Next Issue
Volume 10, April
Previous Issue
Volume 10, February
 
 

Fishes, Volume 10, Issue 3 (March 2025) – 50 articles

Cover Story (view full-size image): Serum amyloid A (SAA) is one of the most abundant acute-phase response proteins in vertebrates, well known for its role in modulating the inflammatory response and disease diagnosis. The present study identified the only gene encoding the SAA protein (CgSAA) in the oyster Crassostrea gigas. The expression of CgSAA was barely detectable in normal individuals but was significantly up-regulated post Vibro splendidus stimulation. It was also significantly induced under the environmental stressors of high temperature (34 ℃) and low salinity (15‰ salinity). After the recombinant protein rCgSAA was injected into oysters or incubated with culture primary haemocytes, the mRNA expressions of cytokines CgIL17-1, CgIL17-5 and CgTNF were all significantly up-regulated. These findings contribute to the understanding of the roles of SAA proteins in aquatic invertebrates. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
14 pages, 6326 KiB  
Article
Transcriptomic Responses of Gonadal Development to Photoperiod Regulation in Amur Minnow (Phoxinus lagowskii)
by Mingchao Zhang and Yingdong Li
Fishes 2025, 10(3), 137; https://doi.org/10.3390/fishes10030137 - 20 Mar 2025
Viewed by 162
Abstract
Photoperiod regulates reproductive physiology in many fishes, but its sex-specific molecular effects under artificial manipulation remain unclear, especially in cold-water species. In this study, we investigated whether photoperiod manipulation during the reproductive season could modulate the rate and efficiency of gonadal development in [...] Read more.
Photoperiod regulates reproductive physiology in many fishes, but its sex-specific molecular effects under artificial manipulation remain unclear, especially in cold-water species. In this study, we investigated whether photoperiod manipulation during the reproductive season could modulate the rate and efficiency of gonadal development in the Amur minnow (Phoxinus lagowskii). High-throughput RNA sequencing was used to analyze transcriptomic responses of gonadal tissues under three photoperiod regimes: natural light (12L:12D), continuous light (24L:0D), and continuous darkness (0L:24D) over a 9-week experimental period. Our results revealed distinct sex-specific gonadal responses to photoperiodic changes. In males, continuous light significantly promoted spermatogenesis by upregulating meiosis-related genes (REC114 and syp3) and steroid biosynthesis. In females, prolonged light exposure induced ovarian stress, evidenced by vitellogenin (Vtg3) upregulation and retinoic acid suppression, whereas continuous darkness promoted lipid storage via downregulation of gluconeogenesis (PC and Fbp2) and fatty acid oxidation (ACSL1a). Additionally, immune activation, marked by IL1RAPL1-A upregulation, was observed in all groups except continuous-light males, with females exhibiting broader immune pathway engagement. These findings provide novel insights into the regulatory mechanisms of photoperiod-induced gonadal development and highlight potential strategies for optimising photoperiod management in cold-water fish aquaculture. Full article
(This article belongs to the Special Issue Rhythms and Clocks in Aquatic Animals)
Show Figures

Figure 1

17 pages, 5381 KiB  
Article
In Situ Study on the Influence of a Dark Environment on the Upstream Behaviors of Plateau Fishes in Fishways: A Pilot Study
by Biao Wang, Fei Yao, Jianzhang Lv, Hongze Li, Zhe Wang, Yongzeng Huang, Kaixiao Chen, Wei He, Xiaogang Wang and Jingjuan Li
Fishes 2025, 10(3), 136; https://doi.org/10.3390/fishes10030136 - 20 Mar 2025
Viewed by 201
Abstract
To help fish to bypass dams and other human-made barriers, some fishways have ingeniously incorporated extended tunnel sections. This innovative design not only optimizes the overall structure of the fishway but also significantly reduces disturbances to the surrounding ecosystem. However, the potential challenges [...] Read more.
To help fish to bypass dams and other human-made barriers, some fishways have ingeniously incorporated extended tunnel sections. This innovative design not only optimizes the overall structure of the fishway but also significantly reduces disturbances to the surrounding ecosystem. However, the potential challenges posed by long tunnel sections to fish upstream migration remain insufficiently studied and poorly understood. This study conducted in situ experiments utilizing a passive-integrated-transponder (PIT) system to quantitatively assess the effects of dark and natural light environments on the upstream migration behavior of plateau-endemic fishes (Schizothorax macropogon, Schizothorax waltoni, and Schizothorax oconnori) in a vertical-slot fishway. A 655 m section of the fishway was selected for the experiment, with shading cloth used to simulate the dark environment (DE) of tunnel sections, and its removal serving as the natural light environment (NE). The results showed that in the DE, the upstream behaviors of S. macropogon, S. waltoni, and S. oconnori were not hindered. The entry efficiency at the experimental segment (Ee) of all three species exceeded 65% in the DE, which was higher than that in the NE. The passage efficiency (Ep) of S. macropogon and S. waltoni showed no significant difference between the DE and NE, whereas S. oconnori exhibited a significant difference, with an overall Ep of 0% in the NE and 75.0% in the DE. Additionally, the DE caused a temporary disruption to the diel migration rhythms of the three species. The transit speeds (St) of S. macropogon and S. waltoni were both elevated in the DE, with S. waltoni showing a particularly significant increase; its average St in the DE (0.080 m/s) was much higher than in the NE (0.021 m/s). Ridge regression analysis further indicated that the DE was the primary factor influencing the St and had a positive effect on upstream behavior. Moreover, differences in the upstream migration performances of different species under varying light conditions highlighted species-specific sensitivity to light. This study offers key insights for fish passage design in canyon hydropower projects and highlights the potential of tunnel-type fishways in restoring river connectivity. Full article
(This article belongs to the Special Issue Habitat Assessment and Conservation of Fishes)
Show Figures

Figure 1

14 pages, 2230 KiB  
Article
Influence of Microstructure of Substrate Surface on the Attachment of Juvenile Mussels
by Wenjie Wu and Andrew G. Jeffs
Fishes 2025, 10(3), 135; https://doi.org/10.3390/fishes10030135 - 20 Mar 2025
Viewed by 166
Abstract
The morphological characteristics and surface roughness of substrata can significantly affect the settlement behaviour of planktonic larvae and the post-settlement survival of benthic organisms, such as mussels. Despite widespread recognition of these effects on ecological and aquaculture processes, species-specific complexities and limited research [...] Read more.
The morphological characteristics and surface roughness of substrata can significantly affect the settlement behaviour of planktonic larvae and the post-settlement survival of benthic organisms, such as mussels. Despite widespread recognition of these effects on ecological and aquaculture processes, species-specific complexities and limited research hinder a comprehensive understanding of the phenomenon and the potential to harness its application. In this study, the settlement of juvenile green-lipped mussels (Perna canaliculus; 0.32–3.59 mm shell length) on 42 different custom-designed artificial substrata with varied branch widths and surface microstructures were compared. Mussels smaller than 0.99 mm in shell length exhibited a clear preference for substrates with a thinner branch width (1.6 mm), wider roughness width (3.2 mm), and shorter roughness height (0.4 mm) on both V-shaped and squared-shaped surface microstructures. In contrast, for mussels larger than 1 mm, only the branch width of artificial substrata significantly influenced mussel attachment, while millimetre-scale surface features had no measurable effect. These findings indicate that, at the millimetre scale, the attachment of mussels > 1 mm does not conform to the surface contact theory, which proposes that settling organisms prefer substrates with microstructures that maximize their surface contact. Overall, a thinner branch width consistently yielded higher attachment densities, underscoring its dominant role. Our results reveal significant opportunities for optimizing the design of artificial substrata in mussel aquaculture, such as spat catching and nursery ropes, potentially improving seed collection efficiency and reducing the subsequent loss of seed mussels during their culture on mussel farms. Full article
(This article belongs to the Special Issue Advances in Bivalve Aquaculture)
Show Figures

Figure 1

20 pages, 5433 KiB  
Article
Functional Analysis of NdBCO-like4 Gene in Pigmentation of Neocaridina denticulata sinensis
by Zhipeng Huo, Haifan Li, Guodong Wang and Tanjun Zhao
Fishes 2025, 10(3), 134; https://doi.org/10.3390/fishes10030134 - 19 Mar 2025
Viewed by 160
Abstract
Cherry shrimp (Neocaridina denticulata sinensis) is one of the main ornamental shrimp because of its bright body color. β, β-carotene 9′,10′-dioxygenase (BCO2) is closely related to the body color produced by carotenoids. In order to study the role of NdBCO-like4 (homologous [...] Read more.
Cherry shrimp (Neocaridina denticulata sinensis) is one of the main ornamental shrimp because of its bright body color. β, β-carotene 9′,10′-dioxygenase (BCO2) is closely related to the body color produced by carotenoids. In order to study the role of NdBCO-like4 (homologous gene of BCO2) in the pigmentation of cherry shrimp, the expression profiles, RNA interference, and SNP genotyping were applied in this study. The NdBCO-like4 expression varied significantly among four color strains and five development stages (p < 0.05). The results showed that the NdBCO-like4 expression was the highest in the red strain and the lowest in the wild strain. During the embryonic development, the expression in the metanauplius stage was significantly lower than other stages (p < 0.05), and the expression of NdBCO-like4 was the highest in the membrane-zoea stage. In the metanauplius stage, the RNAi knockdown of NdBCO-like4 mediated the red pigment brightness value, and the pigment cell index in the treatment group was significantly lower than the control group (p < 0.05). After the first round of screening, a total of 8424 high-quality SNPs were obtained. There was one candidate SNP located on the NdBCO-like4 target gene, named G.1719G>A. The synonymous SNP exhibited significantly different genotype frequencies between the yellow and wild strains compared to other strains (p < 0.05), suggesting an association with these phenotypes. These results suggest that NdBCO-like4 has a close relation with carotenoid accumulation in cherry shrimp, providing valuable insights into the molecular mechanisms underlying pigmentation in this species. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

20 pages, 6265 KiB  
Article
The Combined Effects of Cadmium and Microplastic Mixtures on the Digestion, Energy Metabolism, Oxidative Stress Regulation, Immune Function, and Metabolomes in the Pearl Oyster (Pinctada fucata martensii)
by Jiaying Yao, Zixin Gao, Zhixiang Wang, Zhanbo Ge, Yujing Lin, Luomin Huang, Jiaen Liu, Heqi Zou, Chuangye Yang, Robert Mkuye and Yuewen Deng
Fishes 2025, 10(3), 133; https://doi.org/10.3390/fishes10030133 - 18 Mar 2025
Viewed by 241
Abstract
The accumulation of cadmium (Cd) and microplastics (MPs) can have major deleterious effects on the health of marine ecosystems and organisms, including the pearl oyster Pinctada fucata martensii. Here, we characterized the effects of Cd and MPs on key biochemical parameters of [...] Read more.
The accumulation of cadmium (Cd) and microplastics (MPs) can have major deleterious effects on the health of marine ecosystems and organisms, including the pearl oyster Pinctada fucata martensii. Here, we characterized the effects of Cd and MPs on key biochemical parameters of P. f. martensii via an experiment with various treatments. Pearl oysters were exposed to either only Cd (5 or 50 μg/L), only MPs (5 mg/L), or both Cd and MPs for 2 d, and this was followed by a 5-day recovery period. Measurements of the activities of lipase, amylase, protease, T-ATPase, catalase, glutathione peroxidase, acid phosphatase, and alkaline phosphatase enzymes, as well as the malondialdehyde content in the hepatopancreas, were made at various time points during the experiment. Metabolomics analysis of the gills was also performed. Significant interactions between time and treatment on lipase, protease, and catalase activities were observed. However, no significant effect of time–treatment interactions on amylase and T-ATPase activities was observed. Enzyme activities varied among groups both during the exposure period (6 to 48 h) and the recovery period. The malondialdehyde content was also increased throughout the experiment. Pathway analysis indicated that the purine metabolism, glycerophospholipid metabolism, nucleotide metabolism, arachidonic acid metabolism, neuroactive ligand–receptor interaction, and linoleic acid metabolism pathways were the most commonly affected under different treatments. The findings of our study revealed the differential effects of exposure time and treatment on enzyme activities and metabolites and their respective pathways. Our findings enhance our understanding of the biochemical responses of the pearl oyster P. f. martensii to environmental stressors, particularly Cd and MPs. Full article
(This article belongs to the Special Issue Advances in Bivalve Aquaculture)
Show Figures

Figure 1

17 pages, 1009 KiB  
Article
The Physiological Benefits and Economic Value of Using Fairy Shrimp as Fish Meal for Flowerhorn Cichlids; Amphilophus citrinellus (Günther, 1864) × Cichlasoma trimaculatum (Günther, 1867)
by Ploychompoo Weber, Supranee Wigraiboon, Nantaporn Sutthi, Pattira Kasamesiri and Wipavee Thaimuangphol
Fishes 2025, 10(3), 132; https://doi.org/10.3390/fishes10030132 - 18 Mar 2025
Viewed by 235
Abstract
The aim of this study was to evaluate the utilization of fairy shrimp (Branchinella thailandensis) meal in the diets of flowerhorn cichlids, on their growth, skin coloration, carotenoid content, antioxidant activity, and innate immunity. The fish were fed diets incorporated with [...] Read more.
The aim of this study was to evaluate the utilization of fairy shrimp (Branchinella thailandensis) meal in the diets of flowerhorn cichlids, on their growth, skin coloration, carotenoid content, antioxidant activity, and innate immunity. The fish were fed diets incorporated with fairy shrimp meal at 0% (control; FS0), 10% (FS10), 20% (FS20), and 30% (FS30) for 60 days. The results showed that growth performance and chemical composition were not significantly different among treatments (p > 0.05), whereas fish fed the 30% fairy shrimp meal (FS30) diet represented significantly enhanced skin coloration, particularly in terms of redness (a*) and dominant wavelength (H°ab). The highest level of antioxidant enzymes and non-specific immune enzymes such as SOD and lysozyme were observed in the fish fed the FS30 diet. Meanwhile, increasing fairy shrimp meal significantly reduced the liver function markers (ALT and AST), and decreased lipid peroxidation. These findings suggest that fairy shrimp meal serves as a valuable dietary ingredient for enhancing skin pigmentation, boosting antioxidant defense, and stimulating immune responses in flowerhorn cichlids. Moreover, the economic evaluation of using fairy shrimp meal as an ingredient for ornamental fish demonstrates promising investment potential, supporting its application in commercial aquaculture. Full article
(This article belongs to the Section Physiology and Biochemistry)
Show Figures

Figure 1

15 pages, 3501 KiB  
Article
Imidacloprid Exposure Induced Impaired Intestinal Immune Function in Procambarus clarkii: Involvement of Oxidative Stress, Inflammatory Response, and Autophagy
by Zhaolin Li, Yong Shi, Kai Xie, Lei Zhong, Yi Hu and Kaijian Chen
Fishes 2025, 10(3), 131; https://doi.org/10.3390/fishes10030131 - 17 Mar 2025
Viewed by 253
Abstract
Imidacloprid (IMI), a widely used neonicotinoid insecticide, has raised environmental concerns due to its potential impact on non-target aquatic organisms. This study investigates the effects of IMI exposure on the intestinal immune function of red swamp crayfish (Procambarus clarkii, P. clarkii [...] Read more.
Imidacloprid (IMI), a widely used neonicotinoid insecticide, has raised environmental concerns due to its potential impact on non-target aquatic organisms. This study investigates the effects of IMI exposure on the intestinal immune function of red swamp crayfish (Procambarus clarkii, P. clarkii), focusing on oxidative stress, inflammatory response, and autophagy. The P. clarkii was exposed to different doses of IMI (0, 10.93, 21.86, 43.73, 87.45 μg/L) for 96 h. Our findings reveal that IMI exposure leads to a survival rate of less than 70% when the concentration was 87.45 μg/L at 96 h. Hemolymph LZM and AKP contents were significantly decreased at the medium and high concentrations, and the expressions of hsp70 and nf-κb genes were significantly up-regulated. The expression of the lysozyme gene was significantly down-regulated. Additionally, the activities of SOD, CAT, and GPX were significantly decreased, the contents of MDA were significantly increased, and the gene expressions of CuZnsod, mMnsod, cat, and gpx in the gut were significantly down-regulated after exposure to medium-high IMI. The expression of autophagy-related genes showed that the expressions of beclin1, atg5, atg13, and lc3c genes in the medium- and high-concentration groups were significantly up-regulated. In summary, this study elucidates that medium-high levels of IMI exposure impair intestinal immune function in P. clarkii through mechanisms involving oxidative stress, inflammatory response, and autophagy. Full article
(This article belongs to the Special Issue Physiological Response Mechanisms of Aquatic Animals to Stress)
Show Figures

Figure 1

17 pages, 3169 KiB  
Article
Influence of the Silkworm-Derived (Bombyx mori) Functional Substance (Silkrose-BM) on the Fish Meat Quality of Yellowtail (Seriola quinqueradiata)
by Athira Athira, Haruki Nishiguchi, Daichi Hayashi, Yuki Otsu, Chiemi Miura, Ibnu Bangkit Bioshina Suryadi, Muhammad Fariz Zahir Ali and Takeshi Miura
Fishes 2025, 10(3), 130; https://doi.org/10.3390/fishes10030130 - 17 Mar 2025
Viewed by 267
Abstract
Popular foods such as sushi and sashimi depend on the quality of raw fish meat to maintain consumer satisfaction. Recently, dietary insect meal and insect-derived substances have been extensively studied for application in aquaculture as a protein alternative or immunostimulant. However, the impact [...] Read more.
Popular foods such as sushi and sashimi depend on the quality of raw fish meat to maintain consumer satisfaction. Recently, dietary insect meal and insect-derived substances have been extensively studied for application in aquaculture as a protein alternative or immunostimulant. However, the impact of insect functional substances on the fish meat quality of teleosts remains unclear. Here, we investigated the influence of dietary inclusion of silkrose-BM, a novel bioactive polysaccharide derived from the silkworm, Bombyx mori, on the meat quality of yellowtail (Seriola quinqueradiata). This study was conducted by comparing two groups given different feeds, commercial EP and feeds containing Silkrose-BM (0.1%), after a culture period of six months in separate floating-net cages. The yellowtail were specifically cut into loins and several meat quality parameters were observed, including proximate, meat color changes, total collagen, drip loss, muscle histology, and gene expression (qRT-PCR). The results of the color-change analysis showed that discoloration of red muscle in the EP feed group occurred faster than in the silkrose-BM group, indicating an antioxidant property of silkrose-BM. Dietary silkrose-BM also significantly reduced drip loss and increased the total collagen content of yellowtail meat. Furthermore, qRT-PCR analysis showed that genes related to lipid and protein degradation were downregulated in the muscles of fish fed on silkrose-BM. In contrast, proximate analysis indicated no significant change in the nutritional composition of the meat between the groups. Taken together, our results suggest that dietary silkrose-BM could improve fish meat quality by minimizing protein denaturation and inhibiting lipid oxidation during fish meat storage. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

11 pages, 1339 KiB  
Article
DNA Barcode and Correct Scientific Name of Golden Pompano, an Important Marine Aquaculture Fish Species in China
by Ang Li, Changting An, Huan Wang, Shuai Che, Shufang Liu and Zhimeng Zhuang
Fishes 2025, 10(3), 129; https://doi.org/10.3390/fishes10030129 - 16 Mar 2025
Viewed by 326
Abstract
The golden pompano ranks at the top of production in current China’s marine fish aquaculture; however, there has been long-standing controversy regarding its valid scientific name. Multiple latin names were used simultaneously to refer to golden pompano, such as Trachinotus ovatus, T. [...] Read more.
The golden pompano ranks at the top of production in current China’s marine fish aquaculture; however, there has been long-standing controversy regarding its valid scientific name. Multiple latin names were used simultaneously to refer to golden pompano, such as Trachinotus ovatus, T. blochii, T. mookalee and T. anak. Moreover, two distinct morphological species are regarded as deserving the scientific name T. ovatus. In this study, we employed DNA barcoding to determine which particular species the “golden pompano” represents and to explore the potential synonyms and cryptic species within T. ovatus and its closely related species. We analyzed the DNA barcodes of golden pompano samples from various aquaculture farms in China’s main production regions, as well as most species within the genus Trachinotus. The phylogenetic analyses revealed that all T. ovatus sequences clustered into two divergent clades with a large genetic distance, and the two clades were geographically separated, being from the Indo-west Pacific and the East Atlantic regions, respectively. Based on the type locality information and historical distribution records, we support the validity of the naming of Trachinotus ovatus from the Indo-west Pacific, and the so-called Trachinotus ovatus from the East Atlantic may represent a cryptic species. All the golden pompano samples were clustered into the Indo-west Pacific T. ovatus clade, with a considerably small intragroup genetic distance, which suggests that the golden pompano in China should be identified as the species Trachinotus ovatus. The golden pompano, T. blochii and T. mookalee were completely separated into distinct monophyletic clades in the phylogenetic trees, which indicated that they are different species. The T. anak clustered with the monophyletic clade of Indo-west Pacific T. ovatus and the genetic distance between them was at the intraspecific difference level. This implied that the T. anak might be the junior synonym of T. ovatus. The species delimitations based on the ABGD and bPTP methods are in agreement with the findings from phylogenetic analyses. The above results help to form a consistent viewpoint regarding the naming of the golden pompano and provide new understandings for the taxonomy of the genus Trachinotus. Full article
Show Figures

Figure 1

18 pages, 3452 KiB  
Article
Proteomic Analysis Reveals That Dietary Supplementation with Fish Oil Enhances Lipid Metabolism and Improves Antioxidant Capacity in the Liver of Female Scatophagus argus
by Jingwei He, He Ma, Dongneng Jiang, Tuo Wang, Zhiyuan Li, Gang Shi, Yucong Hong, Chunhua Zhu and Guangli Li
Fishes 2025, 10(3), 128; https://doi.org/10.3390/fishes10030128 - 15 Mar 2025
Viewed by 391
Abstract
The impact of dietary lipid sources on nutrient metabolism and reproductive development is a critical focus in aquaculture broodstock nutrition. Previous studies have demonstrated that fish oil supplementation modulates the expression of genes involved in steroid hormone synthesis, glucose, and lipid metabolism promoting [...] Read more.
The impact of dietary lipid sources on nutrient metabolism and reproductive development is a critical focus in aquaculture broodstock nutrition. Previous studies have demonstrated that fish oil supplementation modulates the expression of genes involved in steroid hormone synthesis, glucose, and lipid metabolism promoting ovarian development in female Scatophagus argus (spotted scat). However, the effects of fish oil on hepatic function at the protein level remain poorly characterized. In this study, female S. argus were fed diets containing 8% fish oil (FO, experimental group) or 8% soybean oil (SO, control group) for 60 days. Comparative proteomic analysis of liver tissue identified significant differential protein expression between groups. The FO group exhibited upregulation of lipid metabolism-related proteins, including COMM domain-containing protein 1 (Commd1), tetraspanin 8 (Tspan8), myoglobin (Mb), transmembrane protein 41B (Tmem41b), stromal cell-derived factor 2-like protein 1 (Sdf2l1), and peroxisomal biogenesis factor 5 (Pex5). Additionally, glucose metabolism-associated proteins, such as Sdf2l1 and non-POU domain-containing octamer-binding protein (Nono), were elevated in the FO group. Moreover, proteins linked to inflammation and antioxidant responses, including G protein-coupled receptor 108 (Gpr108), protein tyrosine phosphatase non-receptor type 2 (Ptpn2), Pex5, p120 catenin (Ctnnd1), tripartite motif-containing protein 16 (Trim16), and aquaporin 11 (Aqp11), were elevated in the FO group, while proteins involved in oxidative stress, such as reactive oxygen species modulator 1 (Romo1), cathepsin A (Ctsa), and Cullin 4A (Cul4a), were downregulated. These proteomic findings align with prior transcriptomic data, indicating that dietary fish oil enhances hepatic lipid metabolism, mitigates oxidative stress, and strengthens antioxidant capacity. Furthermore, these hepatic adaptations may synergistically support ovarian maturation in S. argus. This study provides novel proteomic-level evidence supporting the role of fish oil in modulating hepatic lipid and energy metabolism, thereby elucidating the role of fish oil in optimizing hepatic energy metabolism and redox homeostasis to influence reproductive processes, advancing our understanding of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) in teleost liver physiology. Full article
(This article belongs to the Section Nutrition and Feeding)
Show Figures

Figure 1

18 pages, 3014 KiB  
Article
Influence of Environmental Parameters on the Abundance of Tub Gurnard, Chelidonichthys lucerna, in the Eastern Sea of Marmara
by Uğur Uzer
Fishes 2025, 10(3), 127; https://doi.org/10.3390/fishes10030127 - 14 Mar 2025
Viewed by 297
Abstract
Tub gurnard, Chelidonichthys lucerna, is a common and widely distributed species throughout the Sea of Marmara (SoM). The knowledge on the spatial distribution of tub gurnards in the SoM in association with environmental factors is limited. The relationship between tub gurnard abundance [...] Read more.
Tub gurnard, Chelidonichthys lucerna, is a common and widely distributed species throughout the Sea of Marmara (SoM). The knowledge on the spatial distribution of tub gurnards in the SoM in association with environmental factors is limited. The relationship between tub gurnard abundance and environmental variables (depth, temperature, dissolved oxygen, pH, and spatial variability) in the eastern Sea of Marmara (ESoM) was analyzed by means of the generalized additive model (GAM) in the present study. Additionally, the size distribution of tub gurnards was examined in relation to depth and season. Data were collected over an 11-year sampling period (2014–2024) within the scope of scientific demersal trawl surveys in the ESoM. The GAM results revealed that while all the analyzed variables influenced the spatial distribution patterns of tub gurnards, temperature and depth were the most significant contributors in the ESoM. The abundance of tub gurnard exhibited a strongly nonlinear relationship with the explanatory covariates. Regarding the depth distribution patterns of tub gurnards in association with fish size, statistical tests showed significant differences between the size frequency distributions in the two depth ranges, of which the mean total lengths were 24.1 ± 6.90 and 23.5 ± 4.27 cm for depths >80 and <80 m, respectively. A preferred depth was obviously expressed, with tub gurnards moving into deeper water as they grew larger. The mean sizes (range) were 23.56 ± 6.92 cm (13.1–69.6 cm), 24.8 ± 5.35 cm (17.1–58.5 cm), 24.9 ± 8.14 cm (13.1–56.5 cm), and 23.0 ± 5.22 cm (14.2–46 cm) for winter, spring, summer, and autumn, respectively. Therefore, the observed distribution patterns highlight the influence of environmental factors on the abundance of tub gurnard species. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

18 pages, 16666 KiB  
Article
Ceratothoa arimae (Isopoda: Cymothoidae) Infesting Buccal Cavity of Largescale Blackfish, Girella punctata (Centrarchiformes: Kyphosidae), in Seto Inland Sea, Japan
by Hiroki Fujita, Yuzumi Okumura and Haruki Shinoda
Fishes 2025, 10(3), 126; https://doi.org/10.3390/fishes10030126 - 13 Mar 2025
Cited by 1 | Viewed by 598
Abstract
The largescale blackfish, Girella punctata Gray, 1835, is important in the fishing industry and recreational fishing, and it is also cultured in East Asia. Cymothoidae (Crustacea: Isopoda) is a group of parasites that infest fish in marine, brackish, and freshwater environments. In this [...] Read more.
The largescale blackfish, Girella punctata Gray, 1835, is important in the fishing industry and recreational fishing, and it is also cultured in East Asia. Cymothoidae (Crustacea: Isopoda) is a group of parasites that infest fish in marine, brackish, and freshwater environments. In this study, we report, for the first time, Ceratothoa arimae (Nunomura, 2001) (Cymothoidae) from the buccal cavity of G. punctata in the Seto Inland Sea, Japan. Ceratothoa arimae showed a prevalence of 29.4–66.7% in G. punctata. The morphology of the mancae of this species was also described in comparison with that of the adult female (ovigerous), transitional stage, and adult male. The manca of Ceratothoa arimae has more chromatophores than those of other Ceratothoa species from Japan, and is a candidate for a future taxonomic trait. This species may have a negative impact on cultured G. punctata, which would be important to determine in future studies. Currently, it is difficult to identify cymothoid mancae species based on their morphology, but the information provided in this study could be useful when combined with other methods developed in the future, such as molecular analysis. Full article
(This article belongs to the Section Fish Pathology and Parasitology)
Show Figures

Graphical abstract

19 pages, 5979 KiB  
Article
Effects of Feeding Frequency on Turbot (Scophthalmus maximus) Performance, Water Quality and Microbial Community in Recirculating Aquaculture Systems
by Xiaoyang Guo, Jiyuan Li, Shihong Xu, Xin Jiang, Teng Guo, Feng Liu, Guang Gao, Jun Li, Yanfeng Wang and Wei Jiang
Fishes 2025, 10(3), 125; https://doi.org/10.3390/fishes10030125 - 12 Mar 2025
Viewed by 374
Abstract
Recirculating aquaculture systems (RAS) have promising applications in aquaculture. Feed is recognized as a major source of input to the RAS, and feeding frequency will not only impact the performance of turbot, but will also impact the quality of the cultured water. In [...] Read more.
Recirculating aquaculture systems (RAS) have promising applications in aquaculture. Feed is recognized as a major source of input to the RAS, and feeding frequency will not only impact the performance of turbot, but will also impact the quality of the cultured water. In order to rationally manage feeding and reduce aquaculture pollution, this study investigated the effects of feeding frequency on the performance of turbot (Scophthalmus maximus), nitrogen removal (ammonia and nitrite) characteristics and microbial communities in biofilters. The experiment was designed with three treatment groups, which were categorized into feeding once/day (FF1), feeding twice/day (FF2) and feeding three times/day (FF3) for 30 days. The results indicated that weight gain rate (WGR) and specific growth rate (SGR) significantly increased (p < 0.05) in the FF2 group and FF3 group compared with the FF1 group. The feed conversion ratio (FCR) was significantly lower (p < 0.05) in the FF2 group and FF3 group than in the FF1 group. There was no significant change in condition factor (CF). Ammonia and nitrite concentration decreased and water quality fluctuated less as the feeding frequency increased. FF2 showed the highest ammonia and nitrite removal rates. Feeding frequency did not significantly affect biofilter alpha diversity, but significantly altered beta diversity. PICRUSt functional prediction analysis revealed that the relative abundance of functional genes for nitrogen metabolism (amoA, amoB, amoC, hao, nxrA and nxrB) was highest in FF2. Therefore, feeding frequency of twice/day not only benefits the performance of turbot but also stabilizes the water environment and improves the removal of ammonia nitrogen and nitrite in RAS. These results provide theoretical and practical basis for further water improvement by seawater RAS. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Figure 1

17 pages, 1516 KiB  
Article
Glycerol Monolaurate Affects Growth, Amino Acid Profile, Antioxidant Capacity, Nutrient Apparent Digestibility, and Histological Morphology of Hepatopancreas in Juvenile Pacific White Shrimp (Litopenaeus vannamei)
by Sami Ullah, Bingge Liu, Yunyun Zheng, Hongbo Guo, Yarui Yang, Muhammad Ijaz Ahmad, Siyu Lv, Shijie Deng, Minjie Zhao and Fengqin Feng
Fishes 2025, 10(3), 124; https://doi.org/10.3390/fishes10030124 - 11 Mar 2025
Viewed by 394
Abstract
An eight-week feeding trial was conducted to evaluate the effects of dietary supplementation with glycerol monolaurate (GML) on Pacific white shrimp (Litopenaeus vannamei). A basal diet was formulated containing 100 g fish meal, while four additional GML-supplemented diets were prepared: GML1 [...] Read more.
An eight-week feeding trial was conducted to evaluate the effects of dietary supplementation with glycerol monolaurate (GML) on Pacific white shrimp (Litopenaeus vannamei). A basal diet was formulated containing 100 g fish meal, while four additional GML-supplemented diets were prepared: GML1 (0.25 g), GML2 (0.50 g), GML3 (0.75 g), and GML4 (1.00 g). Each diet was given to triplicate tanks containing 50 shrimp, each weighing 1.67 ± 0.25 g. GML2 supplementation enhanced the final body weight, weight gain, condition factor, specific growth rate, and viscerosomatic index of the shrimp compared to the other diets (p < 0.05). The whole-body amino acid profile was significantly high in the GML3 group. The antioxidant and immune indicators in the serum, like total protein, triglyceride, and aspartate aminotransferase, were significantly high in the GML2-supplemented group. The immune and antioxidant indicators in the hepatopancreas of the shrimp, like total protein, triglyceride, total cholesterol, and complement protein 3, were significantly high in the GML2 group. However, the malondialdehyde in their livers and serum were significantly high in the control group. Digestive enzymes were significantly high in the GML2 group. In conclusion, this study confirms that GML may benefit the health of Pacific white shrimp, offering new insights into aquaculture. Full article
Show Figures

Figure 1

22 pages, 2242 KiB  
Article
Controlled Multi-Stage Evaluation of Growth and Physiochemical Traits Between Low- and Normal-Temperature Strains of Scylla paramamosain
by Jiaai Li, Wenfeng Han, Hai Liu and Dongfa Zhu
Fishes 2025, 10(3), 123; https://doi.org/10.3390/fishes10030123 - 10 Mar 2025
Viewed by 374
Abstract
The mud crab Scylla paramamosain is a key economic crab species along the southern coastal regions of China. This study systematically compared the physiological and biochemical characteristics of low-temperature (LT) and normal-temperature (NT) strains of S. paramamosain at different life stages (juveniles and [...] Read more.
The mud crab Scylla paramamosain is a key economic crab species along the southern coastal regions of China. This study systematically compared the physiological and biochemical characteristics of low-temperature (LT) and normal-temperature (NT) strains of S. paramamosain at different life stages (juveniles and adults), integrating temperature gradient experiments with conventional aquaculture evaluations. The experimental results revealed the following: (1) Growth superiority: LT-strain crabs exhibited significantly greater final weight, survival rate, hepatopancreatic index, and gonadal index than their NT counterparts (p < 0.05). Moreover, LT individuals displayed an enhanced nutritional profile, with 16.56% higher muscle crude fat and a 23.80% increase in ovarian ash content. (2) Immune competence: Juvenile LT crabs exhibited greater antioxidant capacity at 18–21 °C, with significantly higher total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) activity than NT crabs (p < 0.05). In adults, immune enzyme activity remained superior, particularly in serum acid phosphatase (ACP). (3) Nutritional advantage: LT mature females exhibited higher accumulation of essential amino acids (e.g., lysine, threonine) and polyunsaturated fatty acids (C18:2n-6, C20:2n-6) in the hepatopancreas and gonads (p < 0.05). These findings confirm the LT strain’s superior cold resilience and aquaculture potential, offering practical insights for S. paramamosain selective breeding programs and sustainable aquaculture development. Full article
Show Figures

Figure 1

16 pages, 3344 KiB  
Article
Effects of Water Temperature, Light Intensities and Photoperiod on the Survival and Growth of Juvenile Schizothorax irregularis and Diptychus maculates
by Zhulan Nie, Huimin Hao, He Zhao, Nianhua Zhao, Li Li, Zhuang Qiang, Syeda Maira Hamid and Jie Wei
Fishes 2025, 10(3), 122; https://doi.org/10.3390/fishes10030122 - 10 Mar 2025
Viewed by 405
Abstract
An experimental ecological method was used to study the effects of water temperature, photoperiod, and light intensity on the survival, feeding, and growth of juvenile Schizothorax irregularis and Diptychus maculates. The Box–Benhnken experiment was designed to predict the optimal environmental conditions for [...] Read more.
An experimental ecological method was used to study the effects of water temperature, photoperiod, and light intensity on the survival, feeding, and growth of juvenile Schizothorax irregularis and Diptychus maculates. The Box–Benhnken experiment was designed to predict the optimal environmental conditions for juvenile growth. With the maximum specific growth rate at 15 °C and a photoperiod of LD16:8, the results demonstrated that the juvenile S. irregularis had a survival rate of over 85% in water temperatures ranging from 5 to 25 °C. A daily light duration of 15.86 h and a light intensity of 1166.28 lx, with the water temperature maintained at 10.45 °C, allowed the juvenile S. irregularis fish to attain the optimal circumstances for growth and survival. At water temperatures below 25 °C, the juvenile D. maculates exhibited maximum specific growth rates at 10 °C and LD16:8 light period. Additionally, as the light intensity reached 1000 lx, the juvenile fish grew better. Furthermore, the juvenile D. maculates fish achieved theoretically optimal survival and growth circumstances when the water temperature was maintained at 10.87 °C with a light period of 15.0.5 h per day and a light intensity of 1474.68x. The results showed that both fish species may be raised in captivity in highland regions, but precise control over water temperature is required. Full article
Show Figures

Figure 1

14 pages, 2283 KiB  
Article
Molecular Phylogeny and Evolutionary History of the Genus Cyprinus (Teleostei: Cypriniformes)
by Yanyan Chen, Heng Xiao, Zhaoping Yue, Xiaoyun Wu, Ruiguang Zan and Shanyuan Chen
Fishes 2025, 10(3), 121; https://doi.org/10.3390/fishes10030121 - 10 Mar 2025
Viewed by 567
Abstract
The genus Cyprinus encompasses economically vital freshwater fish species; yet the phylogenetic relationships and evolutionary history of many taxa within this genus remain unresolved. To address this knowledge gap, we reconstructed the molecular phylogenetic and estimated divergence times using complete mitochondrial cytochrome b [...] Read more.
The genus Cyprinus encompasses economically vital freshwater fish species; yet the phylogenetic relationships and evolutionary history of many taxa within this genus remain unresolved. To address this knowledge gap, we reconstructed the molecular phylogenetic and estimated divergence times using complete mitochondrial cytochrome b (CYTB) sequences of 76 Cyprinidae specimens, within Cyprinidae, including 4 outgroup species. Phylogenetic trees were reconstructed using maximum likelihood (ML) and Bayesian inference (BI) methods, while divergence times were estimated using a Bayesian relaxed molecular clock approach. The results confirmed the monophyly of the genus Cyprinus. The relationships among C. (Cyprinus) multitaeniata, C. (C.) pellegrini, C. (C.) acutidorsalis, and three Erhai Lake species (C. (C.) longipectoralis, C. (C.) barbatus, and C. (C.) chilia) were resolved with strong support. Cyprinus (C.) multitaeniata is basal. The species in Erhai Lake form a monophyletic group, and C. (C.) acutidorsalis is at the top of the phylogenetic tree. The taxonomic delineation within the genus Cyprinus remains controversial, particularly regarding the proposed division into two subgenera (Cyprinus and Mesocyprinus), which has been historically constrained by limited specimen availability for Mesocyprinus. Our comprehensive phylogenetic analysis reveals significant evolutionary divergence patterns: The genus Cyprinus diverged from Carassius during the 56.9 Mya. Notably, the Erhai Lake radiation species (C. (C.) longipectoralis, C. (C.) barbatus, and C. (C.) chilia) originated during 2.03 Mya, while the Lake Biwa endemic C. (C.) haematopterus demonstrates 8.7 Mya. We identified a late Pleistocene speciation event (0.75 Mya) in C. (C.) acutidorsalis, coinciding with its adaptation to brackish water ecosystems. The native C. (C.) pellegrini of Xingyun Lake and Chilu Lake may have originated 4.8 Mya, when the ancient lake that its ancestral population inhabited became isolated. These findings provide robust molecular evidence supporting the recognition of two evolutionary distinct subgenera within Cyprinus. Full article
(This article belongs to the Section Taxonomy, Evolution, and Biogeography)
Show Figures

Figure 1

17 pages, 5231 KiB  
Article
Environmentally Relevant Sulfamethoxazole Induces Developmental Toxicity in Embryo-Larva of Marine Medaka (Oryzias melastigma)
by Jianxuan Huang, Lei Ye, Siyi Huang, Zuchun Chen, Jiahao Gao, Yangmei Li, Yusong Guo, Zhongduo Wang, Jian Liao, Zhongdian Dong and Ning Zhang
Fishes 2025, 10(3), 120; https://doi.org/10.3390/fishes10030120 - 8 Mar 2025
Viewed by 490
Abstract
Sulfamethoxazole (SMX), a commonly used sulfonamide antibiotic, poses a threat to aquatic life due to its widespread presence in the environment. This study aims to investigate the specific effects of SMX on the development of marine medaka (Oryzias melastigma) embryos and [...] Read more.
Sulfamethoxazole (SMX), a commonly used sulfonamide antibiotic, poses a threat to aquatic life due to its widespread presence in the environment. This study aims to investigate the specific effects of SMX on the development of marine medaka (Oryzias melastigma) embryos and larvae. Marine medaka embryos were exposed to SMX at concentrations of 0 (solvent control group, SC group), 1 μg/L (low concentration group, L group), 60 μg/L (middle concentration group, M group), and 1000 μg/L (high concentration group, H group). The results indicated that SMX exposure significantly accelerated the heart rate of embryos (p < 0.0001) and shortened the hatching time while also causing anomalies such as reduced pigmentation, smaller eye size, spinal curvature, and yolk sac edema. SMX also led to a decrease in the total length of the larvae. The M group and the H group exhibited a significant increase (p < 0.05) in lipid accumulation in the visceral mass of the larvae. In the L group and the M group, there was a significant increase (p < 0.0001) in the swimming distance of the larvae. At the molecular level, SMX exposure affected the transcript levels of the genes involved in the cardiovascular system (ahrra, arnt2, atp2a1, and cacan1da), antioxidant and inflammatory systems (cat, cox-1, gpx, pparα, pparβ, and pparγ), nervous system (gap43, gfap, α-tubulin), intestinal barrier function (claudin-1), detoxification enzymes (ugt2c1-like), and lipid metabolism (rxraa) in the embryos to larval stage. The microbiome analysis showed that at the phylum level, exposure to SMX resulted in an increase in the abundance of Proteobacteria. Additionally, the abundance of Actinobacteriota significantly increased in the L group (p < 0.05). At the genus level, the abundance of Bifidobacterium significantly increased in the L group (p < 0.05), while the abundance of Vibrio significantly increased in the H group (p < 0.05). The alpha diversity analysis revealed a significant decrease in the Chao1 index in the L and H groups, indicating a reduction in microbial richness. The beta diversity analysis showed differences in the microbial communities of marine medaka larvae among different SMX exposure groups. This study elucidates the negative impacts of SMX on the development of marine medaka embryos and larvae and their microbial composition, providing a scientific basis for assessing the risks of SMX in marine ecosystems. Full article
(This article belongs to the Special Issue Toxicology of Anthropogenic Pollutants on Fish)
Show Figures

Figure 1

26 pages, 4940 KiB  
Article
Integration of Gill and Intestinal Osmoregulatory Functions to Assess the Smoltification Window in Atlantic Salmon
by Jonás I. Silva-Marrero, Floriana Lai, Sigurd O. Handeland, Cindy Pedrosa, Virginie Gelebart, Pablo Balseiro, Juan Fuentes, Ivar Rønnestad and Ana S. Gomes
Fishes 2025, 10(3), 119; https://doi.org/10.3390/fishes10030119 - 8 Mar 2025
Viewed by 819
Abstract
The transfer time of Atlantic salmon smolts from freshwater to seawater remains a challenge in aquaculture, with the “smolt window” referring to the optimal timeframe for seawater readiness. Our study monitored Atlantic salmon osmoregulatory adaptations during smoltification under continuous light (LL) and winter [...] Read more.
The transfer time of Atlantic salmon smolts from freshwater to seawater remains a challenge in aquaculture, with the “smolt window” referring to the optimal timeframe for seawater readiness. Our study monitored Atlantic salmon osmoregulatory adaptations during smoltification under continuous light (LL) and winter signal regime (6 weeks LD 12:12) followed by 6 or 8 weeks of constant light. Fish were subsequently reared in seawater for 8 weeks and subjected to a stress event of cyclic hypoxia at the conclusion of the trial. Significant differences in growth trajectories were observed between the LL and LD groups, with fish receiving the winter signal showing compensatory growth after seawater transfer. Gill Na+/K+-ATPase (NKA) activity, plasma ions, glucose, and cortisol levels confirmed the importance of the winter signal for seawater adaptation. Molecular markers, including nka isoforms, Na+-K+-2Cl cotransporter (nkcc), cystic fibrosis transmembrane conductance regulator (cftr), and Na+/HCO3 cotransporter (nbc), showed distinct temporal expression patterns, particularly in gills and midgut. Notably, the LD group with delayed seawater transfer exhibited enhanced growth and improved hypo-osmoregulatory capacity. These findings underscore the advantages of a winter signal in smoltification and suggest that delaying seawater transfer for up to 8 weeks could be beneficial. Full article
(This article belongs to the Special Issue Rhythms in Marine Fish and Invertebrates)
Show Figures

Figure 1

14 pages, 1913 KiB  
Article
Assessment of 18 Years of Genetic Marker-Assisted Selection and Augmentation of Native Walleye in the Upper New River, Virginia, USA
by Sheila Harris, George Palmer, John Copeland, Joe Williams and Eric Hallerman
Fishes 2025, 10(3), 118; https://doi.org/10.3390/fishes10030118 - 6 Mar 2025
Viewed by 307
Abstract
Walleye Sander vitreus is a valued sportfish in eastern North America, including the upper New River of Virginia, where individuals can grow to a large size (>7 kg). After construction of dams, especially Claytor Dam in 1939, the population declined and non-native walleye [...] Read more.
Walleye Sander vitreus is a valued sportfish in eastern North America, including the upper New River of Virginia, where individuals can grow to a large size (>7 kg). After construction of dams, especially Claytor Dam in 1939, the population declined and non-native walleye were stocked. Stocking of non-native walleye was stopped in 1997, and molecular marker data showed that the presumptive native population had persisted. To restore the native stock, selection of broodstock candidates bearing native marker alleles and hatchery-based augmentation have been practiced over a 20-year period. We evaluated the success of the marker-assisted selection and hatchery-based augmentation program. Marker-assisted selection of native New River walleye began with mean frequencies of marker alleles at microsatellite loci Svi17 and Svi33 of ~30%, and continuing selection has driven marker allele frequencies to ~65–70%. Numbers of walleye collected in fall gillnet and spring electrofishing surveys were responsive to augmentations with hatchery fish 2–3 years earlier. Stocking was not practiced in 2012–2013, and a decrease in walleye catch rates was noted in 2016, suggesting that the native New River walleye population still depends upon hatchery-based augmentation. We recommend the development of a small panel of single nucleotide polymorphism markers for more rigorous selection of broodstock representative of the native walleye population. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

15 pages, 5402 KiB  
Article
Comparative Transcriptomic Analysis of Male and Female Gonads in the Zig-Zag Eel (Mastacembelus armatus)
by Fangyu Cui, Yuanyuan Wang, Haiyan Liang, Yexin Yang, Zhiyong Jiang, Jiahuan Song, Chao Liu, Yuli Wu, Xidong Mu and Yi Liu
Fishes 2025, 10(3), 117; https://doi.org/10.3390/fishes10030117 - 6 Mar 2025
Viewed by 364
Abstract
The zig-zag eel (Mastacembelus armatus) is a unique economic fish species in China and exhibits significant dimorphism of male and female phenotypes. Cultivating all-male seedlings can significantly improve production efficiency. To investigate sex differentiation and gonadal development in M. armatus, [...] Read more.
The zig-zag eel (Mastacembelus armatus) is a unique economic fish species in China and exhibits significant dimorphism of male and female phenotypes. Cultivating all-male seedlings can significantly improve production efficiency. To investigate sex differentiation and gonadal development in M. armatus, high-throughput sequencing technology was used to analyze the transcriptomes of male and female gonads at different developmental stages, both before and after sex differentiation. We identified key genes involved in sex differentiation, male-specific differentially expressed genes (DEGs), including dmrt1, amh, sox9, gsdf, and dmrt2b, and female-biased DEGs, including foxl2, rspo1, gdf9, bmp15, and wnt4. GO and KEGG enrichment analyses revealed that signaling pathways such as MAPK, Wnt, and TGF-β play significant roles in sex differentiation in M. armatus. The expression levels of 13 sex-related genes, including dmrt1, sox9, amh, foxl2, rspo1, and wnt4, were determined by RT–qPCR in addition to RNA sequencing. RT-qPCR validation results were consistent with the transcriptomic data, confirming the reliability of our findings. This research provides valuable insights into the mechanisms of sex differentiation in M. armatus and lays a foundation for developing all-male populations in aquaculture. Full article
(This article belongs to the Special Issue Genetics and Breeding in Aquaculture)
Show Figures

Figure 1

17 pages, 4014 KiB  
Article
Photoelectrocatalytic Coupling of Chlorine Radicals Enhances Sulfonamide Antibiotic Degradation in Saline-Alkaline Waters in Cold-Water Fish Aquaculture
by Qikai Liu, Yang Liu, Yaqi Mao, Ru Li, Yujie Jiao, Jiali Lei and Fenzhen Zhang
Fishes 2025, 10(3), 116; https://doi.org/10.3390/fishes10030116 - 6 Mar 2025
Viewed by 491
Abstract
The degradation of organic matter using TiO2 nanotube photocatalytic technology is limited by the short lifetime and diffusion radius of the generated hydroxyl radicals, decreasing the removal efficiency. This study developed a chlorine radical-coupled photoelectrocatalytic system, significantly enhancing the performance of TiO [...] Read more.
The degradation of organic matter using TiO2 nanotube photocatalytic technology is limited by the short lifetime and diffusion radius of the generated hydroxyl radicals, decreasing the removal efficiency. This study developed a chlorine radical-coupled photoelectrocatalytic system, significantly enhancing the performance of TiO2 nanotube arrays in removing sulfonamide antibiotics (SAs) from cold-water aquaculture systems. The highest degradation rates were observed at 5 mM NaCl and 15 mM NaNO3. When SA concentrations were 0.1–10 mg/L, degradation efficiency decreased with higher initial concentrations. The best degradation was achieved at an initial pH of 3 for SA. Humic acid and sodium acetate, natural organic matter in the water column, served as low-concentration promoters and high-concentration inhibitors. In our study, three degradation intermediates were identified, and hydrolysis and nitration reactions are proposed as the primary pathways for SA degradation. We confirmed that oxygen radicals play a major role in this system. Furthermore, toxicology experiments revealed the weakening of the toxicity of the degraded products. This study provides an efficient method for treating organic matter in cold-water fish culture water in chloride-containing saline and alkaline waters. Full article
Show Figures

Graphical abstract

23 pages, 2887 KiB  
Article
Red Mullet (Mullus barbatus) Collected from North and South Euboean Gulf, Greece: Fishing Location Effect on Nutritive Quality
by Roxana-Georgiana Nita, Vassilis Athanasiadis, Dimitrios Kalompatsios, Martha Mantiniotou, Aggeliki Alibade, Chrysanthi Salakidou and Stavros I. Lalas
Fishes 2025, 10(3), 115; https://doi.org/10.3390/fishes10030115 - 5 Mar 2025
Viewed by 703
Abstract
Red mullet (Mullus barbatus), a prominent fish species in the Mediterranean Sea, is a fish with a particular abundance of unsaturated fatty acids and other nutrients, including a substantial quantity of minerals. The nutritive quality parameters (lipid quality indices, fatty acid [...] Read more.
Red mullet (Mullus barbatus), a prominent fish species in the Mediterranean Sea, is a fish with a particular abundance of unsaturated fatty acids and other nutrients, including a substantial quantity of minerals. The nutritive quality parameters (lipid quality indices, fatty acid profiles, and mineral content, along with proximate composition) of 75 red mullet samples collected from five distinct locations (L1–L5) in the North and South Euboean Gulf, Euboea Island (Evia), Greece, were examined. It was hypothesized that the different habitats may have an impact on each fish’s chemical composition. Proximate composition (protein, ash, moisture, fat, and minerals) and bioactive compound determination (total carotenoids, and vitamins A, E, and C) were conducted on the lyophilized fish samples. The protein and lipid content of the wet fillet varied substantially from 10.8 to 14.3 and 13.2 to 16.8% w/w, respectively. The samples exhibited statistically non-significant variation in the total SFAs and MUFAs (p > 0.05). The level of total PUFAs was above 30% in all the samples and no significant differences were observed between them. However, arachidonic acid (20:4 ω-6) was only detected in fish samples from two locations (i.e., L1 and L3). The concentrations of Fe, Na, Mg, K, Ca, Ag, Sr, Li, and Zn varied significantly (p < 0.05) in relation to the size of the fish samples. The highest concentrations of heavy metals were detected at the northern location (L5), indicating a possible negative correlation between size and arsenic concentration. The varied mineral composition and fatty acid content of the samples can be attributed to their distinctive biological characteristics (i.e., length and weight) and dietary environments. Full article
Show Figures

Graphical abstract

20 pages, 2236 KiB  
Article
Effects of Melatonin on the Growth and Diurnal Variation of Non-Specific Immunity, Antioxidant Capacity, Digestive Enzyme Activity, and Circadian Clock-Related Gene Expression in Crayfish (Procambarus clarkii)
by Jinglong Chen, Youhai Du, Mengyue Zhang, Jiahui Wang, Jianhua Ming, Xianping Shao, Aimin Wang, Hongyan Tian, Wuxiao Zhang, Silei Xia, Weigen Cheng, Jinlan Xu, Xiaochuan Zheng and Bo Liu
Fishes 2025, 10(3), 114; https://doi.org/10.3390/fishes10030114 - 5 Mar 2025
Viewed by 444
Abstract
This study aimed to investigate the effects of dietary melatonin supplementation on growth and diurnal non-specific immunity, antioxidant capacity, digestive enzyme activities, and circadian clock-related gene expression in crayfish (Procambarus clarkii). A total of 500 healthy juvenile crayfish (6.68 ± 0.31 [...] Read more.
This study aimed to investigate the effects of dietary melatonin supplementation on growth and diurnal non-specific immunity, antioxidant capacity, digestive enzyme activities, and circadian clock-related gene expression in crayfish (Procambarus clarkii). A total of 500 healthy juvenile crayfish (6.68 ± 0.31 g) were randomly distributed into five groups with four replicates each and fed five different diets supplemented with melatonin at 0, 25, 50, 75, and 100 mg/kg for 60 days. The results indicated that dietary supplementation of 50 mg/kg melatonin significantly increased the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) of juvenile Procambarus clarkii. However, no significant differences were observed in the hepatosomatic index (HSI), meat yield, and condition factor (p > 0.05). When the dietary melatonin level was 50 mg/kg, the activities of LZM and ALP in the hemolymph of Procambarus clarkii were higher than the levels at both 15:00 and 03:00, while the activities of AST and ALT remained at lower levels during these two time points. It also significantly upregulated the mRNA expression levels of Clock, Per1, Cry1, Tim1, and Tim2 in the hepatopancreas (p < 0.05). Furthermore, dietary melatonin at 50 mg/kg significantly reduced the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as the malondialdehyde (MDA) content across day and night (p < 0.05). No significant differences were found in acid phosphatase (ACP) at 15:00, alkaline phosphatase (ALP), and amylase (AMS) activities in the hepatopancreas and intestine at 3:00 among the groups (p > 0.05). At 15:00, supplementation with 50 mg/kg significantly upregulated Bmal1 mRNA expression (p < 0.05). Melatonin supplementation at 50–75 mg/kg resulted in significantly higher levels of TP, LZM, ALP, and CAT activities, as well as significantly higher mRNA expression of Clock, Bmal1, Cry1, Per1, Tim1, and Tim2 in the hepatopancreas at 3:00 compared to 15:00 (p < 0.05), with the opposite trend observed for MDA content (p < 0.05). No significant differences were found in ACP, ALT, and AST activities between 3:00 and 15:00 among the groups (p > 0.05). Thus, dietary supplementation of 50 mg/kg melatonin could promote the growth of juvenile Procambarus clarkii, enhance their non-specific immunity and antioxidant capacity during both day and night, increase the activities of digestive enzymes in the hepatopancreas and intestine, and regulate the expression of circadian clock-related genes. Full article
Show Figures

Figure 1

12 pages, 1513 KiB  
Article
Identification of Different Ecomorphotypes of Coilia nasus in the Dawanzhou Section of the Yangtze River
by Jiahao Liu, Tao Jiang, Junren Xue, Xiubao Chen, Hongbo Liu and Jian Yang
Fishes 2025, 10(3), 113; https://doi.org/10.3390/fishes10030113 - 5 Mar 2025
Viewed by 348
Abstract
X-ray electron probe microanalyzer technology was used to study the microchemistry and habitat history of Coilia nasus collected from the Dawanzhou section of the Yangtze River between May and June 2023. The Sr/Ca ratio from the otolith core to the otolith diameter was [...] Read more.
X-ray electron probe microanalyzer technology was used to study the microchemistry and habitat history of Coilia nasus collected from the Dawanzhou section of the Yangtze River between May and June 2023. The Sr/Ca ratio from the otolith core to the otolith diameter was low (640–1100 µm), representing the first stage of development. In the second stage, C. nasus exhibited two distinct types. The first type, which included individuals 5HK05 and 6HK03, exclusively inhabited brackish estuarine waters. The second type, comprising 13 individuals, resided in higher-salinity seawater environments (Sr/Ca > 7). Furthermore, individuals 5HK01, 5HK03, 5HK07, and 6HK05 displayed a phase with a high Sr/Ca ratio compared to other fish. Freshwater coefficient analysis indicated that C. nasus in the Dawanzhou water area was unlikely to continue upstream to Dongting Lake in the middle reaches of the Yangtze River but may have entered Poyang Lake through its mouth or reproduced in its upper reaches. Analysis of sexual maturity and migration history suggested that the Dawanzhou section primarily serves as a migration channel for C. nasus, with a potential spawning ground for this high-value fish located nearby. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

16 pages, 3866 KiB  
Article
Size-Selective Harvesting Effects on Reproductive Investment in Marine Medaka (Oryzias melastigma)
by Guochen Gan, Guankui Liu, Xinyao Sun, Wenbo Deng, Fengming Lv, Yongjun Tian and Peng Sun
Fishes 2025, 10(3), 112; https://doi.org/10.3390/fishes10030112 - 4 Mar 2025
Viewed by 516
Abstract
Long-term selective fishing pressure often leads to miniaturization, smaller size, and early sexual maturity in many commercial fish species. To adapt, these species increase energy allocations toward maturation and reproduction, which can reduce population productivity and recruitment. However, how different fishing pressures affect [...] Read more.
Long-term selective fishing pressure often leads to miniaturization, smaller size, and early sexual maturity in many commercial fish species. To adapt, these species increase energy allocations toward maturation and reproduction, which can reduce population productivity and recruitment. However, how different fishing pressures affect reproductive investment and energy allocation between growth and reproduction remains unclear. In this study, we designed three size-selective harvesting strategies—large, random, and small harvests—to examine their effects on the growth and reproductive investment of marine medaka (Oryzias melastigma). We analyzed changes in length, weight, and gonad weight across different harvest times. Results showed that the “large harvest” group allocated more energy to reproduction, leading to miniaturization and earlier maturation, while the “small harvest” group focused more on growth, resulting in larger fish at the same age. This study provides experimental evidence on how size-selective harvesting alters reproductive investment in fish populations, offering valuable insights for the sustainable exploitation of fishery resources. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

14 pages, 2351 KiB  
Article
Human Trophic Level and Trade Openness: Insights from Global Seafood Consumption Patterns
by Kyu Sung Lee, Dae Eui Kim and Song Soo Lim
Fishes 2025, 10(3), 111; https://doi.org/10.3390/fishes10030111 - 4 Mar 2025
Viewed by 382
Abstract
This study investigates the relationship between Human Trophic Level (HTL) and trade openness within the context of seafood consumption patterns. Utilizing a comprehensive panel dataset spanning from 1990 to 2019 and covering 168 countries, this study applied fixed effects and random effects models [...] Read more.
This study investigates the relationship between Human Trophic Level (HTL) and trade openness within the context of seafood consumption patterns. Utilizing a comprehensive panel dataset spanning from 1990 to 2019 and covering 168 countries, this study applied fixed effects and random effects models to uncover the dynamics between trade openness, seafood diversity, and socioeconomic factors. The findings reveal a significant positive correlation between trade openness and HTL, demonstrating that increased access to diverse and high-trophic-level seafood products fosters improvements in national HTL. Additionally, economic development exhibits a non-linear relationship with HTL, where higher income initially drives a preference for high-trophic-level species, but dietary patterns diversify at advanced income levels. This study also highlights geographic disparities, with landlocked countries benefiting most from trade openness, whereas island and peninsula nations are influenced more by geographic and economic factors. These insights underscore the pivotal role of trade in shaping sustainable seafood consumption and provide actionable guidance for policymakers aiming to align economic growth with ecological sustainability. Full article
(This article belongs to the Section Fishery Economics, Policy, and Management)
Show Figures

Figure 1

16 pages, 2425 KiB  
Article
Impact of Plant-Based Diets on Hepatosomatic Index, Circulating Globulins and Growth in Rainbow Trout (Oncorhynchus mykiss)
by Alejandro Villasante, Elías Figueroa, Karina Godoy, Patricio Dantagnan, Johana López-Polo, Rafael Opazo and Jaime Romero
Fishes 2025, 10(3), 110; https://doi.org/10.3390/fishes10030110 - 4 Mar 2025
Viewed by 443
Abstract
Serum proteins are essential for maintaining osmotic pressure, regulating pH, transporting metabolites, and supporting immune responses. Studying the effects of plant-based diets on these proteins is crucial to understanding their impact on fish health and immune function. Methods: This study was conducted in [...] Read more.
Serum proteins are essential for maintaining osmotic pressure, regulating pH, transporting metabolites, and supporting immune responses. Studying the effects of plant-based diets on these proteins is crucial to understanding their impact on fish health and immune function. Methods: This study was conducted in a recirculation system, with rainbow trout distributed across nine tanks and fed three diets: fishmeal (control), medium plant meal (MPM; 40% of fishmeal replacement), and high plant meal (HPM; 80% of fishmeal replacement). Plasma protein and plasma glucose levels were measured at the initial and final stages, under both fasting (24 h after fast) and postprandial (6 h after fed) conditions, to assess dietary impacts. Additionally, the hepatosomatic index (HSI) was calculated at the end of the experiment to evaluate potential liver adaptations to the diets. Results: The initial protein and glucose levels were similar across all groups. However, by the end of the treatment, the fishmeal-fed group showed significantly higher total protein and globulin levels, while the albumin levels remained consistent across diet types. A significant interaction between sampling time and dietary treatment in fish reduced the clarity of dietary effects on postprandial plasma glucose levels. Furthermore, the HSI was significantly lower in fish fed the high plant meal (HPM) diet compared to the fishmeal and medium plant meal (MPM) groups, suggesting potential metabolic adaptation in response to plant-based diets. Conclusions: Replacing fishmeal with plant-based proteins in rainbow trout diets reduces total globulin and protein concentrations but leaves albumin unaffected, alongside reductions in fasting and postprandial glucose levels. The low growth and different HSI in fish fed plant-based diets highlights potential liver stress, emphasizing the need for further research to optimize sustainable aquaculture feeds while maintaining fish health and performance. Full article
Show Figures

Figure 1

19 pages, 7556 KiB  
Article
A Hypothetical Protein Fragment from Large Yellow Croaker (Larimichthys crocea) Demonstrates Significant Activity Against Both Bacterial and Parasite
by Chunmei Yan, Meiling Chen, Hao Xu, Jian Jin, Xiande Liu, Zhiyong Wang and Dongling Zhang
Fishes 2025, 10(3), 109; https://doi.org/10.3390/fishes10030109 - 4 Mar 2025
Viewed by 488
Abstract
Antimicrobial peptides (AMPs) are biocompatible and biodegradable, making them an attractive alternative to traditional antimicrobial agents and chemical preservatives. Here, a novel α-helix amphiphilic anionic AMP Lc149 was screened from a large yellow croaker (Larimichthys crocea) using a Bacillus subtilis expression [...] Read more.
Antimicrobial peptides (AMPs) are biocompatible and biodegradable, making them an attractive alternative to traditional antimicrobial agents and chemical preservatives. Here, a novel α-helix amphiphilic anionic AMP Lc149 was screened from a large yellow croaker (Larimichthys crocea) using a Bacillus subtilis expression system. Lc149 is a hypothesized protein fragment not annotated in the genome of a large yellow croaker. Both extracellular protein and recombinant Lc149 (rLc149) exhibited significant killing effects against Gram-negative Escherichia coli and Vibrio harveyi. Scanning and transmission electron microscopy revealed that rLc149 had the ability to disrupt bacterial cell membranes, causing irregular cell morphology, severe cell membrane damage, cytoplasm agglutination, and intracellular content leakage. Confocal laser scanning microscopy and flow cytometry further confirmed bacterial cell destruction and mortality rates of over 80%. Gel retardation assays and SDS-PAGE electrophoresis showed that rLc149 was unable to bind to bacterial DNA, but did reduce bacterial protein contents. Additionally, rLc149 maintained antibacterial activity against E. coli and V. harveyi upon exposure to temperatures of 25–100 °C, UV radiation time of 0–60 min, pH levels of 3–12, and different proteases. Biosafety assays revealed low hemolytic toxicity to erythrocytes of large yellow croaker, rabbit, and shrimp, and low cytotoxicity to large yellow croaker kidney cells and HEK 293T cells. More deeply, rLc149 also possessed significant killing activity against parasites. Therefore, rLc149 can be considered an antibacterial and antiparasitic drug in fisheries. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Figure 1

21 pages, 2975 KiB  
Article
Environmental Sustainability in the Culture of Macroalgae, Oysters, and Low-Trophic Fish
by Suellen Araujo Alves, Michelle Roberta Santos, Patricia Moraes-Valenti, Dioniso Souza Sampaio and Wagner C. Valenti
Fishes 2025, 10(3), 108; https://doi.org/10.3390/fishes10030108 - 3 Mar 2025
Viewed by 736
Abstract
Aquaculture plays a crucial role in meeting the needs of a growing human population and achieving the sustainable development goals outlined in Agenda 2030. However, it is essential that this sector grows sustainably. In this study, we hypothesized that environmental sustainability decreases as [...] Read more.
Aquaculture plays a crucial role in meeting the needs of a growing human population and achieving the sustainable development goals outlined in Agenda 2030. However, it is essential that this sector grows sustainably. In this study, we hypothesized that environmental sustainability decreases as the trophic level of farmed species increases and that it is higher in integrated systems compared to monocultures. To test these hypotheses, we conducted a comparative analysis of the environmental sustainability indicators of some aquaculture systems, including the farming of primary producers, filter feeders, and low-trophic phagotrophs. We compiled secondary data on eighteen environmental sustainability indicators from seven aquaculture systems. Five are monocultures, including the farming of macroalgae (Hypnea pseudomusciformis), oysters (Crassostrea gazar) in a tropical environment, oysters in a subtropical environment, as well as tambatinga (hybrid Colossoma macropomum × Piaractus brachypomus) and tambaqui (Colossoma macropomum). Additionally, two are integrated systems: tambaqui raised in hapa nets (small cage-like enclosures) within Amazon river prawn (Macrobrachium amazonicum) ponds, and tambaqui and prawns cohabitating freely in the same ponds. A benchmark tool was utilized to establish reference values for comparing indicators between the systems, and a method was developed to create environmental sustainability indices that integrate all indicators. Environmental sustainability tends to decrease as trophic levels rise, supporting the initial hypothesis. However, the data revealed that Integrated Multi-Trophic Aquaculture (IMTA) systems ultimately have lower environmental sustainability than monocultures, which was contrary to our expectations. Algae and oyster farming were found to be more environmentally sustainable than low-trophic fish farming systems. Among these, the integrated systems did not demonstrate significantly greater sustainability than the monocultures, as initially anticipated. To gain a comprehensive understanding of sustainability, further research on the social and economic sustainability of these systems is necessary. Full article
(This article belongs to the Section Sustainable Aquaculture)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop