Three-Stage Solid-State Fermentation Technology for Distillers’ Grain Feed Protein Based on Different Microorganisms Considering Oxygen Requirements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Strains
2.2. Experimental Design
2.2.1. Experimental Design of Aerobic Stage
2.2.2. Experimental Design of Microaerophilic Stage
2.2.3. Experimental Design of Anaerobic Stage
2.3. Measurement Methods of Key Parameters
2.3.1. Method for Determination of Lignocellulose Content
2.3.2. Method for Measuring Filter Paper Enzyme Activity
2.3.3. Method for Determination of Reducing Sugar Content
2.3.4. Method for Determination of Protein Content (True Protein and Crude Protein)
2.3.5. Method for Determination of the Amino Acid Composition
2.3.6. Method for Measuring Organic Acids and pH
2.3.7. Absolute Quantitative Method for Microorganisms
2.3.8. Determination Methods for Metabolite Content and Microbial Composition
2.4. Data Analysis Methods
3. Results
3.1. The Effect of Aspergillus Niger Fermentation on Distillers’ Grains in the First Stage
3.1.1. The Effect of Oxygen Supply on Aspergillus Niger Growth
3.1.2. Effect of Oxygen Supply on Cellulose Degradation and Reducing Sugar Production of Distillers’ Grains
3.2. Influence of Oxygen Supply Methods on the Enhancement of Protein Content in the Second Phase
3.3. Effects of Lactic Acid Bacteria Anaerobic Fermentation on Feed Protein
3.3.1. The Effect of Different Lactic Acid Bacteria Inoculation on the pH and Organic Acid Content
3.3.2. Analysis of Microbial Community and Metabolites During Lactic Acid Bacteria Fermentation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kilama, J.; Yakir, Y.; Shaani, Y.; Adin, G.; Kaadan, S.; Wagali, P.; Sabastian, C.; Ngomuo, G.; Mabjeesh, S.J. Chemical composition, in vitro digestibility, and storability of selected agro-industrial by-products: Alternative ruminant feed ingredients in Israel. Heliyon 2023, 9, e14581. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, S.; Huang, C.; Ge, X.; Xi, B.; Mao, J. Chinese Baijiu distiller’s grains resourcing: Current progress and future prospects. Resour. Conserv. Recy. 2022, 176, 105900. [Google Scholar] [CrossRef]
- Tang, J.L.; Hu, Z.K.; Pu, Y.H.; Wang, X.C.C.; Abomohra, A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. J. Environ. Manag. 2024, 369, 122372. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Xu, L.; Xin, C.H.; Tan, Z.; Zhang, X.; Ma, C.Y.; Chen, S.F.; Li, H.J. Changes of the main components, physicochemical properties of distiller’s grains after extrusion processing with focus on modification mechanism. Food Chem. 2022, 390, 133187. [Google Scholar] [CrossRef]
- Zengin, M.; Sur, A.; İlhan, Z.; Azman, M.A.; Tavşanlı, H.; Esen, S.; Bacaksız, O.K.; Demir, E. Effects of fermented distillers grains with solubles, partially replaced with soybean meal, on performance, blood parameters, meat quality, intestinal flora, and immune response in broiler. Res. Vet. Sci. 2022, 150, 58–64. [Google Scholar] [CrossRef]
- Zhi, Y.; Wu, Q.; Xu, Y. Production of surfactin from waste distillers’ grains by co-culture fermentation of two Bacillus amyloliquefaciens strains. Bioresour. Technol. 2017, 235, 96–103. [Google Scholar] [CrossRef]
- Darwesh, O.M.; El-Maraghy, S.H.; Abdel-Rahman, H.M.; Zaghloul, R.A. Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. Fuel 2020, 262, 116518. [Google Scholar] [CrossRef]
- van Rijswijck, I.M.; Wolkers–Rooijackers, J.C.; Abee, T.; Smid, E.J. Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production. Microb. Biotechnol. 2017, 10, 1591–1602. [Google Scholar] [CrossRef]
- Li, T.L.; Jiang, T.; Liu, N.; Wu, C.Y.; Xu, H.D.; Lei, H.J. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem. 2021, 339, 127859. [Google Scholar] [CrossRef]
- De Groof, V.; Coma, M.; Arnot, T.; Leak, D.J.; Lanham, A.B. Medium Chain Carboxylic Acids from Complex Organic Feedstocks by Mixed Culture Fermentation. Molecules 2019, 24, 398. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, S.L.; Wang, Z.; Shen, C.H.; Liu, D.; Shen, X.J.; Weng, L.F.; He, Y.; Wang, S.M.; Wang, J.X.; et al. Pretreatment of Luzhou distiller’s grains for feed protein production using crude enzymes produced by a synthetic microbial consortium. Bioresour. Technol. 2023, 390, 129852. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.H.; Guan, Q.J.; Zhang, H.L.; Wang, F.Z.; Lu, R.; Li, D.M.; Geng, Y.; Xu, Z.H. Improving flavor, bioactivity, and changing metabolic profiles of goji juice by selected lactic acid bacteria fermentation. Food Chem. 2023, 408, 135155. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhong, C.; Zou, C.; Wang, B.; Zhang, N. Analytical methods for amino acid determination in organisms. Amino Acids 2020, 52, 1071–1088. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Sánchez, B.; Ballesteros, E.; Gallego, M. Gas chromatographic determination of 29 organic acids in foodstuffs after continuous solid-phase extraction. Talanta 2011, 84, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Gumińska, N.; Płecha, M.; Walkiewicz, H.; Hałakuc, P.; Zakryś, B.; Milanowski, R. Culture purification and DNA extraction procedures suitable for next-generation sequencing of euglenids. J. Appl. Phycol. 2018, 30, 3541–3549. [Google Scholar] [CrossRef]
- Weng, L.F.; Wang, Z.; Zhuang, W.; Yang, T.Z.; Xu, X.X.; Liu, J.L.; Liu, J.X.; Xu, Z.Z.; Chen, R.T.; Wang, Q.; et al. Effect of Replacing Fish Meal Using Fermented Soybean Meal on Growth Performance, Intestine Bacterial Diversity, and Key Gene Expression of Largemouth Bass (Micropterus salmoides). Fermentation 2023, 9, 520. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Li, A.; Chen, L.; Chen, Q.X.; Li, J.Y.; Xu, Y.Q.; Huo, D.X. Deep Shotgun metagenomic and 16S rRNA analysis revealed the microbial diversity of lactic acid bacteria in traditional fermented foods of eastern Hainan, China. Food Funct. 2023, 14, 5820. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Z.; Shi, S.; Lin, M. Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation. Bioresour. Technol. 2017, 241, 415–423. [Google Scholar] [CrossRef]
- Yang, H.; Jianjun, D.; Hua, Y.; Peng, C.; Hong, L.; Lu, C. Monitoring of the production of flavor compounds by analysis of the gene transcription involved in higher alcohol and ester formation by the brewer’s yeast Saccharomyces pastorianus using a multiplex RT-qPCR assay. J. Inst. Brew. 2014, 120, 119–126. [Google Scholar]
- Amara, A.A.; El-Baky, N.A. Fungi as a Source of Edible Proteins and Animal Feed. J. Fungi 2023, 9, 73. [Google Scholar] [CrossRef]
- Reyes, S.M.; Brockway, M.; McDermid, J.M.; Chan, D.B.R.; Granger, M.; Refvik, R.; Sidhu, K.K.; Musse, S.; Monnin, C.; Lotoski, L.; et al. Human Milk Micronutrients and Child Growth and Body Composition in the First 2 years: A Systematic Review. Adv. Nutr. 2024, 15, 100082. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.L.; Wang, X.C.; Hu, Y.S.; Zhang, Y.M.; Li, Y.Y. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR. Waste Manag. 2016, 52, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.M.; Ding, W.R.; Ke, W.C.; Li, F.H.; Zhang, P.; Guo, X.S. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri. Front. Microbiol. 2019, 9, 3299. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Peng, S.; Xiong, Y.; Zheng, Z.; Liu, M.; Xu, J.; Chen, W.; Liu, M.; Kong, J.; Wang, C. A review on fermented vegetables: Microbial community and potential upgrading strategy via inoculated fermentation. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13362. [Google Scholar] [CrossRef]
- Cui, Q.Y.; Li, L.H.; Huang, H.; Yang, Y.P.; Chen, S.J.; Li, C.S. Novel insight into the formation and improvement mechanism of physical property in fermented tilapia sausage by cooperative fermentation of newly isolated lactic acid bacteria based on microbial contribution. Food Rev. Int. 2024, 187, 114456. [Google Scholar] [CrossRef]
- Xia, Y.; Yu, E.M.; Lu, M.X.; Xie, J. Effects of probiotic supplementation on gut microbiota as well as metabolite profiles within Nile tilapia, Oreochromis niloticus. Aquaculture 2020, 527, 735428. [Google Scholar] [CrossRef]
- Naghmouchi, K.; Belguesmia, Y.; Bendali, F.; Spano, G.; Seal, B.S.; Drider, D. Lactobacillus fermentum: A bacterial species with potential for food preservation and biomedical applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 3387–3399. [Google Scholar] [CrossRef]
- Huang, B.C.; Zhang, S.; Dong, X.H.; Chi, S.Y.; Yang, Q.H.; Liu, H.Y.; Tan, B.P.; Xie, S.W. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus ♀ x Epinephelus lanceolatus ♂). Fish Shellfish Immunol. 2022, 120, 497–506. [Google Scholar] [CrossRef]
- Porto, M.C.W.; Kuniyoshi, T.M.; Azevedo, P.O.S.; Vitolo, M.; Oliveira, R.P.S. Pediococcus spp.: An important genus of lactic acid bacteria and pediocin producers. Biotechnol. Adv. 2017, 35, 361–374. [Google Scholar] [CrossRef]
- Ren, F.Y.; Wu, F.; Wu, X.; Bao, T.T.; Jie, Y.C.; Gao, L. Fungal systems for lignocellulose deconstruction: From enzymatic mechanisms to hydrolysis optimization. GCB Bioenergy 2024, 16, 13130. [Google Scholar] [CrossRef]
- Liang, J.S.; Zhang, R.; Chang, J.N.; Chen, L.; Nabi, M.; Zhang, H.B.; Zhang, G.M.; Zhang, P.Y. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion A comprehensive review. Biotechnol. Adv. 2024, 71, 108308. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.Q.; Du, Z.C.; Liu, X.Y.; Liu, H.; Tang, J.S.; Qin, C.R.; Liang, C.; Huang, C.X.; Yao, S.Q. Furfural production from lignocellulosic biomass: One-step and two-step strategies and techno-economic evaluation. Green Chem. 2024, 26, 6318–6338. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.L.; Mikula, K.; Samoraj, M.; Gil, F.; Taf, R.; Moustakas, K.; Chojnacka, K. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. Sci. Total Environ. 2024, 923, 171343. [Google Scholar] [CrossRef] [PubMed]
- Niego, A.G.T.; Lambert, C.; Mortimer, P.; Thongklang, N.; Rapior, S.; Grosse, M.; Schrey, H.; Charria-Girón, E.; Walker, A.; Hyde, K.D.; et al. The contribution of fungi to the global economy. Fungal Divers 2023, 121, 95–137. [Google Scholar] [CrossRef]
- Rawat, R.; Srivastava, N.; Chadha, B.S.; Oberoi, H.S. Generating Fermentable Sugars from Rice Straw Using Functionally Active Cellulolytic Enzymes from Aspergillus niger HO. Energy Fuels 2014, 28, 5067–5075. [Google Scholar] [CrossRef]
- Kumar Ramamoorthy, N.; Sambavi, T.R.; Renganathan, S. A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem. 2019, 83, 148–158. [Google Scholar] [CrossRef]
- Li, C.; Zhou, J.W.; Du, G.C.; Chen, J.; Takahashi, S.; Liu, S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol. Adv. 2020, 44, 107630. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Ruiz, H.A.; Krieger, N. A Critical Evaluation of Recent Studies on Packed-Bed Bioreactors for Solid-State Fermentation. Processes 2023, 11, 872. [Google Scholar] [CrossRef]
- Dong, S.S.; Li, L.Y.; Hao, F.Y.; Fang, Z.Y.; Zhong, R.M.; Wu, J.F.; Fang, X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult. Sci. 2024, 103, 103287. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, S.; Wang, S.; He, Y.; Wang, N.; Wang, Z.; Weng, L.; Liu, D.; Zhao, X.; Chen, J.; Xu, J.; et al. Three-Stage Solid-State Fermentation Technology for Distillers’ Grain Feed Protein Based on Different Microorganisms Considering Oxygen Requirements. Fermentation 2024, 10, 550. https://doi.org/10.3390/fermentation10110550
Kong S, Wang S, He Y, Wang N, Wang Z, Weng L, Liu D, Zhao X, Chen J, Xu J, et al. Three-Stage Solid-State Fermentation Technology for Distillers’ Grain Feed Protein Based on Different Microorganisms Considering Oxygen Requirements. Fermentation. 2024; 10(11):550. https://doi.org/10.3390/fermentation10110550
Chicago/Turabian StyleKong, Songlin, Shilei Wang, Yun He, Nan Wang, Zhi Wang, Longfei Weng, Dong Liu, Xiaoling Zhao, Jinmeng Chen, Jingliang Xu, and et al. 2024. "Three-Stage Solid-State Fermentation Technology for Distillers’ Grain Feed Protein Based on Different Microorganisms Considering Oxygen Requirements" Fermentation 10, no. 11: 550. https://doi.org/10.3390/fermentation10110550
APA StyleKong, S., Wang, S., He, Y., Wang, N., Wang, Z., Weng, L., Liu, D., Zhao, X., Chen, J., Xu, J., Cai, Y., & Ying, H. (2024). Three-Stage Solid-State Fermentation Technology for Distillers’ Grain Feed Protein Based on Different Microorganisms Considering Oxygen Requirements. Fermentation, 10(11), 550. https://doi.org/10.3390/fermentation10110550