The Genomic Characterization of Equid Alphaherpesviruses: Structure, Function, and Genetic Similarity
Simple Summary
Abstract
1. Introduction
2. Genomic Structure
3. Gene Function
4. Genetic Similarity
4.1. Conserved ORFs in Orthoherpesviridae
4.2. Conserved Genes in Subfamily Alphaherpesvirinae
4.3. Orthologs in HSV-1 and VZV
4.4. Fragmented ORF
4.5. UL24 Protein Family in Orthoherpesviridae
5. Problems and Possible Solutions
6. Conclusions and Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gatherer, D.; Depledge, D.P.; Hartley, C.A.; Szpara, M.L.; Vaz, P.K.; Benko, M.; Brandt, C.R.; Bryant, N.A.; Dastjerdi, A.; Doszpoly, A.; et al. ICTV Virus Taxonomy Profile: Herpesviridae 2021. J. Gen. Virol. 2021, 102, 10. [Google Scholar] [CrossRef] [PubMed]
- Pellett, P.E.; Davison, A.J.; Eberle, R.; Ehlers, B.; Hayward, G.S.; Lacoste, V.; Minson, A.C.; Nicholas, J.; Roizman, B.; Studdert, M.J.; et al. Order-Herpesvirales. In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier: San Diego, CA, USA, 2012; pp. 99–107. [Google Scholar]
- Baumann, R.P.; Sullivan, D.C.; Staczek, J.; O’Callaghan, D.J. Genetic relatedness and colinearity of genomes of equine herpesvirus types 1 and 3. J. Virol. 1986, 57, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.J.; Eberle, R.; Ehlers, B.; Hayward, G.S.; McGeoch, D.J.; Minson, A.C.; Pellett, P.E.; Roizman, B.; Studdert, M.J.; Thiry, E. The order Herpesvirales. Arch. Virol. 2009, 154, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Khusro, A.; Aarti, C.; Rivas-Caceres, R.R.; Barbabosa-Pliego, A. Equine Herpesvirus-I Infection in Horses: Recent Updates on its Pathogenicity, Vaccination, and Preventive Management Strategies. J. Equine Vet. Sci. 2020, 87, 102923. [Google Scholar] [CrossRef]
- Ivens, P.; Rendle, D.; Kydd, J.; Crabtree, J.; Moore, S.; Neal, H.; Knapp, S.; Bryant, N.; Newton, J.R. Equine herpesviruses: A roundtable discussion. UK-Vet. Equine 2019, 3 (Suppl. 4), 1–12. [Google Scholar] [CrossRef]
- Patel, J.R.; Heldens, J. Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)—Epidemiology, disease and immunoprophylaxis: A brief review. Vet. J. 2005, 170, 14–23. [Google Scholar] [CrossRef]
- Afify, A.F.; Hassanien, R.T.; El Naggar, R.F.; Rohaim, M.A.; Munir, M. Unmasking the ongoing challenge of equid herpesvirus-1 (EHV-1): A comprehensive review. Microb. Pathog. 2024, 193, 106755. [Google Scholar] [CrossRef]
- Pusterla, N.; Barnum, S.; Lawton, K.; Wademan, C.; Corbin, R.; Hodzic, E. Investigation of the EHV-1 Genotype (N 752, D 752, and H 752) in Swabs Collected from Equids with Respiratory and Neurological Disease and Abortion from the United States (2019–2022). J. Equine Vet. Sci. 2023, 123, 104244. [Google Scholar] [CrossRef]
- O’Callaghan, D.J.; Osterrieder, N. Herpesviruses of Horses. In Encyclopedia of Virology, 3rd ed.; Mahy, B.W.J., van Regenmortel, M., Eds.; Academic Press: Oxford, UK, 2008; pp. 411–420. [Google Scholar]
- Pavulraj, S.; Eschke, K.; Theisen, J.; Westhoff, S.; Reimers, G.; Andreotti, S.; Osterrieder, N.; Azab, W. Equine Herpesvirus Type 4 (EHV-4) Outbreak in Germany: Virological, Serological, and Molecular Investigations. Pathogens 2021, 10, 810. [Google Scholar] [CrossRef]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef]
- Thormann, N.; Van de Walle, G.R.; Azab, W.; Osterrieder, N. The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Res. 2012, 169, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Browning, G.F.; Ficorilli, N.; Studdert, M.J. Asinine herpesvirus genomes: Comparison with those of the equine herpesviruses. Arch. Virol. 1988, 101, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Xi, C.K.; Yu, Y.; Liu, W.Q.; Akhtar, M.F.; Li, Y.B.; Wang, C.F.; Li, L.L. Characteristics and epidemiological investigation of equid herpesvirus 8 in donkeys in Shandong, China. Arch. Virol. 2023, 168, 3. [Google Scholar] [CrossRef]
- Wang, T.T.; Hu, L.Y.; Wang, Y.H.; Liu, W.Q.; Liu, G.Q.; Zhu, M.X.; Zhang, W.; Wang, C.F.; Ren, H.Y.; Li, L.L. Identification of equine herpesvirus 8 in donkey abortion: A case report. Virol. J. 2022, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.T.; Hu, L.Y.; Liu, M.Y.; Wang, T.J.; Hu, X.Y.; Li, Y.; Liu, W.Q.; Li, Y.B.; Wang, Y.H.; Ren, H.Y.; et al. The Emergence of Viral Encephalitis in Donkeys by Equid Herpesvirus 8 in China. Front. Microbiol. 2022, 13, 840754. [Google Scholar] [CrossRef]
- Garvey, M.; Suarez, N.M.; Kerr, K.; Hector, R.; Moloney-Quinn, L.; Arkins, S.; Davison, A.J.; Cullinane, A. Equid herpesvirus 8: Complete genome sequence and association with abortion in mares. PLoS ONE 2018, 13, e0192301. [Google Scholar] [CrossRef]
- Liu, C.; Guo, W.; Lu, G.; Xiang, W.; Wang, X. Complete genomic sequence of an equine herpesvirus type 8 Wh strain isolated from China. J. Virol. 2012, 86, 5407. [Google Scholar] [CrossRef]
- Crabb, B.S.; Allen, G.P.; Studdert, M.J. Characterization of the major glycoproteins of equine herpesviruses 4 and 1 and asinine herpesvirus 3 using monoclonal antibodies. J. Gen. Virol. 1991, 72 Pt 9, 2075–2082. [Google Scholar] [CrossRef]
- Crabb, B.S.; Studdert, M.J. Comparative studies of the proteins of equine herpesviruses 4 and 1 and asinine herpesvirus 3: Antibody response of the natural hosts. J. Gen. Virol. 1990, 71 Pt 9, 2033–2041. [Google Scholar] [CrossRef]
- Taniguchi, A.; Fukushi, H.; Matsumura, T.; Yanai, T.; Masegi, T.; Hirai, K. Pathogenicity of a new neurotropic equine herpesvirus 9 (gazelle herpesvirus 1) in horses. J. Vet. Med. Sci. 2000, 62, 215–218. [Google Scholar] [CrossRef]
- Paillot, R.; Sharp, E.; Case, R.; Nugent, J. Herpes Virus Infection in Equid Species. In Herpesviridae: Viral Structure, Life Cycle and Infections; Nova Biomedical: Runcorn, UK, 2009; pp. 17–85. [Google Scholar]
- Taniguchi, A.; Fukushi, H.; Yanai, T.; Masegi, T.; Yamaguchi, T.; Hirai, K. Equine herpesvirus 9 induced lethal encephalomyelitis in experimentally infected goats. Arch. Virol. 2000, 145, 2619–2627. [Google Scholar] [CrossRef] [PubMed]
- El-Habashi, N.; Murakami, M.; El-Nahass, E.; Hibi, D.; Sakai, H.; Fukushi, H.; Sasseville, V.; Yanai, T. Study on the infectivity of equine herpesvirus 9 (EHV-9) by different routes of inoculation in hamsters. Vet. Pathol. 2011, 48, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Schrenzel, M.D.; Tucker, T.A.; Donovan, T.A.; Busch, M.D.; Wise, A.G.; Maes, R.K.; Kiupel, M. New hosts for equine herpesvirus 9. Emerg. Infect. Dis. 2008, 14, 1616–1619. [Google Scholar] [CrossRef] [PubMed]
- Yanai, T.; Tujioka, S.; Sakai, H.; Fukushi, H.; Hirai, K.; Masegi, T. Experimental infection with equine herpesvirus 9 (EHV-9) in cats. J. Comp. Pathol. 2003, 128, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Yanai, T.; Fujishima, N.; Fukushi, H.; Hirata, A.; Sakai, H.; Masegi, T. Experimental infection of equine herpesvirus 9 in dogs. Vet. Pathol. 2003, 40, 263–267. [Google Scholar] [CrossRef]
- Kodama, A.; Yanai, T.; Kubo, M.; El-Habashi, N.; Kasem, S.; Sakai, H.; Masegi, T.; Fukushi, H.; Kuraishi, T.; Yoneda, M.; et al. Cynomolgus monkeys (Macaca fascicularis) may not become infected with equine herpesvirus 9. J. Med. Primatol. 2011, 40, 18–20. [Google Scholar] [CrossRef]
- Honess, R.W.; Gompels, U.A.; Barrell, B.G.; Craxton, M.; Cameron, K.R.; Staden, R.; Chang, Y.N.; Hayward, G.S. Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J. Gen. Virol. 1989, 70 Pt 4, 837–855. [Google Scholar] [CrossRef]
- Davison, A.J.; Kurobe, T.; Gatherer, D.; Cunningham, C.; Korf, I.; Fukuda, H.; Hedrick, R.P.; Waltzek, T.B. Comparative genomics of carp herpesviruses. J. Virol. 2013, 87, 2908–2922. [Google Scholar] [CrossRef]
- Arbuckle, J.H.; Medveczky, M.M.; Luka, J.; Hadley, S.H.; Luegmayr, A.; Ablashi, D.; Lund, T.C.; Tolar, J.; De Meirleir, K.; Montoya, J.G.; et al. The latent human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in vivo and in vitro. Proc. Natl. Acad. Sci. USA 2010, 107, 5563–5568. [Google Scholar] [CrossRef]
- Kaufer, B.B.; Jarosinski, K.W.; Osterrieder, N. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation. J. Exp. Med. 2011, 208, 605–615. [Google Scholar] [CrossRef]
- Telford, E.A.; Watson, M.S.; Perry, J.; Cullinane, A.A.; Davison, A.J. The DNA sequence of equine herpesvirus-4. J. Gen. Virol. 1998, 79 Pt 5, 1197–1203. [Google Scholar] [CrossRef]
- Telford, E.A.; Watson, M.S.; McBride, K.; Davison, A.J. The DNA sequence of equine herpesvirus-1. Virology 1992, 189, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, D.; Gao, J.; Wang, X. Similar regulation of two distinct UL24 promoters by regulatory proteins of equine herpesvirus type 1 (EHV-1). FEBS Lett. 2015, 589, 1467–1475. [Google Scholar] [CrossRef]
- Okada, A.; Suganuma, S.; Badr, Y.; Omatsu, T.; Mizutani, T.; Ohya, K.; Fukushi, H. Decreased expression of the immediate early protein, ICP4, by deletion of the tegument protein VP22 of equine herpesvirus type 1. J. Vet. Med. Sci. 2018, 80, 311–315. [Google Scholar] [CrossRef]
- Kim, S.K.; Kim, S.; Dai, G.; Zhang, Y.; Ahn, B.C.; O’Callaghan, D.J. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication. Virology 2011, 417, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Ahn, B.C.; Albrecht, R.A.; O’Callaghan, D.J. The unique IR2 protein of equine herpesvirus 1 negatively regulates viral gene expression. J. Virol. 2006, 80, 5041–5049. [Google Scholar] [CrossRef] [PubMed]
- Hofmann-Sieber, H.; Wild, J.; Fiedler, N.; Tischer, K.; von Einem, J.; Osterrieder, N.; Hofmann, H.; Koestler, J.; Wagner, R. Impact of ETIF Deletion on Safety and Immunogenicity of Equine Herpesvirus Type 1-Vectored Vaccines. J. Virol. 2010, 84, 11602–11613. [Google Scholar] [CrossRef]
- von Einem, J.; Schumacher, D.; O’Callaghan, D.J.; Osterrieder, N. The alpha t-TIF (VP16) homologue (ETIF) of equine herpesvirus 1 is essential for secondary envelopment and virus egress. J. Virol. 2006, 80, 2609–2620. [Google Scholar] [CrossRef]
- Kim, S.K.; Albrecht, R.A.; O’Callaghan, D.J. A negative regulatory element (base pairs -204 to -177) of the EICP0 promoter of equine herpesvirus 1 abolishes the EICP0 protein’s trans-activation of its own promoter. J. Virol. 2004, 78, 11696–11706. [Google Scholar] [CrossRef]
- Kim, S.K.; Jang, H.K.; Albrecht, R.A.; Derbigny, W.A.; Zhang, Y.; O’Callaghan, D.J. Interaction of the equine herpesvirus 1 EICP0 protein with the immediate-early (IE) protein, TFIIB, and TBP may mediate the antagonism between the IE and EICP0 proteins. J. Virol. 2003, 77, 2675–2685. [Google Scholar] [CrossRef]
- Derbigny, W.A.; Kim, S.K.; Jang, H.K.; O’Callaghan, D.J. EHV-1 EICP22 protein sequences that mediate its physical interaction with the immediate-early protein are not sufficient to enhance the trans-activation activity of the 1E protein. Virus Res. 2002, 84, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Derbigny, W.A.; Kim, S.K.; Caughman, G.B.; O’Callaghan, D.J. The EICP22 protein of equine herpesvirus 1 physically interacts with the immediate-early protein and with itself to form dimers and higher-order complexes. J. Virol. 2000, 74, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Breitenbach, J.E.; Ebner, P.D.; O’Callaghan, D.J. The IR4 auxiliary regulatory protein expands the in vitro host range of equine herpesvirus 1 and is essential for pathogenesis in the murine model. Virology 2009, 383, 188–194. [Google Scholar] [CrossRef]
- Albrecht, R.A.; Kim, S.K.; O’Callaghan, D.J. The EICP27 protein of equine herpesvirus 1 is recruited to viral promoters by its interaction with the immediate-early protein. Virology 2005, 333, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, R.A.; Kim, S.K.; Zhang, Y.; Zhao, Y.; O’Callaghan, D.J. The equine herpesvirus 1 EICP27 protein enhances gene expression via an interaction with TATA box-binding protein. Virology 2004, 324, 311–326. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Charvat, R.A.; Kim, S.K.; O’Callaghan, D.J. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors. Virology 2014, 449, 25–34. [Google Scholar] [CrossRef]
- Öhrmalm, J.; Cholleti, H.; Theelke, A.K.; Berg, M.; Gröndahl, G. Divergent strains of EHV-1 in Swedish outbreaks during 2012 to 2021. BMC Vet. Res. 2024, 20, 1. [Google Scholar] [CrossRef]
- Sutton, G.; Thieulent, C.; Fortier, C.; Hue, E.S.; Marcillaud-Pitel, C.; Pléau, A.; Deslis, A.; Guitton, E.; Paillot, R.; Pronost, S. Identification of a New Equid Herpesvirus 1 DNA Polymerase (ORF30) Genotype with the Isolation of a C/H Strain in French Horses Showing no Major Impact on the Strain Behaviour. Viruses 2020, 12, 1160. [Google Scholar] [CrossRef]
- Fuentealba, N.A.; Bravi, M.E.; Panei, C.J.; Zanuzzi, C.N.; Sguazza, G.H.; Corva, S.G.; Pecoraro, M.R.; Galosi, C.M. Production of recombinant glycoprotein C from equid alphaherpesvirus 1 and evaluation of the immune response induced in mice. Analecta Vet. 2021, 41, 1–18. [Google Scholar]
- Rodrigues, P.R.C.; Cunha, R.C.; Santos, F.D.S.; Goncalves, V.S.; Albuquerque, P.M.M.; Santos, A.G.; Lima, M.; Leite, F.P.L. Expression and characterization of equid herpesvirus 1 glycoprotein D in Pichia pastoris. Arq. Bras. Med. Vet. Zootec. 2020, 72, 703–710. [Google Scholar] [CrossRef]
- Spiesschaert, B.; Stephanowitz, H.; Krause, E.; Osterrieder, N.; Azab, W. Glycoprotein B of equine herpesvirus type 1 has two recognition sites for subtilisin-like proteases that are cleaved by furin. J. Gen. Virol. 2016, 97, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Andoh, K.; Takasugi, M.; Mahmoud, H.Y.; Hattori, S.; Terada, Y.; Noguchi, K.; Shimoda, H.; Bannai, H.; Tsujimura, K.; Matsumura, T.; et al. Identification of a major immunogenic region of equine herpesvirus-1 glycoprotein E and its application to enzyme-linked immunosorbent assay. Vet. Microbiol. 2013, 164, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Spiesschaert, B.; Osterrieder, N.; Azab, W. Comparative analysis of glycoprotein B (gB) of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in cellular tropism and cell-to-cell transmission. Viruses 2015, 7, 522–542. [Google Scholar] [CrossRef] [PubMed]
- Azab, W.; Zajic, L.; Osterrieder, N. The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Vet. Res. 2012, 43, 61. [Google Scholar] [CrossRef]
- Kydd, J.H.; Hannant, D.; Robinson, R.S.; Bryant, N.; Osterrieder, N. Vaccination of foals with a modified live, equid herpesvirus-1 gM deletion mutant (RacHDeltagM) confers partial protection against infection. Vaccine 2020, 38, 388–398. [Google Scholar] [CrossRef]
- Azab, W.; El-Sheikh, A. The role of equine herpesvirus type 4 glycoprotein k in virus replication. Viruses 2012, 4, 1258–1263. [Google Scholar] [CrossRef]
- Neubauer, A.; Osterrieder, N. Equine herpesvirus type 1 (EHV-1) glycoprotein K is required for efficient cell-to-cell spread and virus egress. Virology 2004, 329, 18–32. [Google Scholar] [CrossRef]
- Huang, T.; Ma, G.G.; Osterrieder, N. Equine Herpesvirus 1 Multiply Inserted Transmembrane Protein pUL43 Cooperates with pUL56 in Downregulation of Cell Surface Major Histocompatibility Complex Class I. J. Virol. 2015, 89, 6251–6263. [Google Scholar] [CrossRef]
- Said, A.; Azab, W.; Damiani, A.; Osterrieder, N. Equine herpesvirus type 4 UL56 and UL49.5 proteins downregulate cell surface major histocompatibility complex class I expression independently of each other. J. Virol. 2012, 86, 8059–8071. [Google Scholar] [CrossRef]
- Verweij, M.C.; Lipinska, A.D.; Koppers-Lalic, D.; Van Leeuwen, W.F.; Cohen, J.I.; Kinchington, P.R.; Messaoudi, I.; Bienkowska-Szewczyk, K.; Ressing, M.E.; Rijsewijk, F.A.M.; et al. The Capacity of UL49.5 Proteins To Inhibit TAP Is Widely Distributed among Members of the Genus Varicellovirus. J. Virol. 2011, 85, 2351–2363. [Google Scholar] [CrossRef]
- Verweij, M.C.; Lipinska, A.D.; Koppers-Lalic, D.; Quinten, E.; Funke, J.; van Leeuwen, H.C.; Bienkowska-Szewczyk, K.; Koch, J.; Ressing, M.E.; Wiertz, E.J.H.J. Structural and functional analysis of the TAP-inhibiting UL49.5 proteins of varicelloviruses. Mol. Immunol. 2011, 48, 2038–2051. [Google Scholar] [CrossRef] [PubMed]
- Koppers-Lalic, D.; Verweij, M.C.; Lipinska, A.D.; Wang, Y.; Quinten, E.; Reits, E.A.; Koch, J.; Loch, S.; Marcondes Rezende, M.; Daus, F.; et al. Varicellovirus UL49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP. PLoS Pathog. 2008, 4, e1000080. [Google Scholar] [CrossRef] [PubMed]
- Oettler, D.; Kaaden, O.R.; Neubauer, A. The equine herpesvirus 1 UL45 homolog encodes a glycosylated type II transmembrane protein and is involved in virus egress. Virology 2001, 279, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Kasem, S.; Yu, M.H.H.; Alkhalefa, N.; Ata, E.B.; Nayel, M.; Abdo, W.; Abdel-Moneim, A.S.; Fukushi, H. Impact of equine herpesvirus-1 ORF15 (EUL45) on viral replication and neurovirulence. Vet. Microbiol. 2024, 298, 110234. [Google Scholar] [CrossRef]
- Wimer, C.L.; Schnabel, C.L.; Perkins, G.; Babasyan, S.; Freer, H.; Stout, A.E.; Rollins, A.; Osterrieder, N.; Goodman, L.B.; Glaser, A.; et al. The deletion of the ORF1 and ORF71 genes reduces virulence of the neuropathogenic EHV-1 strain Ab4 without compromising host immunity in horses. PLoS ONE 2018, 13, 11. [Google Scholar] [CrossRef]
- Schnabel, C.L.; Wimer, C.L.; Perkins, G.; Babasyan, S.; Freer, H.; Watts, C.; Rollins, A.; Osterrieder, N.; Wagner, B. Deletion of the ORF2 gene of the neuropathogenic equine herpesvirus type 1 strain Ab4 reduces virulence while maintaining strong immunogenicity. BMC Vet. Res. 2018, 14, 245. [Google Scholar] [CrossRef]
- Ata, E.B.; Zaghawa, A.; Ghazy, A.A.; Elsify, A.; Abdelrahman, K.; Kasem, S.; Nayel, M. Development and characterization of ORF68 negative equine herpes virus type-1, Ab4p strain. J. Virol. Methods 2018, 261, 121–131. [Google Scholar] [CrossRef]
- Meindl, A.; Osterrieder, N. The equine herpesvirus 1 Us2 homolog encodes a nonessential membrane-associated virion component. J. Virol. 1999, 73, 3430–3437. [Google Scholar] [CrossRef]
- Sharma, H.; Gulati, B.R.; Kapoor, S. Development of equine herpesvirus 1 persistently infected human lymphoblastoid cells expressing latency-associated transcripts. Indian. J. Comp. Microb. Immunol. Infect. Dis. 2020, 41, 117–124. [Google Scholar] [CrossRef]
- Gao, J.; Liu, D.; Ma, Y.; Wang, X. The biology characteristics of herpesvirus latency associated transcripts. Zhongguo Yufang Shouyi Xuebao/Chin. J. Prev. Vet. Med. 2017, 39, 855–860. [Google Scholar]
- Field, H.J.; Awan, A.R.; de la Fuente, R. Reinfection and reactivation of equine herpesvirus-1 in the mouse. Arch. Virol. 1992, 123, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.C.; Zhang, Y.; O’Callaghan, D.J. The equine herpesvirus-1 (EHV-1) IR3 transcript downregulates expression of the IE gene and the absence of IR3 gene expression alters EHV-1 biological properties and virulence. Virology 2010, 402, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.C.; Breitenbach, J.E.; Kim, S.K.; O’Callaghan, D.J. The equine herpesvirus-1 IR3 gene that lies antisense to the sole immediate-early (IE) gene is trans-activated by the IE protein, and is poorly expressed to a protein. Virology 2007, 363, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Holden, V.R.; Harty, R.N.; Yalamanchili, R.R.; O’Callaghan, D.J. The IR3 gene of equine herpesvirus type 1: A unique gene regulated by sequences within the intron of the immediate-early gene. DNA Seq. 1992, 3, 143–152. [Google Scholar] [CrossRef]
- Dolan, A.; Jamieson, F.E.; Cunningham, C.; Barnett, B.C.; McGeoch, D.J. The genome sequence of herpes simplex virus type 2. J. Virol. 1998, 72, 2010–2021. [Google Scholar] [CrossRef]
- Fang, J.C.; Liu, M.J. Translation initiation at AUG and non-AUG triplets in plants. Plant Sci. 2023, 335, 111822. [Google Scholar] [CrossRef]
- de Arce, A.J.D.; Noderer, W.L.; Wang, C.L. Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons. Nucleic Acids Res. 2018, 46, 985–994. [Google Scholar]
- Harty, R.N.; Colle, C.F.; Grundy, F.J.; O’Callaghan, D.J. Mapping the termini and intron of the spliced immediate-early transcript of equine herpesvirus 1. J. Virol. 1989, 63, 5101–5110. [Google Scholar] [CrossRef]
- Davison, A.J. Herpesvirus systematics. Vet. Microbiol. 2010, 143, 52–69. [Google Scholar] [CrossRef]
- McGeoch, D.J.; Rixon, F.J.; Davison, A.J. Topics in herpesvirus genomics and evolution. Virus Res. 2006, 117, 90–104. [Google Scholar] [CrossRef]
- Higgs, M.R.; Preston, V.G.; Stow, N.D. The UL15 protein of herpes simplex virus type 1 is necessary for the localization of the UL28 and UL33 proteins to viral DNA replication centres. J. Gen. Virol. 2008, 89 Pt 7, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, J.G.; Yang, K.; Baines, J.D.; Homa, F.L. Linker insertion mutations in the herpes simplex virus type 1 UL28 gene: Effects on UL28 interaction with UL15 and UL33 and identification of a second-site mutation in the UL15 gene that suppresses a lethal UL28 mutation. J. Virol. 2006, 80, 12312–12323. [Google Scholar] [CrossRef] [PubMed]
- Abbotts, A.P.; Preston, V.G.; Hughes, M.; Patel, A.H.; Stow, N.D. Interaction of the herpes simplex virus type 1 packaging protein UL15 with full-length and deleted forms of the UL28 protein. J. Gen. Virol. 2000, 81 Pt 12, 2999–3009. [Google Scholar] [CrossRef]
- Mahmoud, H.Y.; Andoh, K.; Hattori, S.; Terada, Y.; Noguchi, K.; Shimoda, H.; Maeda, K. Characterization of glycoproteins in equine herpesvirus-1. J. Vet. Med. Sci. 2013, 75, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Oladunni, F.S.; Horohov, D.W.; Chambers, T.M. EHV-1: A Constant Threat to the Horse Industry. Front. Microbiol. 2019, 10, 2668. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Kahan, S.M.; Rorex, C.B.; von Einem, J.; Osterrieder, N.; O’Callaghan, D.J. Expression of the full-length form of gp2 of equine herpesvirus 1 (EHV-1) completely restores respiratory virulence to the attenuated EHV-1 strain KyA in CBA mice. J. Virol. 2005, 79, 5105–5115. [Google Scholar] [CrossRef]
- von Einem, J.; Wellington, J.; Whalley, J.M.; Osterrieder, K.; O’Callaghan, D.J.; Osterrieder, N. The truncated form of glycoprotein gp2 of equine herpesvirus 1 (EHV-1) vaccine strain KyA is not functionally equivalent to full-length gp2 encoded by EHV-1 wild-type strain RacL11. J. Virol. 2004, 78, 3003–3013. [Google Scholar] [CrossRef]
- Orbaum-Harel, O.; Sarid, R. Comparative Review of the Conserved UL24 Protein Family in Herpesviruses. Int. J. Mol. Sci. 2024, 25, 11268. [Google Scholar] [CrossRef]
- Brito, A.F.; Baele, G.; Nahata, K.D.; Grubaugh, N.D.; Pinney, J.W. Intrahost speciations and host switches played an important role in the evolution of herpesviruses. Virus Evol. 2021, 7, 1. [Google Scholar] [CrossRef]
- Davison, A.J. Evolution of the herpesviruses. Vet. Microbiol. 2002, 86, 69–88. [Google Scholar] [CrossRef]
- Knizewski, L.; Kinch, L.; Grishin, N.V.; Rychlewski, L.; Ginalski, K. Human herpesvirus 1 UL24 gene encodes a potential PD-(D/E)XK endonuclease. J. Virol. 2006, 80, 2575–2577. [Google Scholar] [CrossRef]
- Ruan, P.L.; Wang, M.S.; Cheng, A.C.; Zhao, X.X.; Yang, Q.; Wu, Y.; Zhang, S.Q.; Tian, B.; Huang, J.; Ou, X.M.; et al. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front. Microbiol. 2023, 14, 1268429. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, L.; Pearson, A. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J. Gen. Virol. 2008, 89 Pt 5, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, L.; Leiva-Torres, G.A.; Hyjazie, H.; Pearson, A. Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J. Virol. 2010, 84, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Lymberopoulos, M.H.; Pearson, A. Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin. Virology 2007, 363, 397–409. [Google Scholar] [CrossRef]
- Carvalho, R.F.; Spilki, F.R.; Cunha, E.M.; Stocco, R.C.; Arns, C.W. Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1. Res. Vet. Sci. 2012, 93, 494–497. [Google Scholar] [CrossRef]
- Kasem, S.; Yu, M.H.; Yamada, S.; Kodaira, A.; Matsumura, T.; Tsujimura, K.; Madbouly, H.; Yamaguchi, T.; Ohya, K.; Fukushi, H. The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology 2010, 400, 259–270. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, S.Y.; Sun, W.C.; Feng, Y.R.; Gong, H.R.; Ran, D.L.; Zhang, B.Z.; Liu, J.H. Breaking Latent Infection: How ORF37/38-Deletion Mutants Offer New Hope against EHV-1 Neuropathogenicity. Viruses 2024, 16, 1472. [Google Scholar] [CrossRef]
- Oguma, K.; Ishida, M.; Maeda, K.; Sentsui, H. Efficient Propagation of Equine Viruses in a Newly Established Equine Cell Line, FHK-Tcl3.1 Cells. J. Vet. Med. Sci. 2013, 75, 1223–1225. [Google Scholar] [CrossRef]
- Andoh, K.; Kai, K.; Matsumura, T.; Maeda, K. Further Development of an Equine Cell Line that can be Propagated over 100 Times. J. Equine Sci. 2009, 20, 11–14. [Google Scholar] [CrossRef]
- Maeda, K.; Yasumoto, S.; Tsuruda, A.; Andoh, K.; Kai, K.; Otoi, T.; Matsumura, T. Establishment of a novel equine cell line for isolation and propagation of equine herpesviruses. J. Vet. Med. Sci. 2007, 69, 989–991. [Google Scholar] [CrossRef]
Name | Size (bp) | G + C (%) | Total Numbers of ORFs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genome | UL a | US b | IR c | TR d | Genome | UL | US | IR | TR | ||
EHV-1 | 150,224 | 112,935 | 11,861 | 12,714 | 12,714 | 56.67 | 80 | 62 | 10 | 4 | 4 |
EHV-4 | 145,597 | 112,452 | 12,789 | 10,179 | 10,179 | 50.46 | 79 | 62 | 10 | 4 | 3 |
EHV-8 | 149,332 | 113,341 | 89,403 | 11,969 | 11,969 | 54.36 | 80 | 62 | 10 | 4 | 4 |
EHV-9 | 148,371 | 112,681 | 11,998 | 11,846 | 11,846 | 56.10 | 80 | 62 | 10 | 4 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Zhao, X.; Wang, X. The Genomic Characterization of Equid Alphaherpesviruses: Structure, Function, and Genetic Similarity. Vet. Sci. 2025, 12, 228. https://doi.org/10.3390/vetsci12030228
Liu D, Zhao X, Wang X. The Genomic Characterization of Equid Alphaherpesviruses: Structure, Function, and Genetic Similarity. Veterinary Sciences. 2025; 12(3):228. https://doi.org/10.3390/vetsci12030228
Chicago/Turabian StyleLiu, Diqiu, Xiaoyang Zhao, and Xiaojun Wang. 2025. "The Genomic Characterization of Equid Alphaherpesviruses: Structure, Function, and Genetic Similarity" Veterinary Sciences 12, no. 3: 228. https://doi.org/10.3390/vetsci12030228
APA StyleLiu, D., Zhao, X., & Wang, X. (2025). The Genomic Characterization of Equid Alphaherpesviruses: Structure, Function, and Genetic Similarity. Veterinary Sciences, 12(3), 228. https://doi.org/10.3390/vetsci12030228