Innovative Materials with Possible Applications in the Wound Dressings Field: Alginate-Based Films with Moringa oleifera Extract
Abstract
:1. Introduction
2. Results and Discussion
Microstructure
3. Conclusions and Future Aspects
4. Materials and Methods
4.1. Materials
4.2. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Khalil, H.P.; Yaya, E.B.; Jummaat, F.; Adnan, A.S.; Olaiya, N.G.; Rizal, S.; Abdullah, C.K.; Pasquini, D.; Thomas, S. Biopolymers based aerogels: A review on revolutionary solutions for smart therapeutics delivery. Prog. Mater. Sci. 2023, 131, 101014. [Google Scholar] [CrossRef]
- Al-Oqla, F.M.; Alaaeddin, M.H.; Hoque, M.E.; Thakur, V.K. Biopolymers and Biomimetic Materials in Medical and Electronic-Related Applications for Environment–Health–Development Nexus: Systematic Review. J. Bionic. Eng. 2022, 19, 1562–1577. [Google Scholar] [CrossRef]
- Abourehab, M.A.; Rajendran, R.R.; Singh, A.; Pramanik, S.; Shrivastav, P.; Ansari, M.J.; Manne, R.; Amaral, L.S.; Deepak, A. Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 9035. [Google Scholar] [CrossRef]
- Syed, M.H.; Zahari, A.A.; Rahman Khan, M.; Beg, M.D.H.; Abdullah, N. An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J. Drug Deliv. Sci. Technol. 2023, 20, 104121. [Google Scholar]
- Zafar, K.; Zia, K.M.; Alzhrani, R.M.; Almalki, A.H.; Alshehri, S. Biocompatibility and Hemolytic Activity Studies of Synthesized Alginate-Based Polyurethanes. Polymers 2022, 14, 2091. [Google Scholar] [CrossRef] [PubMed]
- Montaser, A.S.; Jlassi, K.; Ramadan, M.A.; Selem, A.A.; Attia, M.F. Alginate, gelatin, and carboxymethyl cellulose coated nonwoven fabrics containing antimicrobial AgNPs for skin wound healing in rats. Int. J. Biol. Macromol. 2021, 173, 203–210. [Google Scholar] [CrossRef]
- Waterman, C.; Cheng, D.; Rojas-Silva, P.; Poulev, A.; Dreifus, J.; Lila, M.A.; Raskin, I. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry 2014, 103, 114–122. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, L.; Zhao, M.; Yang, X. The hypoglycemic and hypolipemic potentials of Moringa oleifera leaf polysaccharide and polysaccharide-flavonoid complex. Int. J. Biol. Macromol. 2022, 210, 518–529. [Google Scholar] [CrossRef]
- Yadavalli, R.; Peasari, J.R.; Mamindla, P.; Praveenkumar, P.; Mounika, S.; Ganugapati, J. Phytochemical screening and in silico studies of flavonoids from Chlorella pyrenoidosa. Inform. Med. Unlocked 2018, 10, 89–99. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, M.; Waghmare, W.; Suhag, R.; Gupta, O.; Lorenzo, J.; Prakash, S.; Radha Rais, N.; Sampathrajan, V.; Thappa, C.; et al. Moringa (Moringa oleifera Lam.) polysaccharides: Extraction, characterization, bioactivities, and industrial application. Int. J. Biol. Macromol. 2022, 209, 763–778. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, C.; Ankola, M.; Upadhyay, T.K.; Sharangi, A.; Alabdallah, N.; Al-Saeed, F.; Muzammil, K.; Saeed, M. Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. Horticulturae 2022, 8, 492. [Google Scholar] [CrossRef]
- Kashyap, P.; Kumar, S.; Riar, C.; Jindal, N.; Baniwal, P.; Guine, R.; Correia, P.; Mehra, R.; Kumar, H. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants 2022, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Tousif, M.; Saleem, M.; Nazir, M.; Touseef, S.; Saleem, K.; Asim, S.; Khan, A.; Asghar, M.; Zengin, G.; et al. Insight into the phytochemical composition, biological activities and docking studies of Moringa oleifera Lam. to authenticate its use in biopharmaceutical industries. Ind. Crops Prod. 2021, 172, 114042. [Google Scholar] [CrossRef]
- Tshabalala, T.; Ndhlala, A.R.; Ncube, B.; Abdelgadir, H.A.; Van Staden, J. Potential substitution of the root with the leaf in the use of Moringa oleifera for antimicrobial, antidiabetic and antioxidant properties. S. Afr. J. Bot. 2020, 129, 106–112. [Google Scholar] [CrossRef]
- Amina, M.; Al Musayeib, N.M.; Alarfaj, N.A.; El-Tohamy, M.F.; Orabi, H.E.; Bukhari, S.I.; Mahmoud, A.Z. Exploiting the potential of moringa oleifera Oil/Polyvinyl chloride polymeric bionanocomposite film enriched with silver nanoparticles for antimicrobial activity. Int. J. Polym. Sci. 2019, 2019, 5678149. [Google Scholar] [CrossRef] [Green Version]
- Biswas, D.; Nandy, S.; Mukherjee, A.; Pandey, D.K.; Dey, A. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. S. Afr. J. Bot. 2020, 129, 272–282. [Google Scholar] [CrossRef]
- Xiong, Y.; Riaz Rajoka, M.S.; Mehwish, H.M.; Zhang, M.; Liang, N.; Li, C.; He, Z. Virucidal activity of Moringa A from Moringa oleifera seeds against Influenza A Viruses by regulating TFEB. Int. Immunopharmacol. 2021, 95, 107561. [Google Scholar] [CrossRef]
- Patil, S.V.; Mohite, B.V.; Marathe, K.R.; Salunkhe, N.S.; Marathe, V.; Patil, V.S. Moringa Tree, Gift of Nature: A Review on Nutritional and Industrial Potential. Curr. Pharmacol. Rep. 2022, 8, 262–280. [Google Scholar] [CrossRef]
- Arévalo-Híjar, L.; Aguilar-Luis, M.A.; Caballero-García, S.; Gonzáles-Soto, N.; Del Valle-Mendoza, J. Antibacterial and Cytotoxic Effects of Moringa oleifera (Moringa) and Azadirachta indica (Neem) Methanolic Extracts against Strains of Enterococcus faecalis. Int. J. Dent. 2018, 2018, 1071676. [Google Scholar] [CrossRef] [Green Version]
- Fontana, R.; Macchi, G.; Caproni, A.; Sicurella, M.; Buratto, M.; Salvatori, F.; Pappada, M.; Manfredini, S.; Baldisserotto, A.; Marconi, P. Control of Erwinia amylovora Growth by Moringa oleifera Leaf Extracts: In Vitro and in Planta Effects. Plants 2022, 11, 957. [Google Scholar] [CrossRef]
- Arif, Y.; Bajguz, A.; Hayat, S. Moringa oleifera Extract as a Natural Plant Biostimulant. J. Plant. Growth Regul. 2022, 42, 1291–1306. [Google Scholar] [CrossRef]
- Padayachee, B.; Baijnath, H. An updated comprehensive review of the medicinal, phytochemical and pharmacological properties of Moringa oleifera. S. Afr. J. Bot. 2020, 129, 304–316. [Google Scholar] [CrossRef]
- Mohanty, M.; Mohanty, S.; Bhuyan, S.; Bhuyan, R. Phytoperspective of Moringa oleifera for oral health care: An innovative ethnomedicinal approach. Phytother. Res. PTR 2021, 35, 1345–1357. [Google Scholar] [CrossRef]
- Dong, Z.; Li, C.; Huang, Q.; Zhang, B.; Fu, X.; Liu, R.H. Characterization of a novel polysaccharide from the leaves of Moringa oleifera and its immunostimulatory activity. J. Funct. Foods 2018, 49, 391–400. [Google Scholar] [CrossRef]
- Singh, A.K.; Rana, H.K.; Tshabalala, T.; Kumar, R.; Gupta, A.; Ndhlala, A.; Pandey, A. Phytochemical, nutraceutical and pharmacological attributes of a functional crop Moringa oleifera Lam: An overview. S. Afr. J. Bot. 2020, 129, 209–220. [Google Scholar] [CrossRef]
- Pagano, C.; Perioli, L.; Baiocchi, C.; Bartoccini, A.; Beccari, T.; Blasi, F.; Calarco, P.; Ceccarini, M.; di Michele, A.; Ortenzi, R.; et al. Preparation and characterization of polymeric microparticles loaded with Moringa oleifera leaf extract for exuding wound treatment. Int. J. Pharm. 2020, 587, 119700. [Google Scholar] [CrossRef]
- Chin, C.-Y.; Jalil, J.; Ng, P.N.; Ng, S.H. Development and formulation of Moringa oleifera standardised leaf extract film dressing for wound healing application. J. Ethnopharmacol. 2018, 212, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-Y.; Ng, S.-F. Development of Moringa oleifera Standardized Leaf Extract Nanofibers Impregnated onto Hydrocolloid Film as A Potential Chronic Wound Dressing. Fibers Polym. 2020, 21, 2462–2472. [Google Scholar] [CrossRef]
- Dhakad, A.K.; Ikram, M.; Sharma, S.; Khan, S.; Pandey, V.; Singh, A. Biological, nutritional, and therapeutic significance of Moringa oleifera Lam. Phytother. Res. PTR 2019, 33, 2870–2903. [Google Scholar] [CrossRef]
- Al-Ghanayem, A.A.; Alhussaini, M.S.; Asad, M.; Joseph, B. Moringa oleifera Leaf Extract Promotes Healing of Infected Wounds in Diabetic Rats: Evidence of Antimicrobial, Antioxidant and Proliferative Properties. Pharmaceuticals 2022, 15, 528. [Google Scholar] [CrossRef] [PubMed]
- Abdel Shakour, Z.T.; El-Akad, R.H.; Elshamy, A.I.; El Gendy, A.E.; Wessjohann, L.A.; Farag, M.A. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food. Chem. 2023, 399, 133948. [Google Scholar] [CrossRef] [PubMed]
- Athikomkulchai, S.; Tunit, P.; Tadtong, S.; Jantrawut, P.; Sommano, S.R.; Chittasupho, C. Moringa oleifera seed oil formulation physical stability and chemical constituents for enhancing skin hydration and antioxidant activity. Cosmetics 2021, 8, 2. [Google Scholar] [CrossRef]
- Islam, Z.; Islam, S.M.; Hossen, F.; Mahtab-Ul-Islam, K.; Hasan, M.R.; Karim, R. Moringa oleifera is a Prominent Source of Nutrients with Potential Health Benefits. Int. J. Food Sci. 2021, 2021, 6627265. [Google Scholar] [CrossRef]
- Azlan, U.K.; Mediani, A.; Rohani, E.R.; Tong, X.; Han, R.; Misnan, M.; Jam, F.A.; Bunawan, H.; Sarian, M.; Hamezah, H. A Comprehensive Review with Updated Future Perspectives on the Ethnomedicinal and Pharmacological Aspects of Moringa oleifera. Molecules 2022, 27, 5765. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zhang, J.; Chen, X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J. Funct. Foods 2018, 47, 469–479. [Google Scholar] [CrossRef]
- Yerena-Prieto, B.J.; Gonzales-Gonzales, M.; Vasquez-Espinosa, M.; Gonzalez-de-Peredo, A.V.; Garcia-Alvarado, M.A.; Palma, M.; Rodriguez-Jimenes, G.C.; Barbero, F. Optimization of an Ultrasound-Assisted Extraction Method Applied to the Extraction of Flavonoids from Moringa Leaves (Moringa oleífera Lam.). Agronomy 2022, 12, 261. [Google Scholar] [CrossRef]
- Bakwo Bassogog, C.B.; Nyobe, C.E.; Ngui, S.P.; Minka, S.R.; Mune Mune, M.A. Effect of heat treatment on the structure, functional properties and composition of Moringa oleifera seed proteins. Food Chem. 2022, 384, 132546. [Google Scholar] [CrossRef]
- Aekthammarat, D.; Pannangpetch, P.; Tangsucharit, P. Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine 2019, 54, 9–16. [Google Scholar] [CrossRef]
- Rouidi, M.; Elouadi, A.; Hamdoune, A. Acceptance and use of telemedicine technology by health professionals: Development of a conceptual model. Digit. Health 2022, 8, 20552076221081693. [Google Scholar] [CrossRef]
- Adepoju, O.A.; Chae, M.; Liaw, W.; Angelocci, T.; Millard, P.; Matuk-Villazon, O. Transition to telemedicine and its impact on missed appointments in community-based clinics. Public Health 2022, 54, 98–107. [Google Scholar] [CrossRef]
- Shafie, N.M.; Shah, R.N.; Krishnan, P.; Haleen, A.; Tan, T. Scoping Review: Evaluation of Moringa oleifera (Lam.) for Potential Wound Healing in In Vivo Studies. Molecules 2022, 27, 5541. [Google Scholar] [CrossRef] [PubMed]
- Kamel, S.; Dacrory, S.; Hasemann, P.; Bettache, N.; Ali, L.M.A.; Postel, L.; Akl, E.M.; El-Sakhawy, M. Wound Dressings Based on Sodium Alginate–Polyvinyl Alcohol–Moringa oleifera Extracts. Pharmaceutics 2023, 15, 1270. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.M.; Sibaja, J.C.; Espitia, P.J.; Otoni, C.G. Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocoll. 2020, 103, 105630. [Google Scholar] [CrossRef]
- Braham, F.; Amaral, L.; Biernacki, K.; Carvalho, D.; Guido, L.; Magalhaes, J.; Zaidi, F.; Souza, H.; Goncalves, M. Phenolic Extraction of Moringa oleifera Leaves in DES: Characterization of the Extracts and Their Application in Methylcellulose Films for Food Packaging. Foods 2022, 11, 2641. [Google Scholar] [CrossRef] [PubMed]
- Ningrum, D.R.; Hanif, W.; Mardhian, D.; Asri, L. In Vitro Biocompatibility of Hydrogel Polyvinyl Alcohol/Moringa oleifera Leaf Extract/Graphene Oxide for Wound Dressing. Polymers 2023, 15, 468. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Peñalver, R.; Martínez-Zamora, L.; Lorenzo, J.M.; Ros, G.; Nieto, G. Nutritional and Antioxidant Properties of Moringa oleifera Leaves in Functional Foods. Foods 2022, 11, 1107. [Google Scholar] [CrossRef]
- Dou, L.; Li, B.; Zhang, K.; Chu, X.; Hou, H. Physical properties and antioxidant activity of gelatin-sodium alginate edible films with tea polyphenols. Int. J. Biol. Macromol. 2018, 118, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Choi, M.H.; Shin, H.J. Extracts of Moringa oleifera leaves from different cultivation regions show both antioxidant and antiobesity activities. J. Food Biochem. 2020, 44, 13282. [Google Scholar] [CrossRef]
- Yong-Bing, X.; Gui-Lin, C.; Ming-Quan, G. Antioxidant and Anti-Inflammatory Activities of the Crude Extracts of Moringa oleifera from Kenya and Their Correlations with Flavonoids. Antioxidants 2019, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, M.; Kim, S.H.; Sasireka, A.; Chandrasekaran, M.; Chung, I.M. Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Biosci. 2018, 26, 23–29. [Google Scholar] [CrossRef]
- Pereira, R.; Tojeira, A.; Vaz, D.C.; Mendes, A.; Bártolo, A. Preparation and characterization of films based on alginate and aloe vera. Int. J. Polym. Anal. Charact. 2011, 16, 449–464. [Google Scholar] [CrossRef]
- Amariei, S.; Ursachi, F.; Petraru, A. Development of New Biodegradable Agar-Alginate Membranes for Food Packaging. Membranes 2022, 12, 576. [Google Scholar] [CrossRef] [PubMed]
- Gheorghita Puscaselu, R.; Amariei, S.; Norocel, L.; Gutt, G. New Edible Packaging Material with Function in Shelf-Life Extension: Applications for the Meat and Cheese Industries. Foods 2020, 9, 562. [Google Scholar] [CrossRef]
- ASTM D882—18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting. Available online: https://www.astm.org/Standards/D882 (accessed on 4 March 2023).
- Ribeiro Sanches, M.A.; Camelo-Silva, C.; Carvalho, C.S.; de Mello, R.; Barrosso, N.; Barros, E.; Silva, P.P.; Pertuzatii, P.B. Active packaging with starch, red cabbage extract and sweet whey: Characterization and application in meat. LWT 2021, 135, 110275. [Google Scholar] [CrossRef]
- Nešić, A.; Cabrera-Barjas, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019, 25, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ABTS Radical Scavenging Capacity Measurement. Available online: https://www.protocols.io/view/abts-radical-scavenging-capacity-measurement-j8nlkn7dl5r7/v1 (accessed on 14 February 2023).
Sample | Thickness, µm | Retraction Ratio, µm | Density, g/cm3 | Roughness, nm | Opacity, A/mm | Tensile Strength, MPa | Elongation, % |
---|---|---|---|---|---|---|---|
C | 69.40 ± 2.01 | 65.30 ± 1.50 | 1.52 ± 0.03 | 1.29 ± 0.04 | 0.79 ± 0.33 | 0.125 ± 0.06 | 14.22 ± 0.74 |
F1 | 86.20 ± 2.23 | 56.90 ± 1.11 | 1.40 ± 0.12 | 1.32 ± 0.15 | 2.38 ± 0.96 | 0.174 ± 0.12 | 17.15 ± 0.03 |
F2 | 95.60 ± 2.80 | 52.20 ± 1.40 | 0.91 ± 0.24 | 2.14 ± 0.13 | 3.27 ± 1.30 | 0.206 ± 0.07 | 28.96 ± 0.14 |
F3 | 134.60 ± 2.06 | 32.70 ± 1.03 | 0.49 ± 0.03 | 1.62 ± 0.04 | 2.52 ± 0.95 | 0.248 ± 0.69 | 31.41 ± 0.66 |
F4 | 110.40 ± 2.33 | 44.80 ± 1.17 | 0.66 ± 0.14 | 1.16 ± 0.06 | 2.48 ± 0.97 | 0.166 ± 0.03 | 11.47 ± 0.92 |
F5 | 127.60 ± 2.15 | 36.20 ± 1.08 | 0.93 ± 0.06 | 1.32 ± 0.04 | 3.45 ± 1.31 | 0.138 ± 0.01 | 11.12 ± 0.30 |
F6 | 143.60 ± 2.41 | 28.20 ± 2.20 | 1.66 ± 0.02 | 2.97 ± 0.17 | 4.31 ± 1.61 | 0.104 ± 0.04 | 8.74 ± 0.19 |
Sample | L* | a* | b* | ΔE1 | ΔE2 | ΔE3 |
---|---|---|---|---|---|---|
C | 89.53 ± 0.81 | −5.82 ± 0.03 | 13.43 ± 0.20 | - | 60.02 ± 1.95 | - |
F1 | 89.05 ± 0.50 | −5.71 ± 0.03 | 14.58 ± 0.15 | 1.47 ± 1.20 | 59.43 ± 0.94 | 63.98 ± 1.75 |
F2 | 88.25 ± 0.46 | −5.57 ± 0.05 | 16.08 ± 0.78 | 3.16 ± 0.84 | 60.39 ± 0.53 | 63.40 ± 0.97 |
F3 | 90.25 ± 0.67 | −5.81 ± 0.03 | 13.84 ± 0.22 | 1.47 ± 0.04 | 60.90 ± 0.92 | 65.49 ± 0.92 |
F4 | 71.73 ± 2.46 | −5.12 ± 0.38 | 26.65 ± 0.87 | 22.29 ± 1.38 | 53.66 ± 0.77 | 33.10 ± 0.65 |
F5 | 53.62 ± 3.28 | −1.71 ± 0.82 | 24.45 ± 0.55 | 37.94 ± 1.35 | 36.92 ± 1.07 | 14.73 ± 0.88 |
F6 | 48.92 ± 1.55 | −1.36 ± 0.41 | 22.67 ± 0.63 | 41.93 ± 1.54 | 30.77 ± 0.85 | 9.24 ± 0.79 |
C gel | 29.71 ± 0.92 | −0.82 ± 0.17 | 6.80 ± 0.35 | - | - | - |
F1 gel | 30.87 ± 0.27 | −1.88 ± 0.02 | 3.31 ± 0.03 | 3.97 ± 1.60 | - | 9.89 ± 1.66 |
F2 gel | 29.56 ± 0.06 | −1.81 ± 0.03 | 2.82 ± 0.02 | 4.21 ± 0.95 | - | 9.67 ± 1.45 |
F3 gel | 30.83 ± 0.08 | −1.96 ± 0.02 | 3.66 ± 0.02 | 3.67 ± 1.11 | - | 9.53 ± 0.99 |
F4 gel | 24.03 ± 0.09 | −1.47 ± 0.02 | 1.91 ± 0.02 | 7.59 ± 0.56 | - | 23.61 ± 1.76 |
F5 gel | 24.55 ± 0.07 | −1.60 ± 0.01 | 2.44 ± 0.04 | 7.22 ± 0.42 | - | 22.85 ± 0.78 |
F6 gel | 25.24 ± 0.05 | −1.59 ± 0.01 | 2.76 ± 0.07 | 6.14 ± 1.07 | - | 22.14 ± 0.30 |
Moringa powder | 41.24 ± 0.51 | −3.13 ± 0.05 | 17.99 ± 0.12 | - | - | - |
Moringa essential oil | 25.41 ± 0.46 | −0.53 ± 0.03 | 11.44 ± 0.54 | - | - | - |
Samples | MC, % | aw |
---|---|---|
C | 16.82 ± 0.06 | 0.34 ± 0.004 |
F1 | 13.17 ± 0.21 | 0.38 ± 0.003 |
F2 | 11.14 ± 0.37 | 0.35 ± 0.004 |
F3 | 10.21 ± 0.05 | 0.34 ± 0.007 |
F4 | 15.12 ± 0.68 | 0.35 ± 0.015 |
F5 | 16.46 ± 0.03 | 0.35 ± 0.005 |
F6 | 18.17 ± 0.16 | 0.33 ± 0.002 |
Alanine | Arginine | Aspartic acid | Cysteine | Glycine | Histidine | Isoleucine | Leucine | Lysin |
31.70 | 31.56 | 54.62 | 5.18 | 26.28 | 12.54 | 23.62 | 43.66 | 29.46 |
Threonine | Tryptophan | Glutamic acid | Tyrosine | Valine | Methionine | Phenylalanine | Proline | Serine |
24.44 | 12.08 | 70.90 | 17.62 | 29.88 | 8.30 | 31.96 | 25.14 | 23.44 |
Sample | Alginate (g) | Glycerol (g) | Moringa EO (g) | Moringa Powder (g) | Water (mL) |
---|---|---|---|---|---|
C | 2 | 0.8 | - | - | 90 |
F1 | 1.74 | 0.26 | - | ||
F2 | 1.48 | 0.52 | - | ||
F3 | 1.22 | 0.78 | |||
F4 | 1.74 | - | 0.26 | ||
F5 | 1.48 | - | 0.52 | ||
F6 | 1.22 | - | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghita, R.; Filip, R.; Lupaescu, A.-V.; Iavorschi, M.; Anchidin-Norocel, L.; Gutt, G. Innovative Materials with Possible Applications in the Wound Dressings Field: Alginate-Based Films with Moringa oleifera Extract. Gels 2023, 9, 560. https://doi.org/10.3390/gels9070560
Gheorghita R, Filip R, Lupaescu A-V, Iavorschi M, Anchidin-Norocel L, Gutt G. Innovative Materials with Possible Applications in the Wound Dressings Field: Alginate-Based Films with Moringa oleifera Extract. Gels. 2023; 9(7):560. https://doi.org/10.3390/gels9070560
Chicago/Turabian StyleGheorghita, Roxana, Roxana Filip, Ancuta-Veronica Lupaescu, Monica Iavorschi, Liliana Anchidin-Norocel, and Gheorghe Gutt. 2023. "Innovative Materials with Possible Applications in the Wound Dressings Field: Alginate-Based Films with Moringa oleifera Extract" Gels 9, no. 7: 560. https://doi.org/10.3390/gels9070560
APA StyleGheorghita, R., Filip, R., Lupaescu, A. -V., Iavorschi, M., Anchidin-Norocel, L., & Gutt, G. (2023). Innovative Materials with Possible Applications in the Wound Dressings Field: Alginate-Based Films with Moringa oleifera Extract. Gels, 9(7), 560. https://doi.org/10.3390/gels9070560