Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plukenetia Volubilis Seed
2.2. Mycorrhizal Inoculum
2.3. Inoculation of Plukenetia volubilis Seedlings
2.4. Experiment #1: Impact of AMF Inoculation on Plukenetia volubilis Growth and Physiology
2.4.1. Experimental Design
2.4.2. Plukenetia volubilis Growth, Physiology, and Mycorrhizal Characterization
2.5. Experiment #2: Impact of AMF Inoculation on Plukenetia volubilis against Meloidogyne incognita
2.5.1. Nematode Inoculum
2.5.2. Experimental Design
2.5.3. Plukenetia volubilis Growth, Physiology, and Mycorrhizal Characterization and Evaluation of Meloidogyne
2.6. Culture Conditions
2.7. Statistical Treatment of Data
3. Results
3.1. Experiment #1: Impact of AMF Inoculation on Plukenetia volubilis Growth and Physiological Responses
3.2. Experiment #2: Impact of AMF Inoculation on Plant Growth and Meloidogyne incognita Infection
3.2.1. Plant Growth Parameters
3.2.2. Effects of AMF Inoculation on Meloidogyne incognita
3.2.3. Leaf Nutrient Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.T.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; et al. The Future of Farming: Who Will Produce Our Food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Qaim, M. Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Appl. Econ. Perspect. Policy 2020, 42, 129–150. [Google Scholar] [CrossRef]
- FAO, Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture: Trends and Challenges. Available online: https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/472484/ (accessed on 18 May 2024).
- Kuila, D.; Ghosh, S. Aspects, Problems and Utilization of Arbuscular Mycorrhizal (AM) Application as Bio-Fertilizer in Sustainable Agriculture. Curr. Res. Microb. Sci. 2022, 3, 100107. [Google Scholar] [CrossRef] [PubMed]
- Kameoka, H.; Gutjahr, C. Functions of Lipids in Development and Reproduction of Arbuscular Mycorrhizal Fungi. Plant Cell Physiol. 2022, 63, 1356–1365. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A Potential Approach for Sustainable Agriculture Development. Environ. Sci. Pollut. Res. 2017, 24, 3315–3335. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Maurer, N.E.; Hatta-Sakoda, B.; Pascual-Chagman, G.; Rodriguez-Saona, L.E. Characterization and Authentication of a Novel Vegetable Source of Omega-3 Fatty Acids, Sacha Inchi (Plukenetia Volubilis L.) Oil. Food Chem. 2012, 134, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Kodahl, N. Sacha Inchi (Plukenetia Volubilis L.)—From Lost Crop of the Incas to Part of the Solution to Global Challenges? Planta 2020, 251, 80. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F.; Kakuda, Y. Sacha Inchi (Plukenetia Volubilis L.): Nutritional Composition, Biological Activity, and Uses. Food Chem. 2018, 265, 316–328. [Google Scholar] [CrossRef]
- MIDAGRI, Ministerio de Desarrollo Agrario y Riego. Perfil Productivo de Sacha Inchi En San Martín. Available online: https://siea.midagri.gob.pe/portal/siea_bi/index.html (accessed on 18 May 2024).
- Kodahl, N.; Sørensen, M. Sacha Inchi (Plukenetia Volubilis L.) Is an Underutilized Crop with a Great Potential. Agronomy 2021, 11, 1066. [Google Scholar] [CrossRef]
- Guerrero-Abad, J.C.; Padilla-Domínguez, A.; Torres-Flores, E.; López-Rodríguez, C.; Guerrero-Abad, R.; Coyne, D.; Oehl, F.; Corazon-Guivin, M.A. A Pathogen Complex between the Root Knot Nematode Meloidogyne Incognita and Fusarium Verticillioides Results in Extreme Mortality of the Inka Nut (Plukenetia Volubilis). J. Appl. Bot. Food Qual. 2021, 94, 162–168. [Google Scholar] [CrossRef]
- Wiriya, J.; Rangjaroen, C.; Teaumroong, N.; Sungthong, R.; Lumyong, S. Rhizobacteria and Arbuscular Mycorrhizal Fungi of Oil Crops (Physic Nut and Sacha Inchi): A Cultivable-Based Assessment for Abundance, Diversity, and Plant Growth-Promoting Potentials. Plants 2020, 9, 1773. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Lei, Y.; Zheng, Y.; Cai, Z. Synergistic Effect of Colonization with Arbuscular Mycorrhizal Fungi Improves Growth and Drought Tolerance of Plukenetia Volubilis Seedlings. Acta Physiol. Plant. 2013, 35, 687–696. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; da Silva, G.A.; Oehl, F. Nanoglomus Plukenetiae, a New Fungus from Peru, and a Key to Small-Spored Glomeraceae Species, Including Three New Genera in the “Dominikia Complex/Clades”. Mycol. Prog. 2019, 18, 1395–1409. [Google Scholar] [CrossRef]
- Song, J.; Liang, J.-F.; Mehrabi-Koushki, M.; Krisai-Greilhuber, I.; Ali, B.; Bhatt, V.K.; Cerna-Mendoza, A.; Chen, B.; Chen, Z.-X.; Chu, H.-L.; et al. Fungal Systematics and Evolution: FUSE 5. Sydowia 2019, 71, 141–245. [Google Scholar] [CrossRef] [PubMed]
- Corazon-Guivin, M.A.; Romero-Cachique, G.; Del Aguila, K.M.; Padilla-Domínguez, A.; Hernández-Amasifuen, A.D.; Cerna-Mendoza, A.; Coyne, D.; Oehl, F. Rhizoglomus Variabile and Nanoglomus Plukenetiae, Native to Peru, Promote Coffee Growth in Western Amazonia. Microorganisms 2023, 11, 2883. [Google Scholar] [CrossRef] [PubMed]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; da Silva, G.A.; Oehl, F. Microkamienskia Gen. Nov. and Microkamienskia Peruviana, a New Arbuscular Mycorrhizal Fungus from Western Amazonia. Nova Hedwig. 2019, 109, 355–368. [Google Scholar] [CrossRef]
- Horneck, D.; Miller, R. Determination of Total Nitrogen in Plant Tissue. In Handbook of Reference Methods for Plant Analysis; Kalra, Y., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–83. [Google Scholar]
- Vierheilig, H.; Coughlan, A.P.; Wyss, U.; Piché, Y. Ink and Vinegar, a Simple Staining Technique for Arbuscular-Mycorrhizal Fungi. Appl. Environ. Microbiol. 1998, 64, 5004–5007. [Google Scholar] [CrossRef]
- Brundrett, M.; Bougher, N.; Dell, B.; Grove, T.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; Australian Centre for International Agricultural Research: Canberra, Australia, 1996.
- Gerdemann, J.W.; Nicolson, T.H. Spores of Mycorrhizal Endogone Species Extracted from Soil by Wet Sieving and Decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Atamian, H.S.; Roberts, P.A.; Kaloshian, I. High and Low Throughput Screens with Root-Knot Nematodes Meloidogyne Spp. J. Vis. Exp. 2012, 61, 3629. [Google Scholar] [CrossRef]
- Hussey, R.S.; Barker, K.R. A Comparison of Methods of Collecting Inocula of Meloidogyne Spp., Including a New Technique. Plant Dis. Report. 1973, 57, 1025–1028. [Google Scholar]
- Bridge, J.; Page, S.L.J. Estimation of Root-Knot Nematode Infestation Levels on Roots Using a Rating Chart. Trop. Pest Manag. 1980, 26, 296–298. [Google Scholar] [CrossRef]
- Hewitt, E.J. Sand and Water Culture Methods Used in the Study of Plant Nutrition; Farnhan Royal; Commonwealth Agricultural Bureau: Farnham, UK, 1966. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Levene, H. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B., Eds.; Stanford University Press: Redwood City, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G.; Stout, B.B. Statistical Methods. Soil Sci. 1968, 106, 239. [Google Scholar] [CrossRef]
- Zhang, S.; Lehmann, A.; Zheng, W.; You, Z.; Rillig, M.C. Arbuscular Mycorrhizal Fungi Increase Grain Yields: A Meta-Analysis. New Phytol. 2019, 222, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Basiru, S.; Mwanza, H.P.; Hijri, M. Analysis of Arbuscular Mycorrhizal Fungal Inoculant Benchmarks. Microorganisms 2021, 9, 81. [Google Scholar] [CrossRef]
- Moreira, S.D.; França, A.C.; Rocha, W.W.; Tibães, E.S.R.; Neiva Júnior, E. Inoculation with Mycorrhizal Fungi on the Growth and Tolerance to Water Deficit of Coffee Plants. Rev. Bras. Eng. Agríc. E Ambient. 2018, 22, 747–752. [Google Scholar] [CrossRef]
- Gomes Júnior, G.A.; Pereira, R.A.; Sodré, G.A.; do Sacramneto, C.K.; Gross, E. Inoculation with Arbuscular Micorrizhal Fungi and Organic Compost from Cocoa Shell Positively Influence the Growth and Mineral Nutrition of Soursop Plants (Annona Muricata L.). Rev. Bras. Frutic. 2018, 40, e-024. [Google Scholar] [CrossRef]
- Sales, L.R.; Silva, A.O.; Sales, F.R.; Rodrigues, T.L.; Barbosa, M.V.; dos Santos, J.V.; Kemmelmeier, K.; Siqueira, J.O.; Carneiro, M.A.C. On Farm Inoculation of Native Arbuscular Mycorrhizal Fungi Improves Efficiency in Increasing Sugarcane Productivity in the Field. Rhizosphere 2022, 22, 100539. [Google Scholar] [CrossRef]
- Estrada, B.; Aroca, R.; Barea, J.M.; Ruiz-Lozano, J.M. Native Arbuscular Mycorrhizal Fungi Isolated from a Saline Habitat Improved Maize Antioxidant Systems and Plant Tolerance to Salinity. Plant Sci. 2013, 201, 42–51. [Google Scholar] [CrossRef]
- Middleton, E.L.; Richardson, S.; Koziol, L.; Palmer, C.E.; Yermakov, Z.; Henning, J.A.; Schultz, P.A.; Bever, J.D. Locally Adapted Arbuscular Mycorrhizal Fungi Improve Vigor and Resistance to Herbivory of Native Prairie Plant Species. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Abbott, L.K.; Robson, A.D. Infectivity and Effectiveness of Five Endomycorrhizal Fungi: Competition with Indigenous Fungi in Field Soils. Aust. J. Agric. Res. 1981, 32, 621–630. [Google Scholar] [CrossRef]
- Pineda, A.; Dicke, M.; Pieterse, C.M.J.; Pozo, M.J. Beneficial Microbes in a Changing Environment: Are They Always Helping Plants to Deal with Insects? Funct. Ecol. 2013, 27, 574–586. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Mycorrhizal Fungal Diversity Determines Plant Biodiversity, Ecosystem Variability and Productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Maherali, H.; Klironomos, J.N. Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning. Science 2007, 316, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2016, 6, 169741. [Google Scholar] [CrossRef] [PubMed]
- Thonar, C.; Frossard, E.; Šmilauer, P.; Jansa, J. Competition and Facilitation in Synthetic Communities of Arbuscular Mycorrhizal Fungi. Mol. Ecol. 2014, 23, 733–746. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Q.; Koide, R.T.; Hoeksema, J.D.; Tang, J.; Bian, X.; Hu, S.; Chen, X. Taxonomic Resolution Is a Determinant of Biodiversity Effects in Arbuscular Mycorrhizal Fungal Communities. J. Ecol. 2017, 105, 219–228. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 511937. [Google Scholar] [CrossRef]
- Wulandari, D.; Saridi; Cheng, W.; Tawaraya, K. Arbuscular Mycorrhizal Colonization Enhanced Early Growth of Mallotus Paniculatus and Albizia Saman under Nursery Conditions in East Kalimantan, Indonesia. Int. J. For. Res. 2014, 2014, 898494. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Sánchez-García, M.; Niezgoda, P.; Zubek, S.; Fernández, F.; Vila, A.; Al-Yahya’ei, M.N.; Symanczik, S.; Milczarski, P.; Malinowski, R.; et al. A New Order, Entrophosporales, and Three New Entrophospora Species in Glomeromycota. Front. Microbiol. 2022, 13, 962856. [Google Scholar] [CrossRef] [PubMed]
- Dubský, M.; Šrámek, F.; Vosátka, M. Inoculation of Cyclamen (Cyclamen Persicum) and Poinsettia (Euphorbia Pulcherrima) with Arbuscular Mycorrhizal Fungi and Trichoderma Harzianum. Plant Soil Environ. 2002, 48, 63–68. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, M.; Xu, Z.; Yang, T.; Su, Y.; Zhou, T.; Wang, H.; Wang, Y.; Lin, Y. Estimation of Leaf Nutrition Status in Degraded Vegetation Based on Field Survey and Hyperspectral Data. Sci. Rep. 2020, 10, 4361. [Google Scholar] [CrossRef] [PubMed]
- Pepe, A.; Giovannetti, M.; Sbrana, C. Lifespan and Functionality of Mycorrhizal Fungal Mycelium Are Uncoupled from Host Plant Lifespan. Sci. Rep. 2018, 8, 10235. [Google Scholar] [CrossRef] [PubMed]
- Koide, R.T.; Kabir, Z. Extraradical Hyphae of the Mycorrhizal Fungus Glomus Intraradices Can Hydrolyse Organic Phosphate. New Phytol. 2000, 148, 511–517. [Google Scholar] [CrossRef]
- Pumplin, N.; Zhang, X.; Noar, R.D.; Harrison, M.J. Polar Localization of a Symbiosis-Specific Phosphate Transporter Is Mediated by a Transient Reorientation of Secretion. Proc. Natl. Acad. Sci. USA 2012, 109, E665–E672. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, S.R.; Cruz, R.M.S.D.; Lourenço, E.L.B.; Alberton, O. Meta-Analysis of Lamiaceae and Euphorbiaceae Medicinal Plants Inoculated with Arbuscular Mycorrhizal Fungi. Aust. J. Crop Sci. 2019, 13, 588–598. [Google Scholar] [CrossRef]
- Delavaux, C.S.; Smith-Ramesh, L.M.; Kuebbing, S.E. Beyond Nutrients: A Meta-Analysis of the Diverse Effects of Arbuscular Mycorrhizal Fungi on Plants and Soils. Ecology 2017, 98, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Séry, D.J.-M.; Kouadjo, Z.G.C.; Voko, B.R.R.; Zézé, A. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions. Front. Microbiol. 2016, 7, 2063. [Google Scholar] [CrossRef] [PubMed]
- Jaizme-Vega, M.D.C.; Rodríguez-Romero, A.S.; Barroso Núñez, L.A. Effect of the Combined Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria on Papaya (Carica Papaya L.) Infected with the Root-Knot Nematode Meloidogyne Incognita. Fruits 2006, 61, 151–162. [Google Scholar] [CrossRef]
- Sharma, I.P.; Sharma, A.K. Mycorrhizal Colonization and Phosphorus Uptake in Presence of PGPRs along with Nematode Infection. Symbiosis 2019, 77, 185–187. [Google Scholar] [CrossRef]
- Garcia, K.; Zimmermann, S.D. The Role of Mycorrhizal Associations in Plant Potassium Nutrition. Front. Plant Sci. 2014, 5, 91299. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; Liu, J.; Cui, M.; Huang, Y.; Tian, Y.; Chen, A.; Xu, G. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. Plant Physiol. 2019, 180, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.C.; Wilson, G.W.T.; Bowker, M.A.; Wilson, J.A.; Miller, R.M. Resource Limitation Is a Driver of Local Adaptation in Mycorrhizal Symbioses. Proc. Natl. Acad. Sci. USA 2010, 107, 2093–2098. [Google Scholar] [CrossRef] [PubMed]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Schouteden, N.; De Waele, D.; Panis, B.; Vos, C.M. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front. Microbiol. 2015, 6, 165362. [Google Scholar] [CrossRef] [PubMed]
- Campos, A. Bioprotection by Arbuscular Mycorrhizal Fungi in Plants Infected with Meloidogyne Nematodes: A Sustainable Alternative. Crop Prot. 2020, 135, 105203. [Google Scholar] [CrossRef]
- Azcón-Aguilar, C.; Barea, J.M. Arbuscular Mycorrhizas and Biological Control of Soil-Borne Plant Pathogens—An Overview of the Mechanisms Involved. Mycorrhiza 1997, 6, 457–464. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef]
- Chagnon, P.-L.; Bradley, R.L.; Maherali, H.; Klironomos, J.N. A Trait-Based Framework to Understand Life History of Mycorrhizal Fungi. Trends Plant Sci. 2013, 18, 484–491. [Google Scholar] [CrossRef]
- Powell, J.R.; Parrent, J.L.; Hart, M.M.; Klironomos, J.N.; Rillig, M.C.; Maherali, H. Phylogenetic Trait Conservatism and the Evolution of Functional Trade-Offs in Arbuscular Mycorrhizal Fungi. Proc. R. Soc. B Biol. Sci. 2009, 276, 4237–4245. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heijden, M.G.A.; Scheublin, T.R. Functional Traits in Mycorrhizal Ecology: Their Use for Predicting the Impact of Arbuscular Mycorrhizal Fungal Communities on Plant Growth and Ecosystem Functioning. New Phytol. 2007, 174, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Sieverding, E.; da Silva, G.A.; Berndt, R.; Oehl, F. Rhizoglomus, a New Genus of the Glomeraceae. Mycotaxon 2015, 129, 373–386. [Google Scholar] [CrossRef]
- Anli, M.; Symanczik, S.; El Abbassi, A.; Ait-El-Mokhtar, M.; Boutasknit, A.; Ben-Laouane, R.; Toubali, S.; Baslam, M.; Mäder, P.; Hafidi, M.; et al. Use of Arbuscular Mycorrhizal Fungus Rhizoglomus Irregulare and Compost to Improve Growth and Physiological Responses of Phoenix Dactylifera ‘Boufgouss’. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2021, 155, 763–771. [Google Scholar] [CrossRef]
- Eltigani, A.; Müller, A.; Ngwene, B.; George, E. Physiological and Morphological Responses of Okra (Abelmoschus Esculentus L.) to Rhizoglomus Irregulare Inoculation under Ample Water and Drought Stress Conditions Are Cultivar Dependent. Plants 2022, 11, 89. [Google Scholar] [CrossRef]
- Zhang, Q.; Gong, M.; Liu, K.; Chen, Y.; Yuan, J.; Chang, Q. Rhizoglomus Intraradices Improves Plant Growth, Root Morphology and Phytohormone Balance of Robinia Pseudoacacia in Arsenic-Contaminated Soils. Front. Microbiol. 2020, 11, 1428. [Google Scholar] [CrossRef]
Treatment | Description |
---|---|
Control | Non-inoculated |
Rv | Inoculation with Rhizoglomus variabile |
Np | Inoculation with Nanoglomus plukenetiae |
Rv + Np | Inoculation with Rhizoglomus variabile + Nanoglomus plukenetiae |
Treatment | Description |
---|---|
Control | Non-inoculated |
Rv/Mi 0 | Inoculation with Rhizoglomus variabile and Meloidogyne incognita at 0 days |
Np/Mi 0 | Inoculation with Nanoglomus plukenetiae and Meloidogyne incognita at 0 days |
Rv + Np/Mi 0 | Inoculation with R. variabile + N. plukenetiae and M. incognita at 0 days |
Mi 0 | Infestation with Meloidogyne incognita at 0 days |
Rv/Mi 45 | Inoculation with Rhizoglomus variabile and Meloidogyne incognita at 45 days |
Np/Mi 45 | Inoculation with Nanoglomus plukenetiae and Meloidogyne incognita at 45 days |
Rv + Np/Mi 45 | Inoculation with R. variabile + N. plukenetiae and M. incognita at 45 days |
Mi 45 | Infestation with Meloidogyne incognita at 45 days |
Treatment 1 | Leaf Area (cm2) | Chlorophyll Content (SPAD) | Total Fresh Biomass (g) | Shoot Dry Biomass (g) | Root Colonization (%) | Spore Density (10 g Soil) |
---|---|---|---|---|---|---|
Control | 493 ± 11.5 c | 35.7 ± 0.48 a | 77.9 ± 2.5 b | 10.6 ± 0.32 b | 0 | 0 |
Rv | 652 ± 8.3 a | 38.5 ± 0.67 a | 90.4 ± 2.0 a | 14.4 ± 0.24 a | 94.4 ± 1.0 a | 169 ± 5.2 a |
Np | 609 ± 8.1 b | 36.9 ± 0.94 a | 88.7 ± 1.3 a | 13.8 ± 0.26 a | 73.1 ± 1.3 c | 74 ± 6.7 c |
Rv + Np | 613 ± 5.4 b | 37.6 ± 1.03 a | 89.5 ± 1.4 a | 13.8 ± 0.39 a | 90.1 ± 1.1 b | 114 ± 6.1 b |
p-values | p < 0.0001 | p = 0.1129 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
F-values | F3 = 63.792 | F3 = 2.110 | F3 = 10.129 | F3 = 30.567 | F2 = 98.287 | F2 = 62.252 |
Treatment 1 | Leaf Area (cm2) | Chlorophyll Content (SPAD) | Total Fresh Biomass (g) | Shoot Dry Biomass (g) | Root Colonization (%) | Spore Density (10 g Soil) |
---|---|---|---|---|---|---|
Control | 493 ± 12 de | 35. 7 ± 0.5 a | 77.9 ± 2.5 b | 10.6 ± 0.32 b | 0 | 0 |
Co-inoculation of AMF and M. incognita at 0 days | ||||||
Rv/Mi 0 | 563 ± 9 bc | 38.3 ± 0.6 a | 79.9 ± 0.8 b | 10.5 ± 0.31 b | 93.2 ± 0.6 a | 101 ± 12.6 ab |
Np/Mi 0 | 522 ± 7 cd | 36.3 ± 0.6 a | 81.2 ± 1.6 b | 9.5 ± 0.39 b | 71.1 ± 0.9 c | 41 ± 4.0 c |
Rv + Np/Mi 0 | 539 ± 11 cd | 36.6 ± 0.8 a | 80.9 ± 1.3 b | 9.4 ± 0.24 b | 88.5 ± 1.3 b | 65 ± 5.9 bc |
Mi 0 | 423 ± 16 f | 28.3 ± 1.1 c | 57.1 ± 3.6 c | 5.6 ± 0.29 c | 0 | 0 |
Inoculation of M. incognita after 45 days | ||||||
Rv/Mi 45 | 630 ± 9 a | 36.8 ± 0.6 a | 90.9 ± 1.3 a | 14.3 ± 0.27 a | 93.0 ± 0.7 a | 89 ± 2.0 ab |
Np/Mi 45 | 611 ± 10 ab | 36.8 ± 0.7 a | 89.9 ± 1.8 a | 13.4 ± 0.33 a | 72.7 ± 0.8 c | 46 ± 2.0 c |
Rv + Np/Mi 45 | 637 ± 18 a | 36.0 ± 0.6 a | 93.6 ± 1.1 a | 13.7 ± 0.35 a | 91.8 ± 0.5 ab | 113 ± 20 a |
Mi 45 | 461 ± 12 ef | 32.4 ± 0.8 b | 75.4 ± 2.4 b | 10.3 ± 0.44 b | 0 | 0 |
p and F-value | ||||||
AMF | p < 0.0001 F3 = 70.809 | p < 0.0001 F3 = 27.713 | p < 0.0001 F3 = 40.662 | p < 0.0001 F3 = 52.178 | p < 0.0001 F2 = 286.970 | p < 0.0001 F2 = 26.84 |
Nematodes | p < 0.0001 F1 = 43.742 | p < 0.0001 F1 = 18.755 | p = <0.0001 F1 = 49.466 | p < 0.0001 F1 = 177.729 | p = 0.034 F1 = 4.726 | p = 0.047 F1 = 4.890 |
AMF × Nematodes | p = 0.070 F3 = 2.435 | p = 0.001 F3 = 5.838 | p = 0.116 F3 = 2.021 | p = 0.288 F3 = 1.2741 | p = 0.161 F2 = 1.883 | p = 0.005 F2 = 8.188 |
Nematode Density | ||
---|---|---|
Per Plant | Per 100 g of Soil | |
Control | 0 | 0 |
Co-inoculation of AMF and M. incognita at 0 days | ||
Rv/Mi 0 | 15319 ± 563.9 c | 1244 ± 72.9 c |
Np/Mi 0 | 17860 ± 121.0 b | 2200 ± 88.2 b |
Rv + Np/Mi 0 | 16972 ± 279.0 bc | 1467 ± 19.3 c |
Mi 0 | 23403 ± 1111.3 a | 2867 ± 19.3 a |
Inoculation of M. incognita after 45 days | ||
Rv/Mi 45 | 448 ± 79.0 f | 556 ± 22.2 e |
Np/Mi 45 | 1443.8 ± 279.0 e | 678 ± 19.3 e |
Rv + Np/Mi 45 | 1194 ± 77.4 e | 578 ± 22.2 e |
Mi 45 | 4194 ± 108.5 d | 956 ± 40.1 d |
p- and F-values | ||
AMF | p < 0.0001 | p < 0.0001 |
F3 = 119.7 | F3 = 202.65 | |
Nematodes | p < 0.0001 | p < 0.0001 |
F1 = 4602 | F1 = 1517.92 | |
AMF × Nematodes | p = 0.018 | p < 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corazon-Guivin, M.A.; Rengifo del Aguila, S.; Corrêa, R.X.; Cordova-Sinarahua, D.; Costa Maia, L.; Alves da Silva, D.K.; Alves da Silva, G.; López-García, Á.; Coyne, D.; Oehl, F. Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita. J. Fungi 2024, 10, 451. https://doi.org/10.3390/jof10070451
Corazon-Guivin MA, Rengifo del Aguila S, Corrêa RX, Cordova-Sinarahua D, Costa Maia L, Alves da Silva DK, Alves da Silva G, López-García Á, Coyne D, Oehl F. Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita. Journal of Fungi. 2024; 10(7):451. https://doi.org/10.3390/jof10070451
Chicago/Turabian StyleCorazon-Guivin, Mike Anderson, Sofía Rengifo del Aguila, Ronan Xavier Corrêa, Deyvis Cordova-Sinarahua, Leonor Costa Maia, Danielle Karla Alves da Silva, Gladstone Alves da Silva, Álvaro López-García, Danny Coyne, and Fritz Oehl. 2024. "Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita" Journal of Fungi 10, no. 7: 451. https://doi.org/10.3390/jof10070451
APA StyleCorazon-Guivin, M. A., Rengifo del Aguila, S., Corrêa, R. X., Cordova-Sinarahua, D., Costa Maia, L., Alves da Silva, D. K., Alves da Silva, G., López-García, Á., Coyne, D., & Oehl, F. (2024). Native Arbuscular Mycorrhizal Fungi Promote Plukenetia volubilis Growth and Decrease the Infection Levels of Meloidogyne incognita. Journal of Fungi, 10(7), 451. https://doi.org/10.3390/jof10070451