Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Growth Measurements and Sampling
2.4. Liver Protein Extraction and Peptide Digestion
2.5. LC-MS Data Acquisition for Proteomic Analysis
3. Results
3.1. Effect of Fish Oil on Growth Parameters
3.2. Comparative Proteomic Analysis of Fish Fed Fish Oil and Soybean Oil Diets
3.2.1. Co-Expressed Proteins
3.2.2. SO-Specific Expressed Proteins
3.2.3. FO-Specific Expressed Proteins
4. Discussion
4.1. The Effect of Fish Oil on Growth Parameters
4.2. Effects of Fish Oil on Liver Metabolism
4.3. Effects of Fish Oil on Energy Metabolism Balance, Anti-Inflammatory, and Antioxidant Properties in the Liver
4.4. Gene-Protein Co-Expression Trends
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tocher, D.R. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 2015, 449, 94–107. [Google Scholar] [CrossRef]
- Glencross, B.D. Exploring the nutritional demand for essential fatty acids by aquaculture species. Rev. Aquacult. 2009, 1, 71–124. [Google Scholar] [CrossRef]
- Dadras, H.; Dzyuba, B.; Cosson, J.; Golpour, A.; Siddique, M.A.M.; Linhart, O. Effect of water temperature on the physiology of fish spermatozoon function: A brief review. Aquacult. Res. 2017, 48, 729–740. [Google Scholar] [CrossRef]
- Reilly, A.; Kaferstein, F. Food safety and products from aquaculture. J. Appl. Microbiol. 1998, 85 (Suppl. 1), 249S–257S. [Google Scholar] [CrossRef] [PubMed]
- Gui, L.; Zhang, P.P.; Liang, X.M.; Su, M.L.; Wu, D.; Zhang, J.B. Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish. Gene 2016, 583, 134–140. [Google Scholar] [CrossRef]
- Bertucci, J.I.; Blanco, A.M.; Sundarrajan, L.; Rajeswari, J.J.; Velasco, C.; Unniappan, S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front. Endocrinol. 2019, 10, 83. [Google Scholar] [CrossRef]
- Sung, Y.; Yu, Y.C.; Han, J.M. Nutrient sensors and their crosstalk. Exp. Mol. Med. 2023, 55, 1076–1089. [Google Scholar] [CrossRef]
- Templeman, N.M.; Murphy, C.T. Regulation of reproduction and longevity by nutrient-sensing pathways. J. Cell Biol. 2018, 217, 93–106. [Google Scholar] [CrossRef]
- Scaramuzzi, R.J.; Brown, H.M.; Dupont, J. Nutritional and Metabolic Mechanisms in the Ovary and Their Role in Mediating the Effects of Diet on Folliculogenesis: A Perspective. Reprod. Domest. Anim. 2010, 45, 32–41. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Z.L.; Li, G.L.; Mustapha, U.F.; Ndandala, C.B.; Shi, H.J.; Zhu, C.H.; Chen, H.P.; Huang, Y.; Jiang, D.N. Ovary transcriptomic analysis reveals regulation effects of dietary fish oil on hormone, lipid, and glucose metabolism in female adult spotted scat (Scatophagus argus). Front. Mar. Sci. 2022, 9, 935968. [Google Scholar] [CrossRef]
- Peng, S.M.; Gao, Q.X.; Shi, Z.H.; Zhang, C.J.; Wang, J.G.; Yin, F.; Zhang, Y.L. Effect of dietary n 3 LC-PUFAs on plasma vitellogenin, sex steroids, and ovarian steroidogenesis during vitellogenesis in female silver pomfret (Pampus argenteus) broodstock. Aquaculture 2015, 444, 93–98. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Li, G.L.; Zhu, C.H.; Deng, S.P. Effects of fish oil on ovarian development in spotted scat (Scatophagus argus). Anim. Reprod. Sci. 2013, 141, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cai, Y.; Shao, Y.; Zhang, X.; Li, N.; Zhang, H.; Liu, Z. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes. Int. J. Mol. Sci. 2018, 19, 1325. [Google Scholar] [CrossRef]
- Erez, I.; Serbester, U. Effects of prenatal fish oil supplementation on the development and performance of female kids after weaning. PLoS ONE 2024, 19, e0310220. [Google Scholar] [CrossRef] [PubMed]
- Bemanian, V.; Male, R.; Goksoyr, A. The aryl hydrocarbon receptor-mediated disruption of vitellogenin synthesis in the fish liver: Cross-talk between AHR- and ERalpha-signalling pathways. J. Hepatol. 2004, 3, 2. [Google Scholar] [CrossRef]
- Mandal, S.C.; Tripathy, P.S.; Khatei, A.; Devi, N.C.; Biswas, P.; Sundaray, J.K.; Hoque, F.; Parhi, J. Effect of vegetable oil on ovarian steroidogenesis- A transcriptome approach to understand molecular mechanisms of hypothalamus pituitary and gonad axis (HPG) in Ompok bimaculatus. PLoS ONE 2024, 19, e0309311. [Google Scholar] [CrossRef] [PubMed]
- Li, G.L.; Zhang, M.Z.; Deng, S.P.; Chen, H.P.; Zhu, C.H. Effects of temperature and fish oil supplementation on ovarian development and foxl2 mRNA expression in spotted scat Scatophagus argus. J. Fish Biol. 2015, 86, 248–260. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, D.N.; Shi, H.J.; Mustapha, U.F.; Deng, S.P.; Liu, Z.L.; Li, W.X.; Chen, H.P.; Zhu, C.H.; Li, G.L. Liver Transcriptomic Analysis of the Effects of Dietary Fish Oil Revealed a Regulated Expression Pattern of Genes in Adult Female Spotted Scat (Scatophagus argus). Front. Mar. Sci. 2021, 8, 784845. [Google Scholar] [CrossRef]
- Jiang, D.N.; Li, J.T.; Tao, Y.X.; Chen, H.P.; Deng, S.P.; Zhu, C.H.; Li, G.L. Effects of melanocortin-4 receptor agonists and antagonists on expression of genes related to reproduction in spotted scat, Scatophagus argus. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2017, 187, 603–612. [Google Scholar] [CrossRef]
- Mandal, B.; Kailasam, M.; Bera, A.; Sukumaran, K.; Hussain, T.; Makesh, M.; Thiagarajan, G.; Vijayan, K.K. Gonadal recrudescence and annual reproductive hormone pattern of captive female Spotted Scats (Scatophagus argus). Anim. Reprod. Sci. 2020, 213, 106273. [Google Scholar] [CrossRef]
- Mustapha, U.F.; Assan, D.; Huang, Y.Q.; Li, G.L.; Jiang, D.N. High Polymorphism in the Dmrt2a Gene Is Incompletely Sex-Linked in Spotted Scat, Scatophagus argus. Animals 2022, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- He, F.X.; Jiang, D.N.; Huang, Y.Q.; Mustapha, U.F.; Yang, W.; Cui, X.F.; Tian, C.X.; Chen, H.P.; Shi, H.J.; Deng, S.P.; et al. Comparative transcriptome analysis of male and female gonads reveals sex-biased genes in spotted scat (Scatophagus argus). Fish Physiol. Biochem. 2019, 45, 1963–1980. [Google Scholar] [CrossRef]
- Mandal, B.; Kailasam, M.; Bera, A.; Sukumaran, K.; Hussain, T.; Biswas, G.; Vijayan, K.K. Standardization of oocyte size during artificial fertilization and optimization of stocking density during indoor larval and outdoor nursery rearing of captive spotted scat (Scatophagus argus) for a viable juvenile production system. Aquaculture 2021, 534, 736262. [Google Scholar] [CrossRef]
- Wisniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Li, M.; Ren, C.; Zhou, S.; He, Y.; Guo, Y.; Zhang, H.; Liu, L.; Cao, Q.; Wang, C.; Huang, J.; et al. Integrative proteome analysis implicates aberrant RNA splicing in impaired developmental potential of aged mouse oocytes. Trends Analyt. Chem. 2021, 20, e13482. [Google Scholar] [CrossRef]
- Piedecausa, M.A.; Mazón, M.J.; García, B.G.; Hernández, M.D. Effects of total replacement of fish oil by vegetable oils in the diets of sharpsnout seabream (Diplodus puntazzo). Aquaculture 2007, 263, 211–219. [Google Scholar] [CrossRef]
- Trushenski, J.; Schwarz, M.; Lewis, H.; Laporte, J.; Delbos, B.; Takeuchi, R.; Sampaio, L.A. Effect of replacing dietary fish oil with soybean oil on production performance and fillet lipid and fatty acid composition of juvenile cobia Rachycentron canadum. Aquacult. Nutr. 2011, 17, E437–E447. [Google Scholar] [CrossRef]
- Bartuzi, P.; Billadeau, D.D.; Favier, R.; Rong, S.X.; Dekker, D.; Fedoseienko, A.; Fieten, H.; Wijers, M.; Levels, J.H.; Huijkman, N.; et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat. Commun. 2016, 7, 10961. [Google Scholar] [CrossRef]
- Fedoseienko, A.; Wijers, M.; Wolters, J.C.; Dekker, D.; Smit, M.; Huijkman, N.; Kloosterhuis, N.; Klug, H.; Schepers, A.; van Dijk, K.W.; et al. The COMMD Family Regulates Plasma LDL Levels and Attenuates Atherosclerosis Through Stabilizing the CCC Complex in Endosomal LDLR Trafficking. Circ. Res. 2018, 122, 1648–1660. [Google Scholar] [CrossRef]
- Champy, M.F.; Le Voci, L.; Selloum, M.; Peterson, L.B.; Cumiskey, A.M.; Blom, D. Reduced body weight in male Tspan8-deficient mice. Int. J. Obes. 2011, 35, 605–617. [Google Scholar] [CrossRef]
- Wang, W.T.; Shi, Z.Y.; Zhang, R.H.; Yu, J.J.; Wang, C.Y.; Hou, J.A.; Sun, J.; Liu, Y.H.; Qin, K.R.; Liu, Y.; et al. Liver proteomics analysis reveals abnormal metabolism of bile acid and arachidonic acid in Chinese hamsters with type 2 diabetes mellitus. J. Proteom. 2021, 239, 104186. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, X.; Xiang, Y.; Hou, Z.; He, K.; Zhong, G.; Hu, J.; Cai, D.; Liu, Y.; Ren, J.; et al. Inhibiting cholesterol de novo synthesis promotes hepatocellular carcinoma progression by upregulating prostaglandin E synthase 2-mediated arachidonic acid metabolism under high fatty acid conditions. Cancer Sci. 2024, 115, 477–489. [Google Scholar] [CrossRef]
- Sasako, T.; Ohsugi, M.; Kubota, N.; Itoh, S.; Okazaki, Y.; Terai, A.; Kubota, T.; Yamashita, S.; Nakatsukasa, K.; Kamura, T.; et al. Hepatic Sdf2l1 controls feeding-induced ER stress and regulates metabolism. Nat. Commun. 2019, 10, 947. [Google Scholar] [CrossRef] [PubMed]
- Benegiamo, G.; Mure, L.S.; Erikson, G.; Le, H.D.; Moriggi, E.; Brown, S.A.; Panda, S. The RNA-Binding Protein NONO Coordinates Hepatic Adaptation to Feeding. Cell Metab. 2018, 27, 404–418. [Google Scholar] [CrossRef]
- Morita, K.; Hama, Y.; Izume, T.; Tamura, N.; Ueno, T.; Yamashita, Y.; Sakamaki, Y.; Mimura, K.; Morishita, H.; Shihoya, W.; et al. Genome-wide CRISPR screen identifies TMEM41B as a gene required for autophagosome formation. J. Cell Biol. 2018, 217, 3817–3828. [Google Scholar] [CrossRef]
- Huang, D.; Xu, B.L.; Liu, L.; Wu, L.Z.; Zhu, Y.G.; Ghanbarpour, A.; Wang, Y.W.; Chen, F.J.; Lyu, J.; Hu, Y.T.; et al. TMEM41B acts as an ER scramblase required for lipoprotein biogenesis and lipid homeostasis. Cell Metab. 2021, 33, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Ji, Y.; Jeon, Y.G.; Han, J.S.; Han, K.H.; Lee, J.H.; Lee, G.; Jang, H.; Choe, S.S.; Baes, M.; et al. Spatiotemporal contact between peroxisomes and lipid droplets regulates fasting-induced lipolysis via PEX5. Nat. Commun. 2020, 11, 578. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, S.W.; Wang, Z.J.; Li, W.F.; Xie, R.T.; Zhang, H.T.; Huang, X.X.; Chen, N.S.; Li, S.L. Dietary lipid sources affect growth performance, lipid deposition, antioxidant capacity and inflammatory response of largemouth bass (Micropterus salmoides). Fish Shellfish Immunol. 2024, 150, 109635. [Google Scholar] [CrossRef]
- Huang, X.C.; Sun, J.; Bian, C.C.; Ji, S.H.; Ji, H. Docosahexaenoic acid lessens hepatic lipid accumulation and inflammation via the AMP-activated protein kinase and endoplasmic reticulum stress signaling pathways in grass carp (Ctenopharyngodon idella). Food Funct. 2022, 13, 1846–1859. [Google Scholar] [CrossRef]
- Shen, Y.D.; Li, X.J.; Bao, Y.G.; Zhu, T.T.; Wu, Z.X.; Yang, B.Q.; Jiao, L.F.; Zhou, Q.C.; Jin, M. Lipid metabolic disorders and physiological stress caused by a high-fat diet have lipid source-dependent effects in juvenile black seabream Acanthopagrus schlegelii. Fish Physiol. Biochem. 2022, 48, 955–971. [Google Scholar] [CrossRef]
- Roy, J.; Vigor, C.; Vercauteren, J.; Reversat, G.; Zhou, B.Q.; Surget, A.; Larroquet, L.; Lanuque, A.; Sandres, F.; Terrier, F.; et al. Characterization and modulation of brain lipids content of rainbow trout fed with 100% plant based diet rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Biochimie 2020, 178, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Hall, J.R.; Caballero-Solares, A.; Eslamloo, K.; Taylor, R.G.; Parrish, C.C.; Rise, M.L. Liver Transcriptome Profiling Reveals That Dietary DHA and EPA Levels Influence Suites of Genes Involved in Metabolism, Redox Homeostasis, and Immune Function in Atlantic Salmon (Salmo salar). Mar. Biotechnol. 2020, 22, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Houston, S.J.S.; Karalazos, V.; Tinsley, J.; Betancor, M.B.; Martin, S.A.M.; Tocher, D.R.; Monroig, O. The compositional and metabolic responses of gilthead seabream (Sparus aurata) to a gradient of dietary fish oil and associated n-3 long-chain PUFA content. Br. J. Nutr. 2017, 118, 1010–1022. [Google Scholar] [CrossRef] [PubMed]
- Castro, C.; Corraze, G.; Panserat, S.; Oliva-Teles, A. Effects of fish oil replacement by a vegetable oil blend on digestibility, postprandial serum metabolite profile, lipid and glucose metabolism of European sea bass (Dicentrarchus labrax) juveniles. Aquacult. Nutr. 2015, 21, 592–603. [Google Scholar] [CrossRef]
- Perez-Moreno, M.; Davis, M.A.; Wong, E.; Pasolli, H.A.; Reynolds, A.B.; Fuchs, E. p120-Catenin mediates inflammatory responses in the skin. Cell 2006, 124, 631–644. [Google Scholar] [CrossRef]
- Perez-Moreno, M.; Song, W.M.; Pasolli, H.A.; Williams, S.E.; Fuchs, E. Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer. Proc. Natl. Acad. Sci. USA 2008, 105, 15399–15404. [Google Scholar] [CrossRef]
- Smalley-Freed, W.G.; Efimov, A.; Burnett, P.E.; Short, S.P.; Davis, M.A.; Gumucio, D.L.; Washington, M.K.; Coffey, R.J.; Reynolds, A.B. p120-catenin is essential for maintenance of barrier function and intestinal homeostasis in mice. J. Clin. Investig. 2010, 120, 1824–1835. [Google Scholar] [CrossRef]
- Karayiannakis, A.J.; Syrigos, K.N.; Efstathiou, J.; Valizadeh, A.; Noda, M.; Playford, R.J.; Kmiot, W.; Pignatelli, M. Expression of catenins and E-cadherin during epithelial restitution in inflammatory bowel disease. J. Pathol. 1998, 185, 413–418. [Google Scholar] [CrossRef]
- Smalley-Freed, W.G.; Efimov, A.; Short, S.P.; Jia, P.L.; Zhao, Z.M.; Washington, M.K.; Robine, S.; Coffey, R.J.; Reynolds, A.B. Adenoma formation following limited ablation of p120-catenin in the mouse intestine. PLoS ONE 2011, 6, e19880. [Google Scholar] [CrossRef]
- Xu, H.G.; Gao, Z.; Ma, M.M.; Xu, J.J.; Xiao, L.; Wang, H.; Zhang, T.; Liu, X.; Xu, Y.M.; Zhang, X.L. P120-Catenin Mediates Intermittent Cyclic Mechanical Tension-Induced Inflammation in Chondrocytes. J. Cell. Biochem. 2017, 118, 4508–4516. [Google Scholar] [CrossRef]
- Hatakeyama, S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem. Sci. 2017, 42, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, X.; Lin, Z.B.; Yang, P.J.; Xu, H.; Duan, J.L.; Ruan, B.; Song, P.; Liu, J.J.; Yue, Z.S.; et al. Tripartite motif 16 ameliorates nonalcoholic steatohepatitis by promoting the degradation of phospho-TAK1. Cell Metab. 2021, 33, 1372–1388. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.Q.; Su, F.F.; Dong, Z.W.; Shi, Y.J.; Tian, X.L.; Cui, Z.S.; Li, J.X. TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling. Biochem. Biophys. Res. Commun. 2022, 632, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Ding, Y.; Li, X.; Dong, X.; Mai, K.; Ai, Q. Nrf2 pathway in vegetable oil-induced inflammation of large yellow croaker (Larimichthys crocea). Fish Shellfish Immunol. 2022, 127, 778–787. [Google Scholar] [CrossRef]
- Frühbeck, G.; Balaguer, I.; Méndez-Giménez, L.; Valentí, V.; Becerril, S.; Catalán, V.; Gómez-Ambrosi, J.; Silva, C.; Salvador, J.; Calamita, G.; et al. Aquaporin-11 Contributes to TGF-β1-induced Endoplasmic Reticulum Stress in Human Visceral Adipocytes: Role in Obesity-Associated Inflammation. Cells 2020, 9, 1403. [Google Scholar] [CrossRef]
- Morishita, Y.; Matsuzaki, T.; Hara-Chikuma, M.; Andoo, A.; Shimono, M.; Matsuki, A.; Kobayashi, K.; Ikeda, M.; Yamamoto, T.; Verkman, A.; et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol. Cell. Biol. 2005, 25, 7770–7779. [Google Scholar] [CrossRef]
- Rützler, M.; Rojek, A.; Damgaard, M.V.; Andreasen, A.; Fenton, R.A.; Nielsen, S. Temporal deletion of Aqp11 in mice is linked to the severity of cyst-like disease. Am. J. Physiol. Renal Physiol. 2017, 312, F343–F351. [Google Scholar] [CrossRef]
- Hoshino, Y.; Sonoda, H.; Nishimura, R.; Mori, K.; Ishibashi, K.; Ikeda, M. Involvement of the NADPH oxidase 2 pathway in renal oxidative stress in Aqp11-/- mice. Biochem. Biophys. Rep. 2019, 17, 169–176. [Google Scholar] [CrossRef]
- Rojek, A.; Füchtbauer, E.M.; Füchtbauer, A.; Jelen, S.; Malmendal, A.; Fenton, R.A.; Nielsen, S. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G501–G515. [Google Scholar] [CrossRef]
- Fransen, M.; Nordgren, M.; Wang, B.; Apanasets, O. Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Antonenkov, V.D.; Grunau, S.; Ohlmeier, S.; Hiltunen, J.K. Peroxisomes Are Oxidative Organelles. Antioxid. Redox Signal 2010, 13, 525–537. [Google Scholar] [CrossRef]
- Yamashita, H.; Avraham, S.; Jiang, S.; London, R.; Van Veldhoven, P.P.; Subramani, S.; Rogers, R.A.; Avraham, H. Characterization of human and murine PMP20 peroxisomal proteins that exhibit antioxidant activity in vitro. J. Biol. Chem. 1999, 274, 29897–29904. [Google Scholar] [CrossRef] [PubMed]
- Vonk, W.I.M.; Wijmenga, C.; Berger, R.; van de Sluis, B.; Klomp, L.W.J. Cu,Zn superoxide dismutase maturation and activity are regulated by COMMD1. J. Biol. Chem. 2010, 285, 28991–29000. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Chan, L.; Bartuzi, P.; Melton, S.D.; Weber, A.; Ben-Shlomo, S.; Varol, C.; Raetz, M.; Mao, X.C.; Starokadomskyy, P.; et al. Copper Metabolism Domain-Containing 1 Represses Genes That Promote Inflammation and Protects Mice From Colitis and Colitis-Associated Cancer. Gastroenterology 2014, 147, 184–195. [Google Scholar] [CrossRef]
- Bartuzi, P.; Wijshake, T.; Dekker, D.C.; Fedoseienko, A.; Kloosterhuis, N.J.; Youssef, S.A.; Li, H.Y.; Shiri-Sverdlov, R.; Kuivenhoven, J.A.; de Bruin, A.; et al. A cell-type-specific role for murine Commd1 in liver inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1842, 2257–2265. [Google Scholar] [CrossRef]
- Zhang, L.L.; Li, L.H.; Li, Y.L.; Jiang, H.; Sun, Z.; Zang, G.Y.; Qian, Y.J.; Shao, C.; Wang, Z.Q. Disruption of COMMD1 accelerates diabetic atherosclerosis by promoting glycolysis. Diabetes Vasc. Dis. Res. 2023, 20, 14791641231159009. [Google Scholar] [CrossRef]
- Dong, D.F.; Zhou, H.S.; Na, S.Y.; Niedra, R.; Peng, Y.B.; Wang, H.J.; Seed, B.; Zhou, G.L. GPR108, an NF-κB activator suppressed by TIRAP, negatively regulates TLR-triggered immune responses. PLoS ONE 2018, 13, e0205303. [Google Scholar] [CrossRef]
- You-Ten, K.E.; Muise, E.S.; Itie, A.; Michaliszyn, E.; Wagner, J.; Jothy, S.; Lapp, W.S.; Tremblay, M.L. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J. Exp. Med. 1997, 186, 683–693. [Google Scholar] [CrossRef]
- Hwang, I.T.; Chung, Y.M.; Kim, J.J.; Chung, J.S.; Kim, B.S.; Kim, H.J.; Kim, J.S.; Do Yoo, Y. Drug resistance to 5-FU linked to reactive oxygen species modulator 1. Biochem. Biophys. Res. Commun. 2007, 359, 304–310. [Google Scholar] [CrossRef]
- Hohl, M.; Mayr, M.; Lang, L.S.; Nickel, A.G.; Barallobre-Barreiro, J.; Yin, X.K.; Speer, T.; Selejan, S.R.; Goettsch, C.; Erb, K.; et al. Cathepsin A contributes to left ventricular remodeling by degrading extracellular superoxide dismutase in mice. J. Biol. Chem. 2020, 295, 12605–12617. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, H.; Chen, X.; Wang, N.N.; Zhan, Y.F.; Huang, Z.Y.; Ruan, K.Y.; Qi, Q.L.; Deng, M.; Jiang, Y.X. A novel tRNA-derived fragment tRF-3023b suppresses inflammation in RAW264.7 cells by targeting Cul4a through NF-κB signaling. Func. Integr. Genom. 2024, 24, 9. [Google Scholar] [CrossRef] [PubMed]
- Endeward, V.; Gros, G.; Jürgens, K.D. Significance of myoglobin as an oxygen store and oxygen transporter in the intermittently perfused human heart: A model study. Cardiovasc. Res. 2010, 87, 22–29. [Google Scholar] [CrossRef]
- Godecke, A.; Flogel, U.; Zanger, K.; Ding, Z.; Hirchenhain, J.; Decking, U.K.; Schrader, J. Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc. Natl. Acad. Sci. USA 1999, 96, 10495–10500. [Google Scholar] [CrossRef]
- Grange, R.W.; Meeson, A.; Chin, E.; Lau, K.S.; Stull, J.T.; Shelton, J.M.; Williams, R.S.; Garry, D.J. Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice. Am. J. Physiol. Cell Physiol. 2001, 281, C1487–C1494. [Google Scholar] [CrossRef] [PubMed]
- Schwanhäusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef]
- Ma, J.; Chen, T.; Wu, S.; Yang, C.; Bai, M.; Shu, K.; Li, K.; Zhang, G.; Jin, Z.; He, F.; et al. iProX: An integrated proteome resource. Nucleic Acids Res. 2019, 47, D1211–D1217. [Google Scholar] [CrossRef]
- Chen, T.; Ma, J.; Liu, Y.; Chen, Z.G.; Xiao, N.; Lu, Y.T.; Fu, Y.J.; Yang, C.Y.; Li, M.S.; Wu, S.F.; et al. iProX in 2021: Connecting proteomics data sharing with big data. Nucleic Acids Res. 2022, 50, D1522–D1527. [Google Scholar] [CrossRef]
Parameter/Oil Source | SO | FO |
---|---|---|
C:12:0 | 0 | 0.12 |
C:13:0 | 0 | 0.05 |
C:14:0 | 0.08 | 7.67 |
C:15:0 | 0.02 | 0.6 |
C:15:1 | 0 | 0.11 |
C:16:0 | 10.82 | 17.72 |
C16:1 | 0.1 | 9.58 |
C17:0 | 0.12 | 1.72 |
C17:1 | 0.06 | 1.73 |
C18:0 | 4.15 | 3.33 |
C18:1t | 0.05 | 0.21 |
C18:1c | 23.69 | 13.56 |
C18:2t | 0.07 | 0.12 |
C18:2c | 52.8 | 1.55 |
C18:3n-6 | 0.52 | 0.3 |
C18:3n-3 | 6.11 | 1.12 |
C20:0 | 0.4 | 0.2 |
C20:1n-9 | 0.2 | 1.01 |
C20:2 | 0.08 | 0.22 |
C21:0 | 0.03 | 0.09 |
C20:3n-6 | 0 | 0.24 |
C20:4n-6 | 0 | 1.32 |
C20:3n-3 | 0 | 0.12 |
C20:5 | 0.02 | 21.83 |
C22:0 | 0.41 | 0.14 |
C22:1 | 0.02 | 0.19 |
C23:0 | 0.05 | 0 |
C24:0 | 0.15 | 0.1 |
C24:1 | 0 | 0.46 |
C22:6 | 0.04 | 14.58 |
EPA + DHA | 0.06 | 36.41 |
Total fatty acids | 99.99 | 99.99 |
Acid value (mg/g) | 0.17 | 0.42 |
Peroxide value (g/100 g) | 2.44 | 5.03 |
Malondialdehyde (μmol/g) | / | 6.97 |
Ingredients (% Dry Matter) | SO | FO |
---|---|---|
Fish meal | 30 | 30 |
Wheat gluten | 6 | 6 |
Soybean meal | 26 | 26 |
Wheat flour | 25 | 25 |
Lecithin | 2 | 2 |
Fish oil | 8 | |
Soybean oil | 8 | |
Monocalcium phosphate | 1.5 | 1.5 |
Mineral and vitamin premix for fish (a) | 1 | 1 |
Choline chloride (60%) | 0.5 | 0.5 |
Dry matter | 91.41 | 90.60 |
Crude protein | 44.84 | 45.22 |
Crude fat | 12.80 | 12.50 |
Crude ash | 10.13 | 10.17 |
Group | Body Weight (g) | Body Length (cm) | CF | GSI (%) | HSI (%) | VSI (%) |
---|---|---|---|---|---|---|
FO (n = 3) | 318.81 ± 43.55 | 18.01 ± 0.87 | 5.40 ± 0.20 | 10.60 ± 0.26 | 3.73 ± 0.71 | 19.00 ± 1.17 |
SO (n = 3) | 356.08 ± 11.37 | 18.69 ± 0.29 | 5.47 ± 0.26 | 10.83 ± 0.48 | 3.01 ± 0.60 | 18.15 ± 0.74 |
Comparisons | Co-Expressed Proteins | FO-Specific Expressed Proteins | SO-Specific Expressed Proteins | |
---|---|---|---|---|
Upregulated | Downregulated | |||
FO vs. SO | 16 | 8 | 44 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Ma, H.; Jiang, D.; Wang, T.; Li, Z.; Shi, G.; Hong, Y.; Zhu, C.; Li, G. Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus. Fishes 2025, 10, 128. https://doi.org/10.3390/fishes10030128
He J, Ma H, Jiang D, Wang T, Li Z, Shi G, Hong Y, Zhu C, Li G. Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus. Fishes. 2025; 10(3):128. https://doi.org/10.3390/fishes10030128
Chicago/Turabian StyleHe, Jingwei, He Ma, Dongneng Jiang, Tuo Wang, Zhiyuan Li, Gang Shi, Yucong Hong, Chunhua Zhu, and Guangli Li. 2025. "Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus" Fishes 10, no. 3: 128. https://doi.org/10.3390/fishes10030128
APA StyleHe, J., Ma, H., Jiang, D., Wang, T., Li, Z., Shi, G., Hong, Y., Zhu, C., & Li, G. (2025). Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus. Fishes, 10(3), 128. https://doi.org/10.3390/fishes10030128