Valorization of Macauba (Acromia aculeata) for Integrated Production of Lipase by Yarrowia lipolytica and Biodiesel Esters
Abstract
:1. Introduction
2. Methods
2.1. Microorganism
2.2. Solid-State Fermentation (SSF)
2.2.1. SSF Experiments
2.2.2. Optimization of Lipase Production in SFF Experiments
2.2.3. Compositional Characterization of SFF Medium
2.3. Analytical Assays
2.3.1. Quantification of Biomass Growth
2.3.2. Enzyme Extraction
2.3.3. Quantification of Enzyme Activity
2.3.4. Acidity Determination
2.4. Characterization of SEP
2.5. Enzymatic Hydrolysis of the Acidic Oil from Macauba Pulp
2.6. Enzymatic Esterification Reactions
2.7. Esters Yield Determination
3. Results
3.1. Characterization of Macauba Cakes
3.2. Lipase Production via Solid-State Fermentation of Macauba Fruit Cake
3.3. Characterization of SEP from Macauba Pulp and Peel Cake
3.4. Application of SEP in the Conversion of the Acidic Macauba Pulp Oil
3.5. Application of SEP in Esterification Reactions for Biodiesel Synthesis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Treichel, H.; de Oliveira, D.; Mazutti, M.A.; Di Luccio, M.; Oliveira, J.V. A Review on Microbial Lipases Production. Food Bioprocess Technol. 2010, 3, 182–196. [Google Scholar] [CrossRef]
- Melani, N.B.; Tambourgi, E.B.; Silveira, E. Lipases: From Production to Applications. Sep. Purif. Rev. 2020, 49, 143–158. [Google Scholar] [CrossRef]
- Buarque, F.S.; Carniel, A.; Ribeiro, B.D.; Coelho, M.A.Z. Selective enzymes separation from the fermentation broth of Yarrowia lipolytica using aqueous two-phase system based on quaternary ammonium compounds. Sep. Purif. Technol. 2023, 324, 124539. [Google Scholar] [CrossRef]
- Tofani, G.; Petri, A.; Piccolo, O. Preparation of enantiomerically pure N-heterocyclic amino alcohols by enzymatic kinetic resolution. Tetrahedron Asymmetry 2015, 26, 638–643. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, V.; Dubey, V.K.; Srivastava, A.; Garg, S.K.; Singh, V.P.; Arora, P.K. Industrial applications of fungal lipases: A review. Front. Microbiol. 2023, 14, 1142536. [Google Scholar] [CrossRef]
- Santos, A.G.; Buarque, F.S.; Ribeiro, B.D.; Coelho, M.A.Z. Extractive fermentation for the production and partitioning of lipase and citric acid by Yarrowia lipolytica. Process Biochem. 2022, 122, 374–385. [Google Scholar] [CrossRef]
- Hasan, F.; Shah, A.A.; Hameed, A. Industrial applications of microbial lipases. Enzym. Microb. Technol. 2006, 29, 235–251. [Google Scholar] [CrossRef]
- Snellman, E.A.; Sullivan, E.R.; Colwell, R.R. Purification and properties of the extracellular lipase, LipA, of Acinetobacter sp. RAG-1. Eur. J. Biochem. 2002, 269, 5771–5779. [Google Scholar] [CrossRef]
- Tacin, M.V.; Massi, F.P.; Fungaro, M.H.P.; Teixeira, M.F.S.; de Paula, A.V.; de Carvalho Santos-Ebinuma, V. Biotechnological valorization of oils from agro-industrial wastes to produce lipase using Aspergillus sp. from Amazon. Biocatal. Agric. Biotechnol. 2019, 17, 369–378. [Google Scholar] [CrossRef]
- Hagler, A.N.; Mendonqa-Hagler, L.C. Yeasts from Marine and Estuarine Waters with Different Levels of Pollution in the State of Rio de Janeiro, Brazil. 1981. Available online: https://journals.asm.org/journal/aem (accessed on 30 May 2023).
- Fickers, P.; Marty, A.; Nicaud, J.M. The lipases from Yarrowia lipolytica: Genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol. Adv. 2011, 29, 632–644. [Google Scholar] [CrossRef]
- Leite, P.; Sousa, D.; Fernandes, H.; Ferreira, M.; Costa, A.R.; Filipe, D.; Salgado, J.M. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Cur. Opin. Green Sust. Chem. 2023, 27, 100407. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; de Barros, D.S.N.; Fernandez-Lafuente, R.; Freire, D.M.G. Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renew. Energy 2019, 130, 574–581. [Google Scholar] [CrossRef]
- Botton, V.; Piovan, L.; Meier, H.F.; Mitchell, D.A.; Cordova, J.; Krieger, N. Optimization of biodiesel synthesis by esterification using a fermented solid produced by Rhizopus microsporus on sugarcane bagasse. Bioprocess Biosyst. Eng. 2018, 41, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Gutarra, M.L.E.; Godoy, M.G.; Maugeri, F.; Rodrigues, M.I.; Freire, D.M.G.; Castilho, L.R.; Isabel, M.; Freire, D.M.G.; Castilho, L.R. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour. Technol. 2009, 100, 5249–5254. [Google Scholar] [CrossRef]
- Sant’Ana, C.T.; Verediano, T.A.; Grancieri, M.; Toledo, R.C.L.; Tako, E.; Costa, N.M.B.; Barros, F.A.R. Macauba (Acrocomia aculeata) Pulp Oil Prevents Adipogenesis, Inflammation and Oxidative Stress in Mice Fed a High-Fat Diet. Nutrients 2023, 15, 1252. [Google Scholar] [CrossRef]
- Souza, G.K.; Scheufele, F.B.; Pasa, T.L.B.; Arroyo, P.A.; Pereira, N.C. Synthesis of ethyl esters from crude macauba oil (Acrocomia aculeata) for biodiesel production. Fuel 2016, 165, 360–366. [Google Scholar] [CrossRef]
- Del Río, J.C.; Evaristo, A.B.; Marques, G.; Martín-Ramos, P.; Martín-gil, J.; Gutiérrez, A. Chemical composition and thermal behavior of the pulp and kernel oils from macauba palm (Acrocomia aculeata) fruit. Ind. Crops Prod. 2016, 84, 294–304. [Google Scholar] [CrossRef]
- Ciconini, G.; Favaro, S.P.; Roscoe, R.; Miranda, C.H.B.; Tapeti, C.F.; Miyahira, M.A.M.; Bearari, L.; Galvani, F.; Borsato, A.V.; Colnago, L.A.; et al. Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Ind. Crop Prod. 2013, 45, 208–214. [Google Scholar] [CrossRef]
- Cunniff, P.; Washington, D. Official methods of analysis of AOAC international. J. AOAC Int. 1997, 80, 127–128. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Métodos Químicos e Físicos Para Análise de Alimentos, 4th ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2005. [Google Scholar]
- Mendez, M.H.M.; Derivi, S.C.N.; Rodrigues, M.C.R.; Fernandes, M.L.; Machado, R.L.D. Metodo da fibra detergente neutro modificado para amostras ricas em amido. Ciência e Tecnol. Aliment. 1985, 5, 123–131. [Google Scholar]
- Van Soest, P.J. Use of Detergents in the Analysis of Fibrous Feeds I Preparation of Fiber Residues of Low Nitrogen Content. J. Assoc. Off. Agric. Chem. 1963, 46, 825–835. [Google Scholar]
- Aidoo, K.E.; Hendry, R.; Wood, B.J.B. Estimation of Fungal Growth in a Solid State Fermentation System. Appl. Microbiol. Biotechnol. 1981, 12, 6–9. [Google Scholar] [CrossRef]
- Freire, D.M.; Teles, E.M.; Bon, E.P. Lipase production by Penicillium restrictum in a bench-scale fermenter. In: Biotechnology for Fuels and Chemicals. App. Biochem. Biotechnol. 1997, 63–65, 409–421. [Google Scholar] [CrossRef]
- Pereira-Meireles, F.V.; Rocha-Leão, M.H.M.; Sant’Anna, G.L.J. A Stable Lipase from Candida lipolytica: Cultivation Conditions and Crude Enzyme Characteristics. Appl. Biochem. Biotechnol. 1997, 63, 73–85. [Google Scholar]
- Sousa, J.S.; Cavalcanti-Oliveira, E.; Aranda, D.A.G.A.; Freire, D.M.G. Enzymatic Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. J. Mol. Catal. B Enzym. 2010, 65, 133–137. [Google Scholar] [CrossRef]
- Oliveira, F.; Salgado, J.M.; Abrunhosa, L.; Pérez-Rodríguez, N.; Domínguez, J.M.; Venâncio, A.; Belo, I. Optimization of lipase production by solid-state fermentation of olive pomace: From flask to laboratory-scale packed-bed bioreactor. Bioprocess Biosyst. Eng. 2017, 40, 1123–1132. [Google Scholar] [CrossRef]
- Singh, A.K.; Mukhopadhyay, M. Overview of fungal lipase: A review. Appl. Biochem. Biotechnol. 2012, 166, 486–520. [Google Scholar] [CrossRef]
- Edwinoliver, N.G.; Thirunavukarasu, K.; Naidu, R.B.; Gowthaman, M.K.; Kambe, T.N.; Kamini, N.R. Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour. Technol. 2010, 101, 6791–6796. [Google Scholar] [CrossRef]
- Pandey, A. Solid-state fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ayub, M.A.Z. Effects of the combined use of Thermomyces lanuginosus and rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem. 2011, 46, 682–688. [Google Scholar] [CrossRef]
- Imandi, S.B.; Karanam, S.K.; Garapati, H.R. Optimization of Process Parameters for the Productionof Lipase in Solid State Fermentation by Yarrowia Lipolytica from Niger Seed Oil Cake (Guizotia abyssinica). J. Microb. Biochem. Technol. 2010, 2, 28–33. [Google Scholar] [CrossRef]
- Imandi, S.B.; Karanam, S.K.; Garapati, H.R. Optimization of media constituents for the production of lipase in solid state fermentation by Yarrowia lipolytica from palm Kernal cake (Elaeis guineensis). Adv. Biosci. Biotechnol. 2010, 1, 115–121. [Google Scholar] [CrossRef]
- Farias, M.A.; Valoni, E.A.; Castro, A.M.; Coelho, M.A.Z. Lipase Production by Yarrowia lipolytica in Solid State Fermentation Using Different Agro Industrial Residues. Chem. Eng. Trans. 2014, 38, 301–306. [Google Scholar] [CrossRef]
- Lopes, V.R.O.; Farias, M.A.; Belo, I.M.P.; Coelho, M.A.Z. Nitrogen sources on TPOMW valorization through solid state fermentation performed by Yarrowia lipolytica. Braz. J. Chem. Eng. 2016, 33, 261–270. [Google Scholar] [CrossRef]
- Sales, J.C.S.; de Castro, A.M.; Ribeiro, B.D.; Coelho, M.A.Z. Supplementation of watermelon peels as an enhancer of lipase and esterase production by Yarrowia lipolytica in solid-state fermentation and their potential use as biocatalysts in poly (ethylene terephthalate) (PET) depolymerization reactions. Biocatal. Biotransform. 2020, 38, 457–468. [Google Scholar] [CrossRef]
- Souza, C.E.C.; Ribeiro, B.D.; Coelho, M.A.Z. Characterization and Application of Yarrowia lipolytica Lipase Obtained by Solid-State Fermentation in the Synthesis of Different Esters Used in the Food Industry. Appl. Biochem. Biotechnol. 2019, 189, 933–959. [Google Scholar] [CrossRef]
- Andrade, A.C.; Marinho, J.F.U.; Souza, A.C.; Tavares, T.; Dias, D.R.; Schwan, R.F.; Bastos, S.C. Prebiotic potential of pulp and kernel cake from Jerivá (Syagrus romanzoffiana) and Macaúba palm fruits (Acrocomia aculeata). Food Res. Intern. 2020, 136, 109595. [Google Scholar] [CrossRef]
- Destain, J.; Roblain, D.; Thonart, P. Improvement of lipase production from Yarrowia lipolytica. Biotechnol. Lett. 1997, 19, 105–107. [Google Scholar] [CrossRef]
- Kempka, A.P.; Lipke, N.L.; Da Luz Fontoura Pinheiro, T.; Menoncin, S.; Treichel, H.; Freire, D.M.G.; Di Luccio, M.; De Oliveira, D. Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess Biosyst. Eng. 2008, 31, 119–125. [Google Scholar] [CrossRef]
- Yu, M.; Qin, S.; Tan, T. Purification and characterization of the extracellular lipase Lip2 from Yarrowia lipolytica. Process Biochem. 2007, 42, 384–391. [Google Scholar] [CrossRef]
- Kebabci, Ö.; Cİhangİr, N.; Kebabci, O.; Cihangir, N. Comparison of three Yarrowia lipolytica strains for lipase production: NBRC 1658, IFO 1195, and a local strain. Turk. J. Biol. 2012, 36, 15–24. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, G.; Yang, N.; Zhou, Z.; Li, Y.; Liang, X.; Chen, J.; Li, Y.; Li, J. Two-step synthesis of fatty acid ethyl ester from soybean oil catalyzed by Yarrowia lipolytica lipase. Biotechnol. Biofuels 2011, 4, 9. [Google Scholar] [CrossRef]
- Rodriguez, J.; Mateos, J.C.; Nungaray, J.; González, V.; Bhagnagar, T.; Roussos, S.; Cordova, J.; Baratti, J. Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem. 2006, 41, 2264–2269. [Google Scholar] [CrossRef]
- Luiza, M.; Fernandes, M.; Bolzani, E.; Meira, J.A.; Ramos, L.P.; Mitchell, D.A.; Krieger, N. Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J. Mol. Catal. B Enzym. 2007, 44, 8–13. [Google Scholar] [CrossRef]
- Talukder, M.M.R.; Wu, J.C.; Fen, N.M.; Melissa, Y.L.S. Two-step lipase catalysis for production of biodiesel. Biochem. Eng. J. 2010, 49, 207–212. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; Cavalcanti-Oliveira, E.D.; de Castro, A.M.; Langone, M.A.; Freire, D.M.G. Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 2014, 135, 315–321. [Google Scholar] [CrossRef]
- Dalmau, E.; Montesinos, J.; Lotti, M.; Casas, C. Effect of different carbon sources on lipase production by Candida rugosa. Enzym. Microb. Technol. 2000, 26, 657–663. [Google Scholar] [CrossRef]
Independent Variables | Levels | ||
---|---|---|---|
−1 | 0 | +1 | |
Initial moisture content (%) | 30 | 40 | 50 |
Glucose (% m/v) | 1 | 2 | 3 |
Urea (%) | 0 | 1 | 2 |
Peptone (%) | 0 | 1 | 2 |
Yeast extract (%) | 0 | 1 | 2 |
Inoculum (mg g−1) | 0.67 | 3.70 | 6.70 |
Composition (% Dry Basis) | Macauba Cakes | |
---|---|---|
Fruit | Pulp and Peel | |
Ash | 3.5 ± 0.1 | 2.3 ± 0.1 |
Crude protein | 6.7 ± 0.2 | 4.6 ± 0.2 |
Lipids | 14.4 ± 0.1 | 5.8 ± 0.3 |
Carbohydrates (Nifext fraction) | 21.6 ± 3.1 | 16.2 ± 1.6 |
Crude fiber | 53.8 ± 3.4 | 71.2 ± 1.6 |
Element | Content (wt %) | |
---|---|---|
Fruit | Pulp and Peel | |
Nitrogen | 1.2 ± 0.2 | 1.1 ± 0.0 |
Carbon | 47.3 ± 0.9 | 47.3 ± 0.3 |
Hydrogen | 6.7 ± 0.2 | 6.2 ± 0.1 |
Sulfur | 0.3 ± 0.0 | ˂0.3 ± 0.0 |
Run | Levels and Variables | Lipase Activity (U g−1) | |
---|---|---|---|
Moisture (%) | Urea (wt %) | ||
1 | −1 (30) | −1 (0.4) | 6.6 |
2 | −1 (30) | +1 (2) | 9.7 |
3 | +1 (50) | −1 (0.4) | 7.4 |
4 | +1 (50) | +1 (2) | 302.4 |
5 | −1.41 (26) | 0 (1.2) | 7.9 |
6 | +1.41 (54) | 0 (1.2) | 195.8 |
7 | 0 (40) | −1.41 (0.1) | 15.9 |
8 | 0 (40) | +1.41 (2.3) | 88.4 |
9 | 0 (40) | 0 (1.2) | 257.4 |
10 | 0 (40) | 0 (1.2) | 284.7 |
11 | 0 (40) | 0 (1.2) | 260.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buarque, F.S.; Farias, M.A.; Sales, J.C.S.; Carniel, A.; Ribeiro, B.D.; Lopes, V.R.d.O.; Castro, A.M.; Coelho, M.A.Z. Valorization of Macauba (Acromia aculeata) for Integrated Production of Lipase by Yarrowia lipolytica and Biodiesel Esters. Fermentation 2023, 9, 992. https://doi.org/10.3390/fermentation9120992
Buarque FS, Farias MA, Sales JCS, Carniel A, Ribeiro BD, Lopes VRdO, Castro AM, Coelho MAZ. Valorization of Macauba (Acromia aculeata) for Integrated Production of Lipase by Yarrowia lipolytica and Biodiesel Esters. Fermentation. 2023; 9(12):992. https://doi.org/10.3390/fermentation9120992
Chicago/Turabian StyleBuarque, Filipe Smith, Marcelle A. Farias, Júlio Cesar Soares Sales, Adriano Carniel, Bernardo Dias Ribeiro, Verônica Regina de Oliveira Lopes, Aline Machado Castro, and Maria Alice Zarur Coelho. 2023. "Valorization of Macauba (Acromia aculeata) for Integrated Production of Lipase by Yarrowia lipolytica and Biodiesel Esters" Fermentation 9, no. 12: 992. https://doi.org/10.3390/fermentation9120992
APA StyleBuarque, F. S., Farias, M. A., Sales, J. C. S., Carniel, A., Ribeiro, B. D., Lopes, V. R. d. O., Castro, A. M., & Coelho, M. A. Z. (2023). Valorization of Macauba (Acromia aculeata) for Integrated Production of Lipase by Yarrowia lipolytica and Biodiesel Esters. Fermentation, 9(12), 992. https://doi.org/10.3390/fermentation9120992