors in Dogs: A Systematic Review. Vet. Surg. 2020, 50, 1–14. [Google Scholar]
- McSporran, K.D. Histologic Grade Predicts Recurrence for Marginally Excised Canine Subcutaneous Soft Tissue Sarcomas. Vet. Pathol. 2009, 46, 928–933. [Google Scholar] [CrossRef]
- Gronchi, A.; Lo Vullo, S.; Colombo, C.; Collini, P.; Stacchiotti, S.; Mariani, L.; Fiore, M.; Casali, P.G. Extremity Soft Tissue Sarcoma in a Series of Patients Treated at a Single Institution: Local Control Directly Impacts Survival. Ann. Surg. 2010, 251, 506–511. [Google Scholar] [CrossRef]
- Nakamura, T.; Kawai, A.; Sudo, A. Analysis of the Patients with Soft Tissue Sarcoma Who Received Additional Excision after Unplanned Excision: Report from the Bone and Soft Tissue Tumor Registry in Japan. Jpn. J. Clin. Oncol. 2017, 47, 1055–1059. [Google Scholar] [CrossRef]
- De Queiroz, G.F.; Matera, J.M.; Zaidan Dagli, M.L. Clinical Study of Cryosurgery Efficacy in the Treatment of Skin and Subcutaneous Tumors in Dogs and Cats. Vet. Surg. 2008, 37, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Hines-Peralta, A.; Liu, Z.-J.; Horkan, C.; Solazzo, S.; Goldberg, S.N. Chemical Tumor Ablation with Use of a Novel Multiple-Tine Infusion System in a Canine Sarcoma Model. J. Vasc. Interv. Radiol. 2006, 17, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Salyer, S.A.; Wavreille, V.A.; Fenger, J.M.; Jennings, R.N.; Selmic, L.E. Evaluation of Microwave Ablation for Local Treatment of Dogs with Distal Radial Osteosarcoma: A Pilot Study. Vet. Surg. 2020, 49, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Bourcier, K.; Le Cesne, A.; Tselikas, L.; Adam, J.; Mir, O.; Honore, C.; de Baere, T. Basic Knowledge in Soft Tissue Sarcoma. Cardiovasc. Intervent. Radiol. 2019, 42, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Rostambeigi, N. Editorial Comment: Outcomes of Cryoablation and Microwave Ablation for Pulmonary Sarcoma Metastases Are Comparable. AJR. Am. J. Roentgenol. 2022, 218, 505. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, B.; Yao, W. Cooled Microwave Ablation Treatment of Locally Unresectable Undifferentiated Pleomorphic Sarcoma: A Case Report. Asian J. Surg. 2023, 46, 4945–4946. [Google Scholar] [CrossRef] [PubMed]
- Canter, R.J.; Grossenbacher, S.K.; Foltz, J.A.; Sturgill, I.R.; Park, J.S.; Luna, J.I.; Kent, M.S.; Culp, W.T.N.; Chen, M.; Modiano, J.F.; et al. Radiotherapy Enhances Natural Killer Cell Cytotoxicity and Localization in Pre-Clinical Canine Sarcomas and First-in-Dog Clinical Trial. J. Immunother. Cancer 2017, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.D.; Xu-Welliver, M.; Haglund, K.E. The Role of Modern Radiation Therapy in the Management of Extremity Sarcomas. J. Surg. Oncol. 2015, 111, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Tsimberidou, A.-M.; Kantarjian, H.M.; Estey, E.; Cortes, J.E.; Verstovsek, S.; Faderl, S.; Thomas, D.A.; Garcia-Manero, G.; Ferrajoli, A.; Manning, J.T.; et al. Outcome in Patients with Nonleukemic Granulocytic Sarcoma Treated with Chemotherapy with or without Radiotherapy. Leukemia 2003, 17, 1100–1103. [Google Scholar] [CrossRef]
- Boss, M.K.; Watts, R.; Harrison, L.G.; Hopkins, S.; Chow, L.; Trageser, E.; Easton, C.; Larue, S.M.; Regan, D.; Dewhirst, M.W.; et al. Immunologic Effects of Stereotactic Body Radiotherapy in Dogs with Spontaneous Tumors and the Impact of Intratumoral OX40/TLR Agonist Immunotherapy. Int. J. Mol. Sci. 2022, 23, 826. [Google Scholar] [CrossRef] [PubMed]
- Magee, K.; Marsh, I.R.; Turek, M.M.; Grudzinski, J.; Aluicio-Sarduy, E.; Engle, J.W.; Kurzman, I.D.; Zuleger, C.L.; Oseid, E.A.; Jaskowiak, C.; et al. Safety and Feasibility of an in Situ Vaccination and Immunomodulatory Targeted Radionuclide Combination Immuno-Radiotherapy Approach in a Comparative (Companion Dog) Setting. PLoS ONE 2021, 16, e0255798. [Google Scholar] [CrossRef]
- Tang, F.; Tie, Y.; Wei, Y.-Q.; Tu, C.-Q.; Wei, X.-W. Targeted and Immuno-Based Therapies in Sarcoma: Mechanisms and Advances in Clinical Trials. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188606. [Google Scholar] [CrossRef]
- Cancedda, S.; Marconato, L.; Meier, V.; Laganga, P.; Roos, M.; Leone, V.F.; Rossi, F.; Bley, C.R. Hypofractionated radiotherapy for macroscopic canine soft tissue sarcoma: A retrospective study of 50 cases treated with a 5 × 6 gy protocol with or without metronomic chemotherapy. Vet. Radiol. Ultrasound Off. J. Am. Coll. Vet. Radiol. Int. Vet. Radiol. Assoc. 2016, 57, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Rupp, L.; Resag, A.; Potkrajcic, V.; Warm, V.; Wehner, R.; Jöhrens, K.; Bösmüller, H.; Eckert, F.; Schmitz, M. Prognostic Impact of the Post-Treatment T Cell Composition and Spatial Organization in Soft Tissue Sarcoma Patients Treated with Neoadjuvant Hyperthermic Radio(Chemo)Therapy. Front. Immunol. 2023, 14, 1185197. [Google Scholar] [CrossRef] [PubMed]
- Ashar, H.; Singh, A.; Kishore, D.; Neel, T.; More, S.; Liu, C.; Dugat, D.; Ranjan, A. Enabling Chemo-Immunotherapy with HIFU in Canine Cancer Patients. Ann. Biomed. Eng. 2024, 52, 1859–1872. [Google Scholar] [CrossRef] [PubMed]
- Batschinski, K.; Nobre, A.; Vargas-Mendez, E.; Tedardi, M.V.; Cirillo, J.; Cestari, G.; Ubukata, R.; Dagli, M.L.Z. Canine Visceral Hemangiosarcoma Treated with Surgery Alone or Surgery and Doxorubicin: 37 Cases (2005–2014). Can. Vet. J. La Rev. Vet. Can. 2018, 59, 967–972. [Google Scholar]
- Marconato, L.; Chalfon, C.; Finotello, R.; Polton, G.; Vasconi, M.E.; Annoni, M.; Stefanello, D.; Mesto, P.; Capitani, O.; Agnoli, C.; et al. Adjuvant Anthracycline-Based vs Metronomic Chemotherapy vs No Medical Treatment for Dogs with Metastatic Splenic Hemangiosarcoma: A Multi-Institutional Retrospective Study of the Italian Society of Veterinary Oncology. Vet. Comp. Oncol. 2019, 17, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Woll, P.J.; Reichardt, P.; Le Cesne, A.; Bonvalot, S.; Azzarelli, A.; Hoekstra, H.J.; Leahy, M.; Van Coevorden, F.; Verweij, J.; Hogendoorn, P.C.W.; et al. Adjuvant Chemotherapy with Doxorubicin, Ifosfamide, and Lenograstim for Resected Soft-Tissue Sarcoma (EORTC 62931): A Multicentre Randomised Controlled Trial. Lancet Oncol. 2012, 13, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Pervaiz, N.; Colterjohn, N.; Farrokhyar, F.; Tozer, R.; Figueredo, A.; Ghert, M. A Systematic Meta-Analysis of Randomized Controlled Trials of Adjuvant Chemotherapy for Localized Resectable Soft-Tissue Sarcoma. Cancer 2008, 113, 573–581. [Google Scholar] [CrossRef]
- Sharma, A.; Kataria, B.; Biswas, B.; Bakhshi, S.; Pushpam, D. Oral Metronomic Chemotherapy Is a Cost Effective Alternative to Pazopanib in Advanced Soft Tissue Sarcoma. J. Oncol. Pharm. Pract. Off. Publ. Int. Soc. Oncol. Pharm. Pract. 2022, 28, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Boyar, M.S.; Hesdorffer, M.; Keohan, M.L.; Jin, Z.; Taub, R.N. Phase II Study of Temozolomide and Thalidomide in Patients with Unresectable or Metastatic Leiomyosarcoma. Sarcoma 2008, 2008, 412503. [Google Scholar] [CrossRef]
- Torrigiani, F.; Pierini, A.; Lowe, R.; Simčič, P.; Lubas, G. Soft Tissue Sarcoma_postprint-1. Case Rep. 2019, 17, 234–241. [Google Scholar] [CrossRef]
- Campana, L.G.; Bianchi, G.; Mocellin, S.; Valpione, S.; Campanacci, L.; Brunello, A.; Donati, D.; Sieni, E.; Rossi, C.R. Electrochemotherapy Treatment of Locally Advanced and Metastatic Soft Tissue Sarcomas: Results of a Non-Comparative Phase II Study. World J. Surg. 2014, 38, 813–822. [Google Scholar] [CrossRef]
- Stinson, J.A.; Sheen, A.; Momin, N.; Hampel, J.; Bernstein, R.; Kamerer, R.; Fadl-Alla, B.; Samuelson, J.; Fink, E.; Fan, T.M.; et al. Collagen-Anchored Interleukin-2 and Interleukin-12 Safely Reprogram the Tumor Microenvironment in Canine Soft-Tissue Sarcomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 2110–2122. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.A.; Bolejack, V.; Schuetze, S.M.; Van Tine, B.A.; Attia, S.; Riedel, R.F.; Hu, J.; Davis, L.E.; Okuno, S.H.; Priebat, D.A.; et al. Clinical Activity of Pembrolizumab (P) in Undifferentiated Pleomorphic Sarcoma (UPS) and Dedifferentiated/Pleomorphic Liposarcoma (LPS): Final Results of SARC028 Expansion Cohorts. J. Clin. Oncol. 2019, 9, 1493–1501. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Mahoney, M.R.; Van Tine, B.A.; Atkins, J.; Milhem, M.M.; Jahagirdar, B.N.; Antonescu, C.R.; Horvath, E.; Tap, W.D.; Schwartz, G.K.; et al. Nivolumab with or without Ipilimumab Treatment for Metastatic Sarcoma (Alliance A091401): Two Open-Label, Non-Comparative, Randomised, Phase 2 Trials. Lancet Oncol. 2018, 19, 416–426. [Google Scholar] [CrossRef]
- Mason, N.J. Comparative Immunology and Immunotherapy of Canine Osteosarcoma. Adv. Exp. Med. Biol. 2020, 1258, 199–221. [Google Scholar] [CrossRef]
- Fritz, S.E.; Henson, M.S.; Greengard, E.; Winter, A.L.; Stuebner, K.M.; Yoon, U.; Wilk, V.L.; Borgatti, A.; Augustin, L.B.; Modiano, J.F.; et al. A Phase I Clinical Study to Evaluate Safety of Orally Administered, Genetically Engineered Salmonella Enterica Serovar Typhimurium for Canine Osteosarcoma. Vet. Med. Sci. 2016, 2, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Razzuoli, E.; Chirullo, B.; De Ciucis, C.G.; Mecocci, S.; Martini, I.; Zoccola, R.; Campanella, C.; Varello, K.; Petrucci, P.; Di Meo, A.; et al. Animal Models of Soft Tissue Sarcoma for Alternative Anticancer Therapy Studies: Characterization of the A-72 Canine Cell Line. Vet. Res. Commun. 2023, 47, 1615–1627. [Google Scholar] [CrossRef]
- Hoffman, R.M. Back to the Future: Are Tumor-Targeting Bacteria the Next-Generation Cancer Therapy? Methods Mol. Biol. 2015, 1317, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Béguin, J.; Laloy, E.; Cochin, S.; Gantzer, M.; Farine, I.; Pichon, C.; Moreau, B.; Foloppe, J.; Balloul, J.-M.; Machon, C.; et al. Oncolytic Virotherapy with Intratumoral Injection of Vaccinia Virus TG6002 and 5-Fluorocytosine Administration in Dogs with Malignant Tumors. Mol. Ther. Oncolytics 2023, 30, 103–116. [Google Scholar] [CrossRef]
- Ashton, L.V.; Weishaar, K.M.; Séguin, B.; MacNeill, A.L. Oclacitinib and Myxoma Virus Therapy in Dogs with High-Grade Soft Tissue Sarcoma. Biomedicines 2023, 11, 2346. [Google Scholar] [CrossRef]
- Le Boeuf, F.; Selman, M.; Son, H.H.; Bergeron, A.; Chen, A.; Tsang, J.; Butterwick, D.; Arulanandam, R.; Forbes, N.E.; Tzelepis, F.; et al. Oncolytic Maraba Virus MG1 as a Treatment for Sarcoma. Int. J. Cancer 2017, 141, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Toulmonde, M.; Cousin, S.; Kind, M.; Guegan, J.-P.; Bessede, A.; Le Loarer, F.; Perret, R.; Cantarel, C.; Bellera, C.; Italiano, A. Randomized Phase 2 Trial of Intravenous Oncolytic Virus JX-594 Combined with Low-Dose Cyclophosphamide in Patients with Advanced Soft-Tissue Sarcoma. J. Hematol. Oncol. 2022, 15, 149. [Google Scholar] [CrossRef] [PubMed]
- von Mehren, M.; Randall, R.L.; Benjamin, R.S.; Boles, S.; Bui, M.M.; Ganjoo, K.N.; George, S.; Gonzalez, R.J.; Heslin, M.J.; Kane, J.M.; et al. Soft Tissue Sarcoma, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2018, 16, 536–563. [Google Scholar] [CrossRef] [PubMed]
- van der Graaf, W.T.A.; Orbach, D.; Judson, I.R.; Ferrari, A. Soft Tissue Sarcomas in Adolescents and Young Adults: A Comparison with Their Paediatric and Adult Counterparts. Lancet Oncol. 2017, 18, e166–e175. [Google Scholar] [CrossRef] [PubMed]
- Dantonello, T.M.; Stark, M.; Timmermann, B.; Fuchs, J.; Selle, B.; Linderkamp, C.; Handgretinger, R.; Hagen, R.; Feuchtgruber, S.; Kube, S.; et al. Tumour Volume Reduction after Neoadjuvant Chemotherapy Impacts Outcome in Localised Embryonal Rhabdomyosarcoma. Pediatr. Blood Cancer 2015, 62, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Linch, M.; Miah, A.B.; Thway, K.; Judson, I.R.; Benson, C. Systemic Treatment of Soft-Tissue Sarcoma-Gold Standard and Novel Therapies. Nat. Rev. Clin. Oncol. 2014, 11, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, A.C.; Gronchi, A.; Cardona, K. Soft-Tissue Sarcoma in Adults: An Update on the Current State of Histiotype-Specific Management in an Era of Personalized Medicine. CA. Cancer J. Clin. 2020, 70, 200–229. [Google Scholar] [CrossRef] [PubMed]
- Ramu, E.M.; Houdek, M.T.; Isaac, C.E.; Dickie, C.I.; Ferguson, P.C.; Wunder, J.S. Management of Soft-Tissue Sarcomas; Treatment Strategies, Staging, and Outcomes. SICOT-J 2017, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- McKnight, J.A.; Mauldin, G.N.; McEntee, M.C.; Meleo, K.A.; Patnaik, A.K. Radiation Treatment for Incompletely Resected Soft-Tissue Sarcomas in Dogs. J. Am. Vet. Med. Assoc. 2000, 217, 205–210. [Google Scholar] [CrossRef]
- Forrest, L.J.; Chun, R.; Adams, W.M.; Cooley, A.J.; Vail, D.M. Postoperative Radiotherapy for Canine Soft Tissue Sarcoma. J. Vet. Intern. Med. 2000, 14, 578–582. [Google Scholar] [CrossRef]
- Selting, K.A.; Powers, B.E.; Thompson, L.J.; Mittleman, E.; Tyler, J.W.; Lafferty, M.H.; Withrow, S.J. Outcome of Dogs with High-Grade Soft Tissue Sarcomas Treated with and without Adjuvant Doxorubicin Chemotherapy: 39 Cases (1996–2004). J. Am. Vet. Med. Assoc. 2005, 227, 1442–1448. [Google Scholar] [CrossRef]
- Pallotti, S.; Piras, I.S.; Marchegiani, A.; Cerquetella, M.; Napolioni, V. Dog-Human Translational Genomics: State of the Art and Genomic Resources. J. Appl. Genet. 2022, 63, 703–716. [Google Scholar] [CrossRef]
- Seong, G.; D’Angelo, S.P. New Therapeutics for Soft Tissue Sarcomas: Overview of Current Immunotherapy and Future Directions of Soft Tissue Sarcomas. Front. Oncol. 2023, 13, 1150765. [Google Scholar] [CrossRef]
- Roulleaux Dugage, M.; Nassif, E.F.; Italiano, A.; Bahleda, R. Improving Immunotherapy Efficacy in Soft-Tissue Sarcomas: A Biomarker Driven and Histotype Tailored Review. Front. Immunol. 2021, 12, 775761. [Google Scholar] [CrossRef]
- Borgatti, A.; Dickerson, E.B.; Lawrence, J. Emerging Therapeutic Approaches for Canine Sarcomas: Pushing the Boundaries beyond the Conventional. Vet. Comp. Oncol. 2020, 18, 9–24. [Google Scholar] [CrossRef]
- Teng, M.W.L.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying Cancers Based on T-Cell Infiltration and PD-L1. Cancer Res. 2015, 75, 2139–2145. [Google Scholar] [CrossRef]
- Ai, L.; Xu, A.; Xu, J. Roles of PD-1/PD-L1 Pathway: Signaling, Cancer, and Beyond. Adv. Exp. Med. Biol. 2020, 1248, 33–59. [Google Scholar] [CrossRef]
- Stevenson, V.B.; Gudenschwager-Basso, E.K.; Klahn, S.; LeRoith, T.; Huckle, W.R. Inhibitory Checkpoint Molecule MRNA Expression in Canine Soft Tissue Sarcoma. Vet. Comp. Oncol. 2023, 21, 709–716. [Google Scholar] [CrossRef]
- Sirivisoot, S.; Boonkrai, C.; Wongtangprasert, T.; Phakham, T.; Muanwein, P.; Pisitkun, T.; Sawangmake, C.; Radtanakatikanon, A.; Rungsipipat, A. Development and Characterization of Mouse Anti-Canine PD-L1 Monoclonal Antibodies and Their Expression in Canine Tumors by Immunohistochemistry In Vitro. Vet. Q. 2023, 43, 1–9. [Google Scholar] [CrossRef]
- Choi, J.W.; Withers, S.S.; Chang, H.; Spanier, J.A.; De La Trinidad, V.L.; Panesar, H.; Fife, B.T.; Sciammas, R.; Sparger, E.E.; Moore, P.F.; et al. Development of Canine PD-1/PD-L1 Specific Monoclonal Antibodies and Amplification of Canine T Cell Function. PLoS ONE 2020, 15, e0235518. [Google Scholar] [CrossRef]
a | |||||
Dog | Human | ||||
Treatment Specification | Reference | N° of Cases | Treatment Specification | Reference | N° of Cases |
Standard Surgery | |||||
Excision with margins of 2 to 3 cm is considered to be the optimal goal when surgery is the sole treatment modality. | [3,16,54,74,78] | 97 350 | Quality of surgical margins independently predicted local control and survival. | [79,80] | 997 197 |
b | |||||
Dog | Human | ||||
Treatment specification | Reference | N° of Cases | Treatment Specification | Reference | N° of Cases |
Percutaneous Image-Guided Treatments with Ablation Technologies (i.e., Radiofrequency Ablation, Cryotherapy, Microwave Ablation) | |||||
To treat superficial, small, non-invasive lesions, or when definitive surgery cannot be performed because of limitations imposed by regional anatomy or owner reluctance | [81,82,83] | 20 42 6 | Compared with surgery, image-guided treatments provide a lower-morbidity option with excellent tolerance and preservation of long-term function with low damage to healthy parenchyma | [84,85,86] | 2145 65 1 |
c | |||||
Dog | Human | ||||
Treatment specification | Reference | N° of cases | Treatment specification | Reference | N° of cases |
Radiotherapy Combined with Surgery | |||||
First-in-dog clinical trial on NK cells (CD5dim, NKp46+) isolated from PBMCs and expanded with irradiated K562-C9-mIL21 feeder cells and recombinant human IL-2 | [87] | 13 | Important role in limb preservation during treatment for extremity soft tissue sarcomas. Preoperative radiotherapy offers the potential for lower radiotherapy doses but likely increases acute toxicity for thigh tumors | [88,89] | 96 20 |
Radiotherapy Combined with Immunotherapy Treatment | |||||
In situ vaccination approach combined an OX40 agonist antibody with TLR 3 and TLR 9 agonists | [90] | 997 | Nivolumab and ipilimumab are monoclonal antibodies targeting PD-1 and CTLA-4, respectively | [91] | 38 |
In situ vaccination was subsequently combined with targeted radionuclide therapy using a theranostic pairing of IV 86Y-NM600 and IV 90Y-NM600 | [92] | 17 | Olaparib + radiotherapy using Poly-ADP ribose polymerase (PARPi) | [91] | 38 |
Radiotherapy Combined with Chemotherapy | |||||
Metronomic chemotherapy using thalidomide, piroxicam, cyclophosphamide | [93] | 50 | 3D conformal radiotherapy combined with ifosfamide and doxorubicin administration | [94] | 115 |
Combined Chemotherapy | |||||
Combined with high-intensity focused ultrasound (HIFU) for treating solid tumors using thermal and histotripsy-based mechanical ablation | [95] | 1 | Doxorubicin, ifosfamide, and lenograstim administration | [96,97] | 351 1953 |
Combined with surgery shows a significant difference in survival times compared to dogs treated with surgery alone | [98] | 23 | Metronomic chemotherapy | [99] | 45 |
Maximum-tolerated-dose chemotherapy vs. metronomic chemotherapy | [100] | 103 | In a subset of patients with advanced leiomyosarcoma, the authors administered temozolomide with concomitant thalidomide | [101] | 33 |
Electrochemotherapy (ECT) | |||||
Antitumor local ablative treatment that uses electric pulses to enhance the intracellular delivery of bleomycin | [102] | 52 | Antitumor local ablative treatment that uses electric pulses to enhance the intracellular delivery of bleomycin | [103] | 34 |
d | |||||
Dog | Human | ||||
Treatment Specification | Reference | N° of Cases | Treatment Specification | Reference | N° of Cases |
Immunotherapy | |||||
Authors engineered (i.e., caninized) cytokines that bind and anchor to tumor collagen | [104] | 10 | Pembrolizumab and nivolumab administration | [105,106] | 86 96 |
Immunotherapy Using Anaerobic Bacteria | |||||
Using Salmonella enterica serovar Typhimurium. | [107,108,109] | 23 351 | Using Salmonella enterica serovar Typhimurium | [110] | n.a. |
Immunotherapy Using Oncolytic Virus | |||||
Vaccinia virus TG6002 and 5-fluorocytosine administration | [111] | 13 | Oncolytic virus JX-594 combined with cyclophosphamide | [112] | 20 |
Myxoma virus inoculation | [113] | 103 | |||
Maraba virus MG1: in vivo test | [114] | 10 | Maraba virus MG1: in vitro test | [114] | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Anno, F.; Giugliano, R.; Listorti, V.; Razzuoli, E. A Review on Canine and Human Soft Tissue Sarcomas: New Insights on Prognosis Factors and Treatment Measures. Vet. Sci. 2024, 11, 362. https://doi.org/10.3390/vetsci11080362
Dell’Anno F, Giugliano R, Listorti V, Razzuoli E. A Review on Canine and Human Soft Tissue Sarcomas: New Insights on Prognosis Factors and Treatment Measures. Veterinary Sciences. 2024; 11(8):362. https://doi.org/10.3390/vetsci11080362
Chicago/Turabian StyleDell’Anno, Filippo, Roberta Giugliano, Valeria Listorti, and Elisabetta Razzuoli. 2024. "A Review on Canine and Human Soft Tissue Sarcomas: New Insights on Prognosis Factors and Treatment Measures" Veterinary Sciences 11, no. 8: 362. https://doi.org/10.3390/vetsci11080362
APA StyleDell’Anno, F., Giugliano, R., Listorti, V., & Razzuoli, E. (2024). A Review on Canine and Human Soft Tissue Sarcomas: New Insights on Prognosis Factors and Treatment Measures. Veterinary Sciences, 11(8), 362. https://doi.org/10.3390/vetsci11080362