Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains, Fruiting Body Cultivation, and Light Treatment
2.2. Transcriptome Analysis and Differentially Expressed Gene (DEG) Identification
2.3. Functional Enrichment and PPI Network Analysis of DEGs
2.4. Quantatitive Polymerase Chain Reaction (PCR) of DEGs
3. Results
3.1. Effect of Light on the Fruitng Body Color
3.2. DEG Identification
3.3. Functional Enrichment of DEGs
3.4. Expression Patterns and PPI Networks of the F. velutipes Fruiting Body Color-Related Genes
3.5. qPCR Validation of DEGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, P.M.; Liu, X.B.; Dai, Y.C.; Horak, E.; Steffen, K.; Yang, Z.L. Phylogeny and species delimitation of Flammulina: Taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach. Mycol. Prog. 2018, 17, 1013–1030. [Google Scholar] [CrossRef]
- Chaisaena, W. Light Effects on Fruiting Body Development of Wildtype in Comparison to Light-Insensitive Mutant Strains of the Basidiomycete Coprinopsis cinerea, Grazing of Mites (Tyrophagus putrescentiae) on the Strains and Production of Volatile Organic Compounds during Fruiting Body Development. Ph.D. Thesis, Georg-August-University, Göttingen, Germany, 2009. [Google Scholar]
- Nmom, F.W.; Amadi, L.O.; Ngerebara, N.N. Influences of light regimes on reproduction, germination, pigmentation, pathogenesis and overall development of a variety of Filamentous Fungi—A Review. Asian J. Biol. 2021, 11, 25–34. [Google Scholar] [CrossRef]
- Bayram, Ö.S.; Bayram, Ö. An anatomy of fungal eye: Fungal photoreceptors and signaling mechanisms. J. Fungi 2023, 9, 591. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhengpeng, L.I.; Lin, J.; Lin, M.A.; Huiping, L.I.; Shaoxuan, Q.U.; Jiang, J.; Zou, X.; Yang, H.; Changtian, L.I.; et al. Effects of different light quality of LED light source on growth rate, mycelium branch and biomass of straw mushroom mycelium. Acta Agric. Zhejiangensis 2021, 33, 1110–1116. [Google Scholar] [CrossRef]
- Tang, L.H.; Jian, H.H.; Song, C.Y.; Bao, D.P.; Shang, X.D.; Wu, D.Q.; Tan, Q.; Zhang, X.H. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Appl. Microbiol. Biotechnol. 2013, 97, 4977–4989. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tong, X.; Tian, F.; Jia, C.; Li, C.; Li, Y. Transcriptomic profiling sheds light on the blue-light and red-light response of oyster mushroom (Pleurotus ostreatus). AMB Express 2020, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Li, Y.; Huang, J.; Duan, J.; Zhang, Q.; Xie, B. Growth and development of Hypsizygus marmoreus and response expression of light receptor white collar genes under different light quality irradiation. Acta Hortic. Sin. 2020, 47, 467–476. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, S.; Han, Z.; Qi, Z.; Han, L.; Li, Y. Integrated transcriptome and metabolome analysis provides insights into blue light response of Flammulina filiformis. AMB Express 2024, 14, 21. [Google Scholar] [CrossRef]
- Damaso, E.J.; Dulay, R.M.; Kalaw, S.; Reyes, R. Effects of color light emitting diode (LED) on the mycelial growth, fruiting body production, and antioxidant activity of Lentinus tigrinus. CLSU Int. J. Sci. Technol. 2018, 3, 9–16. [Google Scholar] [CrossRef]
- Roshita, I.; Goh, S.Y. Effect of exposure to different colors light emitting diode on the yield and physical properties of grey and white oyster mushrooms. In Proceedings of the AIP Conference, Ho Chi Minh, Vietnam, 29–30 April 2018. [Google Scholar] [CrossRef]
- Park, Y.J.; Jang, M.J. Blue light induced edible mushroom (Lentinula edodes) proteomic analysis. J. Fungi 2020, 6, 127. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, D.Y.; Park, Y.J.; Jang, M.J. Transcriptome analysis of the edible mushroom Lentinula edodes in response to blue light. PLoS ONE 2020, 15, e0230680. [Google Scholar] [CrossRef] [PubMed]
- Lawrinowitz, S.; Wurlitzer, J.M.; Weiss, D.; Arndt, H.D.; Kothe, E.; Gressler, M.; Hoffmeister, D. Blue light-dependent pre-mRNA splicing controls pigment biosynthesis in the mushroom Terana caerulea. Microbiol. Spectr. 2022, 10, e01065-22. [Google Scholar] [CrossRef] [PubMed]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.M.; Butler, M.J.; Day, A.W. The Dark Side of the Mycelium: Melanins of Phytopathogenic Fungi. Annu. Rev. Phytopathol. 1999, 37, 447–471. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Kimura, N.; Miura, R. Regulation of primary metabolic pathways in oyster mushroom mycelia induced by blue light stimulation: Accumulation of shikimic acid. Sci. Rep. 2015, 5, 8630. [Google Scholar] [CrossRef] [PubMed]
- Tiniola, R. Light-emitting diode enhances the biomass yield and antioxidant activity of Philippine wild mushroom Lentinus swartzii. Asian J. Agric. Biol. 2021, 2021, 20210411682. [Google Scholar] [CrossRef]
- Desjardin, D.E.; Oliveira, A.G.; Stevani, C.V. Fungi bioluminescence revisited. Photochem. Photobiol. Sci. 2008, 7, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Pawlik, A.; Mazur, A.; Wielbo, J.; Koper, P.; Żebracki, K.; Kubik-Komar, A.; Janusz, G. RNA sequencing reveals differential gene expression of Cerrena Unicolor in response to variable lighting conditions. Int. J. Mol. Sci. 2019, 20, 290. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.I.; Lee, H.Y.; Markkandan, K.; Moon, S.; Ahn, Y.J.; Ji, S.; Ko, J.; Kim, S.J.; Ryu, H.; Hong, C.P. Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes. BMC Genom. 2019, 20, 121. [Google Scholar] [CrossRef]
- Zeng, J.; Shi, D.; Chen, Y.; Bao, X.; Zong, Y. FvbHLH1 Regulates the Accumulation of Phenolic Compounds in the Yellow Cap of Flammulina velutipes. J. Fungi. 2023, 9, 1063. [Google Scholar] [CrossRef]
- Bao, X.; Ke, D.; Wang, W.; Ye, F.; Zeng, J.; Zong, Y. High fatty acid accumulation and coloration molecular mechanism of the elm mushroom (Pleurotus citrinopileatus). Biosci. Biotechnol. Biochem. 2024, 88, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom forming fungi. Fungal Biol. Rev. 2018, 32, 236–248. [Google Scholar] [CrossRef]
- Im, J.H.; Yu, H.W.; Park, C.H.; Kim, J.W.; Shin, J.H.; Jang, K.Y.; Park, Y.J. Phenylalanine ammonia-lyase: A key gene for color discrimination of edible mushroom Flammulina velutipes. J. Fungi 2023, 9, 339. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Hass, B.J. TransDecoder version 5.7.1. 2023. Available online: https://github.com/TransDecoder/TransDecoder (accessed on 2 December 2023).
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2020, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2022, 51, D418–D427. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.; Wang, J.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Fuller, K.; Loros, J.; Dunlap, J. Fungal photobiology: Visible light as a signal for stress, space and time. Curr. Genet. 2014, 61, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Corrochano, L.M. Fungal photoreceptors: Sensory molecules for fungal development and behaviour. Photochem. Photobiol. Sci. 2007, 6, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Thind, T.S.; Schilder, A.C. Understanding photoreception in fungi and its role in fungal development with focus on phytopathogenic fungi. Indian Phytopathol. 2018, 71, 169–182. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Tamai, Y.; Yajima, T. Influence of light on the morphological changes that take place during the development of the Flammulina velutipes fruit body. Mycoscience 2004, 45, 333–339. [Google Scholar] [CrossRef]
- Tsusué, Y.M. Experimental control of fruit-body formation in Coprinus macrohizus. Dev. Growth Differ. 1969, 11, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Kamada, T.; Sano, H.; Nakazawa, T.; Nakahori, K. Regulation of fruiting body photomorphogenesis in Coprinopsis cinerea. Fungal Genet. 2010, 47, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.H.; Kim, J.H.; Won, S.Y.; Seo, G.S.; Ju, Y.C. Studies on favorable light condition for artificial cultivation of Grifola frondosa. Kor. J. Mycol. 2008, 36, 31–35. [Google Scholar] [CrossRef]
- Berger, R.G.; Bordewick, S.; Krahe, N.K.; Ersoy, F. Mycelium vs. Fruiting Bodies of Edible Fungi—A Comparison of Metabolites. Microorganisms 2022, 10, 1379. [Google Scholar] [CrossRef] [PubMed]
- Leatham, G.F.; Stahmann, M.A. Effect of light and aeration on fruiting of Lentinula edodes. Trans. Br. Mycol. Soc. 1987, 88, 9–20. [Google Scholar] [CrossRef]
- Liu, C.; Kang, L.; Lin, M.; Bi, J.; Liu, Z.; Yuan, S. Molecular Mechanism by Which the GATA Transcription Factor CcNsdD2 Regulates the Developmental Fate of Coprinopsis cinerea under Dark or Light Conditions. mBio 2022, 13, e03626-21. [Google Scholar] [CrossRef] [PubMed]
- Durand, R.; Furuya, M. Action Spectra for Stimulatory and Inhibitory Effects of UV and Blue Light on Fruit-Body Formation in Coprinus congregatus. Plant Cell Physiol. 1985, 26, 1175–1183. [Google Scholar] [CrossRef]
- Kitamoto, Y.; Suzuki, A.; Furukawa, S. An Action Spectrum for Light-Induced Primordium Formation in a Basidiomycete, Favolus arcularius (Fr) Ames. Plant Physiol. 1972, 49, 338–340. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Cheng, P.; Yang, Y.; Wang, L.; Gardner, K.H.; Liu, Y. White Collar-1, a DNA binding transcription factor and a light sensor. Science 2002, 297, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.; Vogt, A.; Uslu, T.; Scalzitti, N.; Chennen, K.; Poch, O.; Thompson, J.D. CeGAL: Redefining a Widespread Fungal-Specific Transcription Factor Family Using an In Silico Error-Tracking Approach. J. Fungi 2023, 9, 424. [Google Scholar] [CrossRef] [PubMed]
- Ruger-Herreros, C.; Gil-Sánchez, M.M.; Sancar, G.; Brunner, M.; Corrochano, L.M. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa. PLoS ONE 2014, 9, e95069. [Google Scholar] [CrossRef]
- In-on, A.; Thananusak, R.; Ruengjitchatchawalya, M.; Vongsangnak, W.; Laomettachit, T. Construction of Light-Responsive Gene Regulatory Network for Growth. development and Secondary Metabolite Production in Cordyceps militaris. Biology 2022, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Permana, D.; Kitaoka, T.; Ichinose, H. Conversion and synthesis of chemicals catalyzed by fungal cytochrome P450 monooxygenases: A review. Biotechnol. Bioeng. 2023, 120, 1725–1745. [Google Scholar] [CrossRef] [PubMed]
- Syed, K.; Shale, K.; Pagadala, N.S.; Tuszynski, J. Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi. PLoS ONE 2014, 9, e86683. [Google Scholar] [CrossRef]
- Ichinose, H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol. Appl. 2013, 60, 71–81. [Google Scholar] [CrossRef]
- Naveed, A.; Li, H.; Liu, X. Cytochrome P450s: Blueprints for Potential Applications in Plants. J. Plant Biochem. Physiol. 2018, 6, 204. [Google Scholar] [CrossRef]
- Tanaka, Y.; Brugliera, F. Metabolic Engineering of Flower Color Pathways Using Cytochromes P450. In Fifty Years of Cytochrome P450 Research, 1st ed.; Yamazaki, H., Ed.; Springer: Tokyo, Japan, 2014; pp. 207–229. [Google Scholar] [CrossRef]
- Rasool, S.; Mohamed, R. Plant cytochrome P450s: Nomenclature and involvement in natural product biosynthesis. Protoplasma 2016, 253, 1197–1209. [Google Scholar] [CrossRef]
- Harmer, S.L.; Hogenesch, J.B.; Straume, M.; Chang, H.-S.; Han, B.; Zhu, T.; Wang, X.; Kreps, J.A.; Kay, S.A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 2000, 290, 2110–2113. [Google Scholar] [CrossRef]
- Covington, M.F.; Harmer, S.L. The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol. 2007, 5, e222. [Google Scholar] [CrossRef]
- Michael, T.P.; Mockler, T.C.; Breton, G.; McEntee, C.; Byer, A.; Trout, J.D.; Hazen, S.P.; Shen, R.; Priest, H.D.; Sullivan, C.M.; et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet. 2008, 4, e14. [Google Scholar] [CrossRef]
- Pan, Y.; Michael, T.P.; Hudson, M.E.; Kay, S.A.; Chory, J.; Schuler, M.A. Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways. Plant Physiol. 2009, 150, 858–878. [Google Scholar] [CrossRef]
- Kong, J.Q. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv. 2015, 5, 62587–62603. [Google Scholar] [CrossRef]
- Mozzarelli, A.; Bettati, S. Exploring the pyridoxal 5′-phosphate-dependent enzymes. Chem. Rec. 2006, 6, 275–287. [Google Scholar] [CrossRef]
- Gerlach, T.; Nugroho, D.L.; Rother, D. The Effect of Visible Light on the Catalytic Activity of PLP-Dependent Enzymes. ChemCatChem. 2021, 13, 2398–2406. [Google Scholar] [CrossRef]
- Liang, J.; Han, Q.; Tan, Y.; Ding, H.; Li, J. Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Front. Mol. Biosci. 2019, 6, 4. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Cross, P.J.; Dobson, R.C.J.; Adams, L.E.; Savka, M.A.; Hudson, A.O. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front. Mol. Biosci. 2018, 5, 29. [Google Scholar] [CrossRef]
Gene ID | Treated light | log2FC | FDR 1 | Pfam Database (p < 0.001) | Family | |
---|---|---|---|---|---|---|
ID | Description | |||||
TRINITY_DN1447_c0_g1_i1 | Blue | −2.0926 | 0.0000 | PF00067.26 | Cytochrome P450 | CYP620 |
Green | −1.5818 | 0.0002 | ||||
TRINITY_DN6930_c0_g1_i17 | Blue | −1.3246 | 0.0000 | PF00067.26 | Cytochrome P450 | CYP53 |
Green | −1.2260 | 0.0015 | ||||
TRINITY_DN5360_c0_g1_i15 | Blue | −1.5705 | 0.0000 | PF00067.26 | Cytochrome P450 | CYP620 |
Green | −1.4023 | 0.0212 | ||||
TRINITY_DN5015_c0_g3_i1 | Blue | −2.2012 | 0.0001 | - | - | |
Green | −2.2610 | 0.0158 |
Gene ID | Closeness | Degree | Pfam Database | KEGG 1 Database | ||
---|---|---|---|---|---|---|
ID | Description | ID | Description | |||
TRINITY_DN3704_c0_g1_i1 | 10 | 10 | PF00155.25 | Aminotransferase classes I and II | K00817 | Histidinol-phosphate aminotransferase [EC:2.6.1.9] |
TRINITY_DN5155_c0_g1_i16 | 10 | 10 | PF00155.25 | K14455 | Aspartate aminotransferase, mitochondrial [EC:2.6.1.1] | |
TRINITY_DN5724_c0_g1_i3 | 10 | 10 | PF00282.23 | Pyridoxal-dependent decarboxylase conserved domain | - | - |
TRINITY_DN631_c0_g1_i10 | 9.5 | 9 | PF00155.25 | Aminotransferase classes I and II | K14454 | Aspartate aminotransferase, mitochondrial [EC:2.6.1.1] |
TRINITY_DN631_c0_g1_i5 | 9.5 | 9 | PF00155.25 | K14454 | ||
TRINITY_DN2176_c0_g1_i14 | 8 | 6 | PF00155.25 | K00838 | Aromatic amino acid aminotransferase I/2-aminoadipate transaminase [EC:2.6.1.57 2.6.1.39 2.6.1.27 2.6.1.5] | |
TRINITY_DN2176_c0_g1_i24 | 8 | 6 | PF00155.25 | K00838 | ||
TRINITY_DN9451_c0_g1_i2 | 8 | 6 | PF00800.22 | Prephenate dehydratase | - | |
TRINITY_DN9451_c0_g1_i39 | 8 | 6 | PF00800.22 | |||
TRINITY_DN9451_c0_g1_i45 | 8 | 6 | PF00800.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, J.-H.; Park, C.-H.; Shin, J.-H.; Oh, Y.-L.; Oh, M.; Paek, N.-C.; Park, Y.-J. Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes. J. Fungi 2024, 10, 372. https://doi.org/10.3390/jof10060372
Im J-H, Park C-H, Shin J-H, Oh Y-L, Oh M, Paek N-C, Park Y-J. Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes. Journal of Fungi. 2024; 10(6):372. https://doi.org/10.3390/jof10060372
Chicago/Turabian StyleIm, Ji-Hoon, Che-Hwon Park, Ju-Hyeon Shin, Youn-Lee Oh, Minji Oh, Nam-Chon Paek, and Young-Jin Park. 2024. "Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes" Journal of Fungi 10, no. 6: 372. https://doi.org/10.3390/jof10060372
APA StyleIm, J. -H., Park, C. -H., Shin, J. -H., Oh, Y. -L., Oh, M., Paek, N. -C., & Park, Y. -J. (2024). Effects of Light on the Fruiting Body Color and Differentially Expressed Genes in Flammulina velutipes. Journal of Fungi, 10(6), 372. https://doi.org/10.3390/jof10060372