Comprehensive Review of Strategies for Lactic Acid Bacteria Production and Metabolite Enhancement in Probiotic Cultures: Multifunctional Applications in Functional Foods
Abstract
:1. Introduction
2. Cultivation Mode for Probiotic Bacteria Production
3. Physiochemical Condition for Lactic Acid Bacteria Production in Different Types of Medium
Effect of Milk-Based Medium as Substrate on Cultivation Lactobacillus sp.
4. Metabolism of LAB During Fermentation by Formation of Lactic Acid
5. Metabolite Formation of LAB in Functional Food as Antimicrobial Agent
6. Metabolites in Lactic Acid Bacteria Functional in Food, Pharmaceuticals and Aquaculture Applications
7. Future Perspectives on Lactic Acid Bacteria in the Bio-Economy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zucko, J.; Starcevic, A.; Diminic, J.; Oros, D.; Mortazavian, A.M.; Putnik, P. Probiotic—Friend or Foe? Curr. Opin. Food Sci. 2020, 32, 45–49. [Google Scholar] [CrossRef]
- Palanivelu, J.; Thanigaivel, S.; Vickram, S.; Dey, N.; Mihaylova, D.; Desseva, I. Probiotics in Functional Foods: Survival Assessment and Approaches for Improved Viability. Appl. Sci. 2022, 12, 455. [Google Scholar] [CrossRef]
- Biermann, R.; Rösner, L.; Beyer, L.; Niemeyer, L.; Beutel, S. Bioprocess Development for Endospore Production by Bacillus coagulans Using an Optimized Chemically Defined Medium. Eng. Life Sci. 2023, 23, e2300210. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.; Chourasia, R.; Phukon, L.; Sarkar, P.; Ray, R.; Singh, S.; Rai, A. Lactic Acid Bacteria in the Functional Food Industry: Biotechnological Properties and Potential Applications. Crit. Rev. Food Sci. Nutr. 2023, 64, 10730–10748. [Google Scholar] [CrossRef]
- Deng, K.; Fang, W.; Zheng, B.; Miao, S.; Huo, G. Phenotypic, fermentation characterization, and resistance mechanism analysis of bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus isolated from traditional Chinese dairy products. J. Dairy Sci. 2018, 101, 1901–1914. [Google Scholar]
- Abdul Hakim, B.N.; Xuan, N.J.; Oslan, S.N.H. A Comprehensive Review of Bioactive Compounds from Lactic Acid Bacteria: Potential Functions as Functional Food in Dietetics and the Food Industry. Foods 2023, 12, 2850. [Google Scholar] [CrossRef]
- Chizhayeva, A.; Amangeldi, A.; Oleinikova, Y.; Alybaeva, A.; Sadanov, A. Lactic Acid Bacteria as Probiotics in Sustainable Development of Aquaculture. Aquat. Living Resour. 2022, 35, 10. [Google Scholar] [CrossRef]
- Alonso, S.; Castro, M.C.; Berdasco, M.; De La Banda, I.G.; Moreno-Ventas, X.; Hernández de Rojas, A. Isolation and Partial Characterization of Lactic Acid Bacteria from the Gut Microbiota of Marine Fishes for Potential Application as Probiotics in Aquaculture. Probiotics Antimicrob. Proteins 2019, 11, 569–579. [Google Scholar] [CrossRef]
- Tee, E.S.; Hardinsyah; Au, C.S. Status of Probiotic Regulations in Southeast Asia Countries. Malays. J. Nutr. 2021, 27, 507–530. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.; Zhang, G.; Sadiq, F.A.; Simal-Gandara, J.; Xiao, J.; Sang, Y. Probiotics in the Dairy Industry—Advances and Opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3937–3982. [Google Scholar] [CrossRef]
- Bustos, A.Y.; Taranto, M.P.; Gerez, C.L.; Agriopoulou, S.; Smaoui, S.; Varzakas, T.; El Enshasy, H.A. Recent Advances in the Understanding of Stress Resistance Mechanisms in Probiotics: Relevance for the Design of Functional Food Systems. Probiotics Antimicrob. Proteins 2024, 17, 138–158. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Martínez-Blanco, H.; Rodríguez-Aparicio, L.; Ferrero, M. Effect of Fermented Broth from Lactic Acid Bacteria on Pathogenic Bacteria Proliferation. J. Dairy Sci. 2016, 99, 2654–2665. [Google Scholar] [CrossRef] [PubMed]
- Oslan, S.N.H.; Loo, J.S.; Mohamad, R.; Bejo, S.K.; Saad, M.Z. Optimization of Medium Formulations for Biomass Vaccine Production of gdhA Derivative Pasteurella multocida B:2 Using Statistical Experimental Design. Biocatal. Agric. Biotechnol. 2025, 64, 103504. [Google Scholar] [CrossRef]
- Raveschot, C.; Deracinois, B.; Bertrand, E.; Flahaut, C.; Frémont, M.; Drider, D.; Dhulster, P.; Cudennec, B.; Coutte, F. Integrated Continuous Bioprocess Development for ACE-Inhibitory Peptide Production by Lactobacillus helveticus Strains in Membrane Bioreactor. Front. Bioeng. Biotechnol. 2020, 8, 585815. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.; Beloded, A.; Derunets, A.; Grosheva, V.; Vákár, L.; Kozlovskiy, R.; Shvets, V. Biosynthesis of Lactic Acid in a Membrane Bioreactor for Cleaner Technology of Polylactide Production. Clean Technol. Environ. Policy 2017, 19, 869–882. [Google Scholar] [CrossRef]
- Jung, I.; Lovitt, R.W. A Comparative Study of the Growth of Lactic Acid Bacteria in a Pilot Scale Membrane Bioreactor. J. Chem. Technol. Biotechnol. 2010, 85, 1250–1259. [Google Scholar] [CrossRef]
- Vafajoo, L.; Savoji, H.; Fayal, R.; Baghaei, A. Modeling and Simulation of Tanks-in-Series Airlift Bioreactors for Production of Lactic Acid by Fermentation. Korean J. Chem. Eng. 2011, 28, 1727–1735. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Tan, J.S.; Abbasiliasi, S.; Ziad Sulaiman, A.; Saad, M.Z.; Halim, M.; Ariff, A.B. Integrated Stirred-Tank Bioreactor with Internal Adsorption for the Removal of Ammonium to Enhance the Cultivation Performance of gdhA Derivative Pasteurella multocida B:2. Microorganisms 2020, 8, 1654. [Google Scholar] [CrossRef]
- Rojas-Rejón, Ó.A.; Gonzalez-Figueredo, C.; Quintero-Covarrubias, A.R.; Saldaña-Jáuregui, A. Growth of Lactiplantibacillus plantarum BG112 in Batch and Continuous Culture with Camellia sinensis as Prebiotic. Fermentation 2024, 10, 487. [Google Scholar] [CrossRef]
- Gökmen, G.G.; Sarıyıldız, S.; Cholakov, R.; Nalbantsoy, A.; Baler, B.; Aslan, E.; Düzel, A.; Sargın, S.; Göksungur, Y.; Kışla, D. A Novel Lactiplantibacillus plantarum Strain: Probiotic Properties and Optimization of the Growth Conditions by Response Surface Methodology. World J. Microbiol. Biotechnol. 2024, 40, 66. [Google Scholar] [CrossRef]
- Hussain, S.; Naik, M.; Ahmed, A.; Udipi, M.; Sukumaran, S. Bioprocess Development for Enhanced Production of Probiotic Bifidobacterium bifidum. Curr. Sci. 2020, 118, 280–285. [Google Scholar] [CrossRef]
- Tang, H.; Abbasiliasi, S.; Ng, Z.; Lee, Y.; Tang, T.; Tan, J. Insight into the Pilot-Scale Fed-Batch Fermentation for Production of Enterococcus faecium CW3801 Using Molasses-Based Medium. Prep. Biochem. Biotechnol. 2021, 52, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Beitel, S.M.; Coelho, L.F.; Contiero, J. Efficient Conversion of Agroindustrial Waste into D(-) Lactic Acid by Lactobacillus delbrueckii Using Fed-Batch Fermentation. BioMed Res. Int. 2020, 2020, 4194052. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.; Ghasemi, F.; Fazeli, M.; Mirpour, M. Pilot-Plant Scale Biomass Production by Lactobacillus rhamnosus GG ATCC 53103: A Comparison between Batch and Fed-Batch Fermentation. J. Microbiol. Biotechnol. Food Sci. 2023, 13, e9718. [Google Scholar] [CrossRef]
- Yuste, A.; Arosemena, E.L.; Calvo, M.À. Study of the Probiotic Potential and Evaluation of the Survival Rate of Lactiplantibacillus plantarum Lyophilized as a Function of Cryoprotectant. Sci. Rep. 2021, 11, 19078. [Google Scholar] [CrossRef]
- Choi, G.-H.; Lee, N.-K.; Paik, H.-D. Optimization of Medium Composition for Biomass Production of Lactobacillus plantarum 200655 Using Response Surface Methodology. J. Microbiol. Biotechnol. 2021, 31, 717–725. [Google Scholar] [CrossRef]
- Śliżewska, K.; Chlebicz-Wójcik, A. Growth Kinetics of Probiotic Lactobacillus Strains in the Alternative, Cost-Efficient Semi-Solid Fermentation Medium. Biology 2020, 9, 423. [Google Scholar] [CrossRef]
- Matejčeková, Z.; Spodniaková, S.; Dujmić, E.; Liptáková, D.; Valík, L. Modelling growth of Lactobacillus plantarum as a function of temperature: Effects of media. J. Food Nutr. Res. 2019, 58, 125–134. [Google Scholar]
- Palujam, A.D.; Zali, S.A.; Oslan, S.N.H.; Salleh, A.B.; Oslan, S.N. Critical Parameters for Optimum Recombinant Protein Production in Yeast Systems. Malaysian J. Biochem. Mol. Biol. 2020, 2, 34–45. [Google Scholar]
- Mathiyalagan, S.; Duraisamy, S.; Balakrishnan, S.; Kumarasamy, A.; Raju, A. Statistical optimization of bioprocess parameters for improved production of L-asparaginase from Lactobacillus plantarum. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 441–453. [Google Scholar] [CrossRef]
- Hemalatha, M.; Subathra Devi, C. A statistical optimization by response surface methodology for the enhanced production of riboflavin from Lactobacillus plantarum–HDS27: A strain isolated from bovine milk. Front. Microbiol. 2022, 13, 982260. [Google Scholar] [CrossRef] [PubMed]
- Prema, P.; Ali, D.; Nguyen, V.-H.; Pradeep, B.V.; Veeramanikandan, V.; Daglia, M.; Arciola, C.R.; Balaji, P. A Response Surface Methodological Approach for Large-Scale Production of Antibacterials from Lactiplantibacillus plantarum with Potential Utility against Foodborne and Orthopedic Infections. Antibiotics 2024, 13, 437. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, X.; Hu, Y.; Zhang, Y.; Li, Y. Lactic Acid Fermentation from Food Waste with Indigenous Microbiota: Effects of pH, Temperature and High OLR. Waste Manag. 2016, 52, 278–285. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zheng, M.; Wang, K. Lactic Acid Production from Acidogenic Fermentation of Fruit and Vegetable Wastes. Bioresour. Technol. 2015, 191, 53–58. [Google Scholar] [CrossRef]
- Chen, C.; Lan, C.; Pan, C.; Huang, M.; Chew, C.; Hung, C.; Chen, P.; Lin, H.V. Repeated-batch lactic acid fermentation using a novel bacterial immobilization technique based on a microtube array membrane. Process Biochem. 2019, 87, 25–32. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, C.; Wang, J.; Guo, S.; Sun, Z.; Zhang, H. Mesopic fermentation contributes more to the formation of important flavor compounds and increased growth of Lactobacillus casei Zhang than does high temperature during milk fermentation and storage. J. Dairy Sci. 2022, 105, 4857–4867. [Google Scholar] [CrossRef]
- Gao, M.; Wang, J.; Xu, Z.; Zhang, W.; Wu, C.; Wang, Q. Production of Lactic Acid from Soybean Straw Using Immobilized Lactobacillus casei and Batch or Repeated-Batch Fermentation. BioResources 2018, 13, 6722–6735. [Google Scholar] [CrossRef]
- Li, Z. Optimization of L-Lactic Acid Fermentation of Corn Steep Liquor. Food Sci. 2011, 32, 127–130. [Google Scholar]
- Oktaviani, L.; Abduh, M.Y.; Astuti, D.I.; Rosmiati, M. Solid-State Fermentation of Agro-Industrial Waste Using Heterofermentative Lactic Acid Bacteria. In Multifaceted Protocols in Biotechnology; Amid, A., Ed.; Springer: Cham, Switzerland, 2021; Volume 2. [Google Scholar] [CrossRef]
- Kadyan, S.; Rashmi, H.M.; Pradhan, D.; Kumari, A.; Chaudhari, A.; Deshwal, G.K. Effect of Lactic Acid Bacteria and Yeast Fermentation on Antimicrobial, Antioxidative and Metabolomic Profile of Naturally Carbonated Probiotic Whey Drink. LWT 2021, 142, 111059. [Google Scholar] [CrossRef]
- Cantú-Bernal, S.; Domínguez-Gámez, M.; Medina-Peraza, I.; Aros-Uzarraga, E.; Ontiveros, N.; Flores-Mendoza, L.; Gomez-Flores, R.; Tamez-Guerra, P.; González-Ochoa, G. Enhanced Viability and Anti-Rotavirus Effect of Bifidobacterium longum and Lactobacillus plantarum in Combination with Chlorella sorokiniana in a Dairy Product. Front. Microbiol. 2020, 11, 875. [Google Scholar] [CrossRef]
- Chen, P.; Hong, Z.; Cheng, C.; Ng, I.; Lo, Y.; Nagarajan, D.; Chang, J.-S. Exploring Fermentation Strategies for Enhanced Lactic Acid Production with Polyvinyl Alcohol-Immobilized Lactobacillus plantarum 23 Using Microalgae as Feedstock. Bioresour. Technol. 2020, 308, 123266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bu, Y.; Zhang, C.; Yi, H.; Liu, D.; Jiao, J. Development of a Low-Cost and High-Efficiency Culture Medium for Bacteriocin Lac-B23 Production by Lactobacillus plantarum J23. Biology 2020, 9, 171. [Google Scholar] [CrossRef]
- Zhang, H.; You, C.; Wang, Y. Metabolomics Study on Fermentation of Lactiplantibacillus plantarum ST-III with Food-Grade Proliferators in Milk. J. Dairy Sci. 2024, 107, 9005–9014. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.; Nader-Macías, M. Low-Cost Culture Media Designed for Biomass Production of Beneficial Lactic Acid Bacteria for Their Inclusion in a Formula to Treat Bovine Reproductive Infections. FEMS Microbiol. Lett. 2023, 370, fnad033. [Google Scholar] [CrossRef]
- Harina, E.; Malakhova, U.; Butrimova, O.; Chernov, D. The Comparative Analysis of Traditional and Modernized Nutrient Media for the Cultivation of Lactobacilli. Sovrem. Nauka Innov. 2023, 4, 89–95. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Khan, M.Z.; Wang, J.; Chen, T.; Alugongo, G.M.; Li, S.; Cao, Z. Bovine Milk Microbiota: Key Players, Origins, and Potential Contributions to Early-Life Gut Development. J. Adv. Res. 2023, 59, 49–64. [Google Scholar] [CrossRef]
- Wang, T.; Xue, Z.; Liu, H.; Zhao, R.; Peng, J.; Huang, S.; Li, N.; Guo, X.; Xu, Z. Food-Grade Expression System of Lactobacillus plantarum Using β-Galactosidase Small Subunit as Selection Marker and Lactose as Screening Condition. LWT 2023, 182, 114922. [Google Scholar] [CrossRef]
- Goulding, D.A.; Fox, P.F.; O’Mahony, J.A. Milk Proteins: An Overview. Milk Proteins 2020, 21, 21–98. [Google Scholar] [CrossRef]
- Venardou, B.; O’Doherty, J.V.; McDonnell, M.J.; Mukhopadhya, A.; Kiely, C.; Ryan, M.T.; Sweeney, T. Evaluation of the In Vitro Effects of the Increasing Inclusion Levels of Yeast β-Glucan, a Casein Hydrolysate and Its 5 kDa Retentate on Selected Bacterial Populations and Strains Commonly Found in the Gastrointestinal Tract of Pigs. Food Funct. 2021, 12, 2189–2200. [Google Scholar] [CrossRef]
- Sharma, A.; Mukherjee, S.; Reddy Tadi, S.R.; Ramesh, A.; Sivaprakasam, S. Kinetics of Growth, Plantaricin and Lactic Acid Production in Whey Permeate Based Medium by Probiotic Lactobacillus plantarum cra52. LWT 2021, 139, 110744. [Google Scholar] [CrossRef]
- Collard, K.M.; McCormick, D.P. A Nutritional Comparison of Cow’s Milk and Alternative Milk Products. Acad. Pediatr. 2021, 21, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Abdulrazzaq, A.I.; Khalil, K.A. Optimization of Skim Milk-Based Medium for Biomass Production of Probiotic Lactobacillus acidophilus ATCC 4356 Using Face Central Composite Design-Response Surface Methodology Approach. J. Asian Sci. Res. 2022, 12, 1–11. [Google Scholar] [CrossRef]
- Nath, S.; Sikidar, J.; Roy, M.; Deb, B. In Vitro Screening of Probiotic Properties of Lactobacillus plantarum Isolated from Fermented Milk Product. Food Qual. Saf. 2020, 4, 213–223. [Google Scholar] [CrossRef]
- de Souza, E.L.; de Oliveira, K.Á.; de Oliveira, M.E. Influence of Lactic Acid Bacteria Metabolites on Physical and Chemical Food Properties. Curr. Opin. Food Sci. 2023, 49, 100981. [Google Scholar] [CrossRef]
- Bahry, H.; Abdalla, R.; Pons, A.; Taha, S.; Vial, C. Optimization of Lactic Acid Production Using Immobilized Lactobacillus rhamnosus and Carob Pod Waste from the Lebanese Food Industry. J. Biotechnol. 2019, 306, 81–88. [Google Scholar] [CrossRef]
- Abedi, E.; Hashemi, S.M. Lactic Acid Production—Producing Microorganisms and Substrates Sources-State of Art. Heliyon 2020, 6, e04974. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Huang, R.; Wang, X.; Ma, C.; Zhang, F. Effects of Lactiplantibacillus plantarum and Lactiplantibacillus brevis on Fermentation, Aerobic Stability, and the Bacterial Community of Paper Mulberry Silage. Front. Microbiol. 2022, 13, 1063914. [Google Scholar] [CrossRef]
- Lim, Y.-S.; Kim, J.; Kang, H. Isolation and Identification of Lactic Acid Bacteria with Probiotic Activities from Kimchi and Their Fermentation Properties in Milk. J. Milk Sci. Biotechnol. 2019, 37, 115–128. [Google Scholar] [CrossRef]
- Fonseca, H.C.; Duarte, E.R.; Almeida Santos Souza, L.C.; Gomes Alves Mariano, E.; Dos Santos Pires, A.C.; Santos Lima, T.; Soares Pintos, M. Growth, Viability, and Post-Acidification of Lactobacillus plantarum in Bovine Transition Milk. Rev. Mex. Cienc. Pecu. 2020, 11, 539–552. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Guimarães, J.T. A Review on Preparation and Chemical Analysis of Postbiotics from Lactic Acid Bacteria. Enzyme Microb. Technol. 2021, 143, 109722. [Google Scholar] [CrossRef]
- Daba, G.M.; Elnahas, M.O.; Elkhateeb, W.A. Contributions of Exopolysaccharides from Lactic Acid Bacteria as Biotechnological Tools in Food, Pharmaceutical, and Medical Applications. Int. J. Biol. Macromol. 2021, 173, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, B.; Liu, C.-J.; Yang, E. Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum SP8 and the Exopolysaccharides Antioxidant Activity Test. Indian J. Microbiol. 2020, 60, 334–345. [Google Scholar] [CrossRef]
- Oleksy-Sobczak, M.; Klewicka, E. Optimization of Media Composition to Maximize the Yield of Exopolysaccharides Production by Lactobacillus rhamnosus Strains. Probiotics Antimicrob. Proteins 2019, 12, 774–783. [Google Scholar] [CrossRef]
- Zangeneh, M.; Khorrami, S.; Khaleghi, M. Bacteriostatic Activity and Partial Characterization of the Bacteriocin Produced by L. plantarum sp. Isolated from Traditional Sourdough. Food Sci. Nutr. 2020, 8, 6023–6030. [Google Scholar] [CrossRef]
- Ibrahim, F.; Siddiqui, N.N.; Aman, A.; Qader, S.A.; Ansari, A. Characterization, Cytotoxic Analysis and Action Mechanism of Antilisterial Bacteriocin Produced by Lactobacillus plantarum Isolated from Cheddar Cheese. Int. J. Pept. Res. Ther. 2019, 26, 1751–1764. [Google Scholar] [CrossRef]
- Sharma, H.; Ozogul, F.; Bartkiene, E.; Rocha, J.M. Impact of Lactic Acid Bacteria and Their Metabolites on the Techno-Functional Properties and Health Benefits of Fermented Dairy Products. Crit. Rev. Food Sci. Nutr. 2021, 63, 4819–4841. [Google Scholar] [CrossRef]
- Pérez-Ramos, A.; Madi-Moussa, D.; Coucheney, F.; Drider, D. Current Knowledge of the Mode of Action and Immunity Mechanisms of Lab-Bacteriocins. Microorganisms 2021, 9, 2107. [Google Scholar] [CrossRef]
- Mora-Villalobos, J.A.; Montero-Zamora, J.; Barboza, N.; Rojas-Garbanzo, C.; Usaga, J.; Redondo-Solano, M.; Schroedter, L.; Olszewska-Widdrat, A.; López-Gómez, J.P. Multi-Product Lactic Acid Bacteria Fermentations: A Review. Fermentation 2020, 6, 23. [Google Scholar] [CrossRef]
- Todorov, S.D.; Popov, I.; Weeks, R.; Chikindas, M.L. Use of Bacteriocins and Bacteriocinogenic Beneficial Organisms in Food Products: Benefits, Challenges, Concerns. Foods 2022, 11, 3145. [Google Scholar] [CrossRef]
- Nettoor Veettil, V.; Chitra, A.V. Optimization of Bacteriocin Production by Lactobacillus plantarum Using Response Surface Methodology. Cell. Mol. Biol. 2022, 68, 105–110. [Google Scholar] [CrossRef]
- Salman, M.; Tariq, A.; Shahid, M.; Rana, A.; Naseer, M. Utilization of RSM for Optimization of Physical Variables to Improve Bacteriocin Production from Lactobacillus plantarum Strain MS. Abasyn J. Life Sci. 2022, 5, 121–133. [Google Scholar] [CrossRef]
- Vataščinová, T.; Pipová, M.; Fraqueza, M.J.R.; Maľa, P.; Dudriková, E.; Drážovská, M.; Lauková, A. Short Communication: Antimicrobial Potential of Lactobacillus plantarum Strains Isolated from Slovak Raw Sheep Milk Cheeses. J. Dairy Sci. 2020, 103, 6900–6903. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, E.; Liu, L.; Zhang, B.; Wang, Y.; Gui, M.; Li, P. Rheological, Emulsifying, and Thermostability Properties of Two Exopolysaccharides Produced by Bacillus amyloliquefaciens LPL061. Carbohydr. Polym. 2015, 115, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in the food industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Y.; Xiao, L.; Qu, L.; Zhang, X.; Wei, Y. Advancing Insights into Probiotics During Vegetable Fermentation. Foods 2023, 12, 3789. [Google Scholar] [CrossRef] [PubMed]
- Kuley, E.; Özyurt, G.; Özogul, I.; Boga, M.; Akyol, I.; Rocha, J.M.; Özogul, F. The Role of Selected Lactic Acid Bacteria on Organic Acid Accumulation During Wet and Spray-Dried Fish-Based Silages: Contributions to the Winning Combination of Microbial Food Safety and Environmental Sustainability. Microorganisms 2020, 8, 172. [Google Scholar] [CrossRef]
- Filannino, P.; Bai, Y.; Di Cagno, R.; Gobbetti, M.; Gänzle, M.G. Metabolism of Phenolic Compounds by Lactobacillus spp. During Fermentation of Cherry Juice and Broccoli Puree. Food Microbiol. 2015, 46, 272–279. [Google Scholar] [CrossRef]
- Le Lay, C.; Fernandez, B.; Hammami, R.; Ouellette, M.; Fliss, I. On Lactococcus lactis UL719 Competitivity and Nisin (Nisaplin®) Capacity to Inhibit Clostridium difficile in a Model of Human Colon. Front. Microbiol. 2015, 6, 1020. [Google Scholar] [CrossRef]
- Yi, E.J.; Kim, A.J. Antimicrobial and Antibiofilm Effect of Bacteriocin-Producing Pediococcus inopinatus K35 Isolated from Kimchi against Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics 2023, 12, 676. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Lactic Acid Bacteria as Biocontrol Agents in Aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef]
- Thompson, J.; Weaver, M.; Lupatsch, I.; Shields, R.; Plummer, S.; Coates, C.; Rowley, A. Antagonistic Activity of Lactic Acid Bacteria Against Pathogenic Vibrios and Their Potential Use as Probiotics in Shrimp (Penaeus vannamei) Culture. Front. Bioeng. Biotechnol. 2022, 9, 612285. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, S.; Liang, S.; Xiang, F.; Wang, X.; Lian, H.; Li, B.; Liu, F. Exopolysaccharides of lactic acid bacteria: Structure, biological activity, structure–activity relationship, and application in the food industry—A review. Int. J. Biol. Macromol. 2024, 257 Pt 2, 128733. [Google Scholar] [CrossRef]
- Vega-Carranza, A.S.; Escamilla-Montes, R.; Fierro-Coronado, J.A.; Diarte-Plata, G.; Guo, X.; García-Gutiérrez, C.; Luna-González, A. Investigating the Effect of Bacilli and Lactic Acid Bacteria on Water Quality, Growth, Survival, Immune Response, and Intestinal Microbiota of Cultured Litopenaeus vannamei. Animals 2024, 14, 2676. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Li, H. Metabolites of Lactic Acid Bacteria. In Lactic Acid Bacteria in Foodborne Hazards Reduction; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Sankhyan, S.; Ray, S. Metabolic Engineering of Lactic Acid Bacteria for Antimicrobial Peptides Production. In Antimicrobial Peptides from Lactic Acid Bacteria; Ray, S., Kumar, P., Mandal, M., Eds.; Springer: Singapore, 2024. [Google Scholar]
- Rahayu, S.; Amoah, K.; Huang, Y.; Cai, J.; Wang, B.; Shija, V.M.; Jin, X.; Anokyewaa, M.A.; Jiang, M. Probiotics Application in Aquaculture: Its Potential Effects, Current Status in China and Future Prospects. Front. Mar. Sci. 2024, 11, 1455905. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, W. Effects of Lactobacillus pentosus on the Growth Performance, Digestive Enzyme and Disease Resistance of White Shrimp, Litopenaeus vannamei (Boone, 1931). Aquac. Res. 2017, 48, 2767–2777. [Google Scholar] [CrossRef]
- Ringø, E.; Olsen, R.E.; Vecino, J.L.G. Probiotic Applications in Aquaculture: An Update. Aquacult. Nutr. 2020, 26, 1071–1084. [Google Scholar] [CrossRef]
- Nayak, S.K. Lactic Acid Bacteria as Probiotics for Aquaculture: A Review. Aquacult. Nutr. 2020, 26, 223–253. [Google Scholar] [CrossRef]
- Ljubobratovic, U.; Kosanovic, D.; Vukotic, G.; Molnar, Z.; Stanisavljevic, N.; Ristovic, T.; Peter, G.; Lukic, J.; Jeney, G. Supplementation of Lactobacilli Improves Growth, Regulates Microbiota Composition, and Suppresses Skeletal Anomalies in Juvenile Pike-Perch (Sander lucioperca) Reared in Recirculating Aquaculture System (RAS): A Pilot Study. Res. Vet. Sci. 2017, 115, 451–462. [Google Scholar] [CrossRef]
- Prete, R.; Alam, M.; Perpetuini, G.; Perla, C.; Pittia, P.; Corsetti, A. Lactic Acid Bacteria Exopolysaccharides Producers: A Sustainable Tool for Functional Foods. Foods 2021, 10, 71653. [Google Scholar] [CrossRef]
- Sørensen, H.; Rochfort, K.; Maye, S.; MacLeod, G.; Brabazon, D.; Loscher, C.; Freeland, B. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits Towards Functional Food. Nutrients 2022, 14, 2938. [Google Scholar] [CrossRef]
- Vivek, N.; Hazeena, S.; Rajesh, R.; Godan, T.; Anjali, K.; Nair, L.; Mohan, B.; Nair, S.; Sindhu, R.; Pandey, A.; et al. Genomics of Lactic Acid Bacteria for Glycerol Dissimilation. Mol. Biotechnol. 2019, 61, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Jeon, H.; Yoo, J.; Kim, J. Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods 2021, 10, 2148. [Google Scholar] [CrossRef] [PubMed]
Cultivation Mode | Medium | Conditions | Remarks | Reference |
---|---|---|---|---|
Fed-batch fermentation | Molasses-based medium | 37 °C, pH 6.5 | 2.67-fold increase in biomass yield with optimized nutrient feeding strategy of Lacticaseibacillus rhamnosus | [24] |
Batch fermentation | Food waste | 37 °C, pH 6.0 | The highest lactic acid yield (0.46 g/g-TS) and productivity (278.1 mg/L h) include microbial species involved Lactobacillus spp., Enterococcus spp., Bacillus spp., and Clostridium spp. | [33] |
Batch fermentation | Fruit and vegetable waste | 37 °C, pH 4.0 | Acidogenic fermentation of fruit and vegetable wastes can produce 10–20 g/L lactic acid involving Lactobacillus spp., Bacillus spp., and Clostridium spp. | [34] |
Batch fermentation | MRS medium | 35 °C, uncontrolled pH | Maximum lactic acid produced of 37.39 g/L, productivity 0.79 g/L·h, and yield of lactic acid 0.94 g/g of Lactobacillus spp. | [35] |
Batch fermentation | Milk-based medium | 37 °C, pH 6.5 | The formation of important flavor compounds during the fermentation process and production of short-chain fatty acids in cultivation of Lacticaseibacillus casei | [36] |
Batch fermentation | Soybean straw | 30 °C, uncontrolled pH | Lactic acid productivity was increased by the use of soybean straw enzymatic hydrolysate on Lacticaseibacillus casei | [37] |
Batch fermentation | Corn steep liquor | 36 °C, pH 6.5 | Lactic acid yield 11 g/L enhanced with optimized process control of Lacticaseibacillus casei | [38] |
Fed-batch fermentation | Glycerol | Optimize temperature (35–45 °C), pH 6.5 | Maximal lactic acid concentration of 90.4 g/L was obtained after 80 h fermentation, a productivity of 1.13 g/L/h, which is 1.2 times more than constant temperature Lacticaseibacillus casei | [35] |
Solid-state fermentation | Agro-industrial waste | temperature, moisture content uncontrolled | Produced bioproduct and lactic acid yield using cost-effective substrates in cultivation of Lacticaseibacillus casei | [39] |
Co-culture with yeast | Whey-based medium | 30 °C, anaerobic conditions | Enhanced growth and metabolite production due to synergistic interactions, which involved of Lacticaseibacillus casei and Kluyveromyces marxianus | [40] |
Microcarrier-based culture | Algal extract | 32 °C, optimized agitation | High-density biomass and reduced substrate consumption during cultivation of Bifidobacterium longum and L. Plantarum in combination with Chlorella sorokiniana | [41] |
Immobilized cell system | Microalgae hydrolysate | 33 °C, continuous substrate feeding | Increased productivity of lactic acid reached 9.93 g/L/h when using microalgae hydrolysate as substrate in cultivation of L. Plantarum | [42] |
Strain | Metabolites | Remarks | References |
---|---|---|---|
Lactobacillus spp., Streptococcus thermophilus zlw TM11, Lactococcus lactis, Lactobacillus delbrueckii subsp. bulgaricus | Viscous exopolysaccharides | Strain cultivated at a temperature of 35.6 °C, initial pH of 7.4, and 6.4% of inoculation size applied | [74] |
Lactiplantibacillus plantarum, Leuconostoc lactis | Bacteriocins; leucosin | 36 °C at a pH of 6.5 using 1% inoculum size | [74] |
Lactiplantibacillus plantarum, Leuconostoc lactis | Riboflavin | After 20 h of fermentation at 37 °C, the RYG-YYG-9049-M10 strain LAB was able to enhance the amount of riboflavin in fermented soy milk by ten times. | [75] |
Lactobacillus sp., Limosilactobacillus reuteri | 3-hydroxypropionic acid | Produced through glycerol metabolism pathway | [76] |
Lactiplantibacillus plantarum, Pediococcus acidilactiti, and Streptococcus spp. | Succinic acid | Undertaken in wet and spray-dried fish-based raw material for 3 weeks under room temperature (25 °C) | [77] |
Levilactobacillus brevis, Limosilactobacillus fermentum and Lactiplantibacillus plantarum | Phenolic acid | Produced through decarboxylase and reductase | [78] |
Metabolite | Function | Application | References |
---|---|---|---|
Lactic Acid | Lowers pH, preservative, flavor enhancer | Food preservation, dairy products, beverages | [75,83] |
Vitamins (e.g., B12, K2) | Nutritional enhancement | Fortified foods, dietary supplements | [75,83] |
Exopolysaccharides | Texture improvement, prebiotic effects | Dairy products, functional foods, aquaculture | [75,84] |
Short-Chain Fatty Acids | Gut health, anti-inflammatory | Probiotics, functional foods, pharmaceuticals | [75,84] |
Bacteriocins | Antimicrobial activity | Food safety, biopreservation, pharmaceuticals | [83,84] |
γ-Aminobutyric Acid (GABA) | Neurotransmitter, stress relief | Functional foods, dietary supplements | [83,84] |
Conjugated Linoleic Acid | Anti-carcinogenic, anti-obesity | Functional foods, dietary supplements | [84] |
Hydrogen Peroxide | Antimicrobial activity | Food preservation, pharmaceuticals | [85] |
Diacetyl | Flavor compound, antimicrobial | Dairy products, food flavoring | [85] |
Reuterin | Broad-spectrum antimicrobial | Food preservation, pharmaceuticals, aquaculture | [86] |
Metabolites | Function | Application | References |
---|---|---|---|
Lactic Acid | The primary metabolite produced by LAB, which lowers the pH of the environment, inhibiting the growth of harmful pathogens. | Reduces the colonization of pathogenic bacteria in the gut of fish and shrimp. | [81] |
Bacteriocins | Antimicrobial peptides that specifically target pathogenic bacteria. | Control of harmful bacteria such as Vibrio sp. and Staphylococcus aureus in aquaculture. | [81] |
Exopolysaccharides (EPS) | Enhance water quality by forming biofilms and stabilizing the microbial community. | Improve water quality by reducing ammonia and other toxic compounds in water systems. | [83] |
Short-Chain Fatty Acids (SCFAs) | LAB produce short-chain fatty acids such as acetate, propionate, and butyrate during fermentation. | Improve gut health, enhance nutrient absorption, and provide energy to gut epithelial cells. | [87] |
Enzymes | Produced digestive enzymes such as proteases and amylases that help in the breakdown of nutrients. | Enhance the digestive efficiency of aquatic species, leading to better growth performance. | [88] |
Vitamins | Essential vitamins such as B vitamins (e.g., B12, folate). | Improve overall health and immunity of aquatic species by providing essential micronutrients. | [89] |
Antioxidants | Antioxidant properties that protect cells from oxidative stress. | Enhance the immune system of aquatic species and reduce mortality during stress conditions. | [90] |
Proteolytic activities | LAB strains possess proteolytic activities. | Assist in situ food digestion and improve nutrient utilization in larval gut. | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loo, J.S.; Oslan, S.N.H.; Mokshin, N.A.S.; Othman, R.; Amin, Z.; Dejtisakdi, W.; Prihanto, A.A.; Tan, J.S. Comprehensive Review of Strategies for Lactic Acid Bacteria Production and Metabolite Enhancement in Probiotic Cultures: Multifunctional Applications in Functional Foods. Fermentation 2025, 11, 241. https://doi.org/10.3390/fermentation11050241
Loo JS, Oslan SNH, Mokshin NAS, Othman R, Amin Z, Dejtisakdi W, Prihanto AA, Tan JS. Comprehensive Review of Strategies for Lactic Acid Bacteria Production and Metabolite Enhancement in Probiotic Cultures: Multifunctional Applications in Functional Foods. Fermentation. 2025; 11(5):241. https://doi.org/10.3390/fermentation11050241
Chicago/Turabian StyleLoo, Jiun Shen, Siti Nur Hazwani Oslan, Nur Anis Safiah Mokshin, Rafidah Othman, Zarina Amin, Wipawee Dejtisakdi, Asep Awaludin Prihanto, and Joo Shun Tan. 2025. "Comprehensive Review of Strategies for Lactic Acid Bacteria Production and Metabolite Enhancement in Probiotic Cultures: Multifunctional Applications in Functional Foods" Fermentation 11, no. 5: 241. https://doi.org/10.3390/fermentation11050241
APA StyleLoo, J. S., Oslan, S. N. H., Mokshin, N. A. S., Othman, R., Amin, Z., Dejtisakdi, W., Prihanto, A. A., & Tan, J. S. (2025). Comprehensive Review of Strategies for Lactic Acid Bacteria Production and Metabolite Enhancement in Probiotic Cultures: Multifunctional Applications in Functional Foods. Fermentation, 11(5), 241. https://doi.org/10.3390/fermentation11050241