Effects of Dietary L-glutamic acid on the Growth Performance, Gene Expression Associated with Muscle Growth-Related Gene Expression, and Intestinal Health of Juvenile Largemouth Bass (Micropterus salmoides)
Abstract
:1. Introduction
2. Generally Used Wording ID: Materials and Methods
2.1. Preparation of Experimental Diet
2.2. Experimental Design and Feeding Management
2.3. Sample Analysis
2.3.1. Evaluation of the Growth Performance and Physical Composition
2.3.2. Nutrient Composition of Diets and Muscle
2.3.3. Histological Analysis
2.3.4. Analysis of Muscle Amino Acid Content
2.3.5. Determination of Intestinal Enzyme Activity
2.3.6. Real-Time Quantitative PCR Analysis
2.3.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Body Composition
3.3. Muscle Amino Acid Composition and Inosine Monophosphate Content
3.4. Proximate Composition and Histological Traits of Muscle Fibers
3.5. Muscle Growth and Development-Related Gene Expression
3.6. Intestinal Enzyme Activity
3.7. Intestinal Tissue Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pincinato, R.B.M. Market aspects and external economic effects of aquaculture. Aquac. Econ. Manag. 2021, 25, 127–134. [Google Scholar] [CrossRef]
- Afewerki, S.; Asche, F.; Misund, B.; Thorvaldsen, T.; Tveteras, R. Innovation in the Norwegian aquaculture industry. Rev. Aquac. 2023, 15, 759–771. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y. Marine factory farming techniques and equipment. IOP Conf. Ser. Earth Environ. Sci. 2020, 615, 012013. [Google Scholar] [CrossRef]
- He, J.; Feng, P.; Lv, C.; Lv, M.; Ruan, Z.; Yang, H.; Ma, H.; Wang, R. Effect of a fish–rice co-culture system on the growth performance and muscle quality of tilapia (Oreochromis niloticus). Aquac. Rep. 2020, 17, 100367. [Google Scholar] [CrossRef]
- Yu, J.; Yang, H.; Wang, Z.; Dai, H.; Xu, L.; Ling, C. Effects of arginine on the growth performance, hormones, digestive organ development and intestinal morphology in the early growth stage of layer chickens. Ital. J. Anim. Sci. 2018, 17, 1077–1082. [Google Scholar] [CrossRef]
- Garcia, I.S.; Teixeira, S.A.; Costa, K.A.; Marques, D.B.D.; Rodrigues, G.d.A.; Costa, T.C.; Guimarães, J.D.; Otto, P.I.; Saraiva, A.; Ibelli, A.M.G.; et al. l-Arginine supplementation of gilts during early gestation modulates energy sensitive pathways in pig conceptuses. Mol. Reprod. Dev. 2020, 87, 819–834. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, Z.; Zhou, Y.; Wei, H.; Zhang, X.; Xia, M.; Deng, Z.; Zou, Y.; Jiang, S.; Peng, J. Effect of oregano essential oil supplementation to a reduced-protein, amino acid-supplemented diet on meat quality, fatty acid composition, and oxidative stability of Longissimus thoracis muscle in growing-finishing pigs. Meat Sci. 2017, 133, 103–109. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Dai, Y.-J.; Xiao, K.; Wang, X.; Wang, M.-M.; Huang, Y.-Y.; Guo, H.-X.; Li, X.-F.; Jiang, G.-Z.; Liu, W.-B. Effects of different dietary ratio lysine and arginine on growth, muscle fiber development and meat quality of Megalobrama amblycephala. Aquac. Rep. 2022, 26, 101322. [Google Scholar] [CrossRef]
- Ding, L.; Chen, J.; He, F.; Chen, Q.; Li, Y.; Chen, W. Effects of dietary arginine supplementation on growth performance, antioxidant capacity, intestinal digestive enzyme activity, muscle transcriptome, and gut health of Siniperca chuatsi. Front. Mar. Sci. 2024, 10, 1305192. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, D.; Zhang, L.; Chen, X.; Wang, Y.; Zhang, L.; Ren, M.; Liang, H. Dietary arginine levels affect growth performance, intestinal antioxidant capacity and immune responses in largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 32, 101703. [Google Scholar] [CrossRef]
- Hou, Y.; Wu, G. l-Glutamate nutrition and metabolism in swine. Amino Acids 2018, 50, 1497–1510. [Google Scholar] [CrossRef]
- Hu, C.J.; Jiang, Q.Y.; Zhang, T.; Yin, Y.L.; Li, F.N.; Deng, J.P.; Wu, G.Y.; Kong, X.F. Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs1. J. Anim. Sci. 2017, 95, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, Y.; Zhou, X.-Q.; Zeng, X.-Y.; Feng, L.; Liu, Y.; Jiang, W.-D.; Li, S.-H.; Li, D.-B.; Wu, X.-Q.; et al. Effects of dietary glutamate supplementation on growth performance, digestive enzyme activities and antioxidant capacity in intestine of grass carp (Ctenopharyngodon idella). Aquac. Nutr. 2015, 21, 935–941. [Google Scholar] [CrossRef]
- Cai, Y.; He, L.; Cao, S.; Zeng, P.; Xu, L.; Luo, Y.; Tang, X.; Wang, Q.; Liu, Z.; He, Z.; et al. Insights into Dietary Different Co-Forms of Lysine and Glutamate on Growth Performance, Muscle Development, Antioxidation and Related Gene Expressions in Juvenile Grass Carp (Ctenopharyngodon idellus). Mar. Biotechnol. 2024, 26, 74–91. [Google Scholar] [CrossRef]
- Song, R.; Yao, X.; Jing, F.; Yang, W.; Wu, J.; Zhang, H.; Zhang, P.; Xie, Y.; Pan, X.; Zhao, L.; et al. Effects of Five Lipid Sources on Growth, Hematological Parameters, Immunity and Muscle Quality in Juvenile Largemouth Bass (Micropterus salmoides). Animals 2024, 14, 781. [Google Scholar] [CrossRef]
- Li, Y.; Qin, J.; Zheng, X.; Wang, Y. Production performance of largemouth bass Micropterus salmoides and water quality variation in monoculture, polyculture and integrated culture. Aquac. Res. 2019, 50, 423–430. [Google Scholar] [CrossRef]
- Zheng, Z.; Nie, Z.; Zheng, Y.; Tang, X.; Sun, Y.; Zhu, H.; Gao, J.; Xu, P.; Xu, G. Effects of Submerged Macrophytes on the Growth, Morphology, Nutritional Value, and Flavor of Cultured Largemouth Bass (Micropterus salmoides). Molecules 2022, 27, 927. [Google Scholar] [CrossRef]
- Xu, J.-M.; Gao, W.-R.; Liang, P.; Cai, G.-H.; Yang, H.-L.; Lin, J.-B.; Sun, Y.-Z. Pleurotus eryngii root waste and soybean meal co-fermented protein improved the growth, immunity, liver and intestinal health of largemouth bass (Micropterus salmoides). Fish. Shellfish. Immunol. 2024, 149, 109551. [Google Scholar] [CrossRef] [PubMed]
- Ido, A.; Ali, M.-F.-Z.; Takahashi, T.; Miura, C.; Miura, T. Growth of Yellowtail (Seriola quinqueradiata) Fed on a Diet Including Partially or Completely Defatted Black Soldier Fly (Hermetia illucens) Larvae Meal. Insects 2021, 12, 722. [Google Scholar] [CrossRef]
- Jastaniah, S.D.; Mansour, A.A.; Al-Tarawni, A.H.; El-Haroun, E.; Munir, M.B.; Saghir, S.A.M.; Abdul Kari, Z.; Téllez-Isaías, G.; Bottje, W.G.; Al-Farga, A.; et al. The effects of nano-curcumin on growth performance, feed utilization, blood biochemistry, disease resistance, and gene expression in European seabass (Dicentrarchus labrax) fingerlings. Aquac. Rep. 2024, 36, 102034. [Google Scholar] [CrossRef]
- Chen, M.; Li, Q.; Yang, L.; Lin, W.; Qin, Z.; Liang, S.; Lin, L.; Xie, X. Effects of diet containing germinated faba bean (Vicia faba L.) on the intestinal health and gut microbial communities of Nile tilapia (Oreochromis niloticus). Aquac. Rep. 2024, 36, 102053. [Google Scholar] [CrossRef]
- Che, M.; Lu, Z.; Liu, L.; Li, N.; Ren, L.; Chi, S. Dietary lysophospholipids improves growth performance and hepatic lipid metabolism of largemouth bass (Micropterus salmoides). Anim. Nutr. 2023, 13, 426–434. [Google Scholar] [CrossRef]
- Wang, W.; Yang, P.; He, C.; Chi, S.; Li, S.; Mai, K.; Song, F. Effects of dietary methionine on growth performance and metabolism through modulating nutrient-related pathways in largemouth bass (Micropterus salmoides). Aquac. Rep. 2021, 20, 100642. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, T.-R.; Li, Q.; Feng, L.; Liu, Y.; Jiang, W.-D.; Wu, P.; Zhao, J.; Zhou, X.-Q.; Jiang, J. Effect of dietary L-glutamate levels on growth, digestive and absorptive capability, and intestinal physical barrier function in Jian carp (Cyprinus carpio var. Jian). Anim. Nutr. 2020, 6, 198–209. [Google Scholar] [CrossRef]
- Xie, S.; Tian, L.; Niu, J.; Liang, G.; Liu, Y. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, and antioxidative ability of grass carp, Ctenopharyngodon idella. Fish. Physiol. Biochem. 2017, 43, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Deng, K.; Zhang, W.; Mai, K. Interactions of dietary vitamin C and proline on growth performance, anti-oxidative capacity and muscle quality of large yellow croaker Larimichthys crocea. Aquaculture 2020, 528, 735558. [Google Scholar] [CrossRef]
- Caballero-Solares, A.; Viegas, I.; Salgado, M.C.; Siles, A.M.; Sáez, A.; Metón, I.; Baanante, I.V.; Fernández, F. Diets supplemented with glutamate or glutamine improve protein retention and modulate gene expression of key enzymes of hepatic metabolism in gilthead seabream (Sparus aurata) juveniles. Aquaculture 2015, 444, 79–87. [Google Scholar] [CrossRef]
- Wei, Z.; Zhuang, Y.; Liu, X.; Zou, D.; Mai, K.; Sun, Z.; Ye, C. Leucine promotes protein synthesis of juvenile white shrimp Litopenaeus vannamei through TOR signaling pathway. Aquaculture 2023, 564, 739060. [Google Scholar] [CrossRef]
- Zhu, X.; Ren, L.; Liu, J.; Chen, L.; Cheng, J.; Chu, W.; Zhang, J. Transcriptome analysis provides novel insights into the function of PI3K/AKT pathway in maintaining metabolic homeostasis of Chinese perch muscle. Aquac. Rep. 2021, 21, 100838. [Google Scholar] [CrossRef]
- Luo, C.; Zhao, S.; Dai, W.; Zheng, N.; Wang, J. Proteomic analyses reveal GNG12 regulates cell growth and casein synthesis by activating the Leu-mediated mTORC1 signaling pathway. Biochim. Et Biophys. Acta (BBA)—Proteins Proteom. 2018, 1866, 1092–1101. [Google Scholar] [CrossRef]
- Gao, Q.; Hou, B.; Yang, H.; Jiang, X. Distinct role of 4E-BP1 and S6K1 in regulating autophagy and hepatitis B virus (HBV) replication. Life Sci. 2019, 220, 1–7. [Google Scholar] [CrossRef]
- Li, J.; Long, H.; Cong, Y.; Gao, H.; Lyu, Q.; Yu, S.; Kuang, Y. Quercetin prevents primordial follicle loss via suppression of PI3K/Akt/Foxo3a pathway activation in cyclophosphamide-treated mice. Reprod. Biol. Endocrinol. 2021, 19, 63. [Google Scholar] [CrossRef]
- Liu, H.-W.; Chen, Y.-J.; Chang, Y.-C.; Chang, S.-J. Oligonol, a Low-Molecular Weight Polyphenol Derived from Lychee, Alleviates Muscle Loss in Diabetes by Suppressing Atrogin-1 and MuRF1. Nutrients 2017, 9, 1040. [Google Scholar] [CrossRef] [PubMed]
- Roobab, U.; Zeng, X.-A.; Ahmed, W.; Madni, G.M.; Manzoor, M.F.; Aadil, R.M. Effect of Pulsed Electric Field on the Chicken Meat Quality and Taste-Related Amino Acid Stability: Flavor Simulation. Foods 2023, 12, 710. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, Y.-Y.; Huang, X.-H.; Xin, R.; Dong, X.-P.; Konno, K.; Zhu, B.-W.; Fisk, I.; Qin, L. Dynamic sensations of fresh and roasted salmon (Salmo salar) during chewing. Food Chem. 2022, 368, 130844. [Google Scholar] [CrossRef]
- Ackroff, K.; Sclafani, A. Flavor Preferences Conditioned by Dietary Glutamate. Adv. Nutr. 2016, 7, 845S–852S. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Lin, J.; Liu, X.; Yuan, Y.; Liu, G.; Ye, X. Effects of temperature on muscle growth and collagen deposition in zebrafish (Danio rerio). Aquac. Rep. 2022, 22, 100952. [Google Scholar] [CrossRef]
- Bao, S.-T.; Liu, X.-C.; Huang, X.-P.; Guan, J.-F.; Xie, D.-Z.; Li, S.-A.; Xu, C. Magnesium supplementation in high carbohydrate diets: Implications on growth, muscle fiber development and flesh quality of Megalobrama amblycephala. Aquac. Rep. 2022, 23, 101039. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, W.-D.; Zhang, J.-X.; Feng, L.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.-Y.; Tang, L.; Peng, Y.; et al. Cinnamaldehyde improves the growth performance and digestion and absorption capacity in grass carp (Ctenopharyngodon idella). Fish. Physiol. Biochem. 2020, 46, 1589–1601. [Google Scholar] [CrossRef]
- Yang, W.; Wu, J.; Song, R.; Li, Z.; Jia, X.; Qian, P.; Zhang, H.; Zhang, P.; Xue, X.; Li, S.; et al. Effects of dietary soybean lecithin on growth performances, body composition, serum biochemical parameters, digestive and metabolic abilities in largemouth bass Micropterus salmoides. Aquac. Rep. 2023, 29, 101528. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Q.; Wang, A.; Liu, Y.; Teame, T.; Ran, C.; Yang, Y.; He, S.; Zhou, W.; Olsen, R.E.; et al. Effects of dietary sodium acetate on food intake, weight gain, intestinal digestive enzyme activities, energy metabolism and gut microbiota in cultured fish: Zebrafish as a model. Aquaculture 2020, 523, 735188. [Google Scholar] [CrossRef]
- Volatiana, J.A.; Wang, L.; Gray, N.; Tong, S.; Zhang, G.; Shao, Q. Tributyrin-supplemented high-soya bean meal diets of juvenile black sea bream, Acanthopagrus schlegelii: Study on growth performance and intestinal morphology and structure. Aquac. Res. 2020, 51, 135–146. [Google Scholar] [CrossRef]
- Lei, W.; Li, J.; Fang, P.; Wu, S.; Deng, Y.; Luo, A.; He, Z.; Peng, M. Effects of Dietary Bile Acids on Growth Performance, Lipid Deposition, and Intestinal Health of Rice Field Eel (Monopterus albus) Fed with High-Lipid Diets. Aquac. Nutr. 2023, 2023, 3321734. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; El Asely, A.; Abd El-Naby, A.S.; Samir, F.; El-Ashram, A.; Sudhakaran, R.; Dawood, M.A.O. Growth performance, intestinal histomorphology and growth-related gene expression in response to dietary Ziziphus mauritiana in Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 512, 734301. [Google Scholar] [CrossRef]
- Barca, A.; Abramo, F.; Nazerian, S.; Coppola, F.; Sangiacomo, C.; Bibbiani, C.; Licitra, R.; Susini, F.; Verri, T.; Fronte, B. Hermetia illucens for Replacing Fishmeal in Aquafeeds: Effects on Fish Growth Performance, Intestinal Morphology, and Gene Expression in the Zebrafish (Danio rerio) Model. Fishes 2023, 8, 127. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Li, L.; Yao, Y.; Chen, C.; Hong, Y.; Chai, Y.; Liu, W. Effects of Tannic Acid Supplementation of a High-Carbohydrate Diet on the Growth, Serum Biochemical Parameters, Antioxidant Capacity, Digestive Enzyme Activity, and Liver and Intestinal Health of Largemouth Bass, Micropterus salmoides. Aquac. Nutr. 2024, 2024, 6682798. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.J.; Navarro-Guillén, C.; Lopes, A.; Colen, R.; Teodosio, R.; Mendes, R.; Oliveira, B.; Valente, L.M.P.; Conceição, L.E.C.; Engrola, S. Effects of dietary curcumin in growth performance, oxidative status and gut morphometry and function of gilthead seabream postlarvae. Aquac. Rep. 2022, 24, 101128. [Google Scholar] [CrossRef]
- Chen, X.-C.; Huang, X.-Q.; Tang, Y.-W.; Zhang, L.; Lin, F. Effects of dietary nucleotides on growth performance, immune response, intestinal morphology and disease resistance of juvenile largemouth bass, Micropterus salmoides. J. Fish. Biol. 2022, 101, 204–212. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, M.; Feng, D.; Wang, S.; Li, M. Effects of dietary D-mannose supplementation on growth performance, intestinal digestive capacity, gut microbiota, and ammonia tolerance of largemouth bass Micropterus salmoides. Aquac. Rep. 2024, 36, 102054. [Google Scholar] [CrossRef]
- Wang, S.; Han, Z.; Turchini, G.M.; Wang, X.; Fang, Z.; Chen, N.; Xie, R.; Zhang, H.; Li, S. Effects of Dietary Phospholipids on Growth Performance, Digestive Enzymes Activity and Intestinal Health of Largemouth Bass (Micropterus salmoides) Larvae. Front. Immunol. 2022, 12, 827946. [Google Scholar] [CrossRef]
- Vogt, G. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: A comparison to the mammalian model of digestion. Zoology 2021, 147, 125945. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Hou, Y.; Hou, Y.; Qian, L. Effects of multienzyme complex and probiotic supplementation on the growth performance, digestive enzyme activity and gut microorganisms composition of snakehead (Channa argus). Aquac. Nutr. 2019, 25, 15–25. [Google Scholar] [CrossRef]
- Fang, H.; Xie, J.; Liao, S.; Guo, T.; Xie, S.; Liu, Y.; Tian, L.; Niu, J. Effects of Dietary Inclusion of Shrimp Paste on Growth Performance, Digestive Enzymes Activities, Antioxidant and Immunological Status and Intestinal Morphology of Hybrid Snakehead (Channa maculata ♀ × Channa argus ♂). Front. Physiol. 2019, 10, 1027. [Google Scholar] [CrossRef] [PubMed]
- Lakwani, M.A.S.; Kenanoğlu, O.N.; Taştan, Y.; Bilen, S. Effects of black mustard (Brassica nigra) seed oil on growth performance, digestive enzyme activities and immune responses in rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2022, 53, 300–313. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, S.; Dong, X.; Chi, S.; Yang, Q.; Liu, H.; Tan, B.; Xie, S. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of pearl gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Fish. Shellfish. Immunol. 2022, 120, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Ruenkoed, S.; Nontasan, S.; Phudkliang, J.; Phudinsai, P.; Pongtanalert, P.; Panprommin, D.; Mongkolwit, K.; Wangkahart, E. Effect of dietary gamma aminobutyric acid (GABA) modulated the growth performance, immune and antioxidant capacity, digestive enzymes, intestinal histology and gene expression of Nile tilapia (Oreochromis niloticus). Fish. Shellfish. Immunol. 2023, 141, 109056. [Google Scholar] [CrossRef]
- Sokooti, R.; Chelemal Dezfoulnejad, M.; Javaheri Baboli, M.; Askary Sary, A.; Mabudi, H. The effects of probiotics-supplemented diets on Asian sea bass (Lates calcarifer): Growth performance, microbial flora, digestive enzymes activity, serum biochemical and non-specific immune indices. Aquac. Res. 2022, 53, 5500–5509. [Google Scholar] [CrossRef]
Item | CON | 0.2% Glu | 0.4% Glu | 0.6% Glu | 0.8% Glu |
---|---|---|---|---|---|
Fish meal | 40 | 40 | 40 | 40 | 40 |
Chicken meal | 10 | 10 | 10 | 10 | 10 |
Cotton meal | 7.5 | 7.5 | 7.5 | 7.5 | 7.5 |
Soybean meal | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 |
Soy protein | 8 | 8 | 8 | 8 | 8 |
Flour | 16 | 16 | 16 | 16 | 16 |
Fish oil | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Microcrystalline cellulose | 1.3 | 1.1 | 0.9 | 0.7 | 0.5 |
Mineral mixture | 1 | 1 | 1 | 1 | 1 |
Vitamin mix | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Calciumbiphosphate | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Choline chloride | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Glutamic acid | 0 | 0.2 | 0.4 | 0.6 | 0.8 |
Total | 100 | 100 | 100 | 100 | 100 |
Analyzed chemical composition | |||||
Crude protein | 48.26 | 48.31 | 49.01 | 48.22 | 49.23 |
Crude lipid | 6.14 | 6.07 | 6.19 | 6.03 | 6.12 |
Moisture | 8.05 | 8.04 | 8.03 | 8.02 | 8.01 |
Crude ash | 12.57 | 12.59 | 12.27 | 12.42 | 12.34 |
Target Gene | Primer Sequence (5–3′) | Number/Source |
---|---|---|
pi3k | F-CGCAAGACCAGAGATCAGTATC R-CGTCGTCCACCATAGAGTATTG | XM_038733022.1 |
akt | F-CACCGTAGAACCGAGCCCGCT R-CGCCATGAAGATCCTAAAGAA | [23] |
tor | F-TCAGGACCTCTTCTCATTGGC R-CCTCTCCCACCATGTTTCTCT | [23] |
S6k1 | F-GCCAATCTCAGCGTTCTCAAC R-CTGCCTAACATCATCCTCCTT | XM_038708508.1 |
4ebp1 | F-ACGAGGTCTGCCCAACATTC R-CAGCGTTGCTGCTATCAGGT | XM_038703879.1 |
Foxo3a | F-AAGAAGAAAGCCTCGCTACAG R-GTGGGACTTCCTGTCCATTT | XM_038728762.1 |
myod | F-CCTGCCGCTGATGATTTCTAT R-AGTCGTCCGGCTTCAGTA | EU367961.1 |
myog | F-GTGACAGGAACAGAGGACAAA R-ACGATCCATGGTAACAGTCTTC | XM_038697403.1 |
Myf5 | F-GGCTGAAGAAGGTCAACCA R-GTCCTGCAGACTCTCAATGTAA | EU555403.1 |
murf-1 | F-ACGCCAAAGAGCTGAAGTGT R-TGTCCGAACACCTTGCACAT | XM_038728309.1 |
atrogin-1 | F-CCAAATCAACAGGCCCACAT R-GACAGACGCTGCATGATGTT | XM_038711973.1 |
β-actin | F-ACTGCTGCTTCCTCTTCATC R-GGATACCGCAAGACTCCATAC | MH018565.1 |
Item | CON | 0.2% Glu | 0.4% Glu | 0.6% Glu | 0.8% Glu |
---|---|---|---|---|---|
IBW (g/fish) | 8.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 | 8.00 ± 0.00 |
FBW (g/fish) | 47.81 ± 1.63 c | 56.13 ± 2.64 ab | 58.94 ± 5.61 a | 49.17 ± 2.48 c | 52.70 ± 1.70 bc |
FCR | 1.31 ± 0.05 a | 1.12 ± 0.06 c | 1.20 ± 0.06 abc | 1.27 ± 0.08 ab | 1.18 ± 0.07 bc |
FI (g/fish) | 52.18 ± 1.65 a | 53.72 ± 4.86 a | 60.79 ± 4.43 b | 52.33 ± 0.40 a | 52.51 ± 1.35 a |
WGR (%) SGR (%/day) | 497.32 ± 20.37 c 3.19 ± 0.06 c | 601.10 ± 33.08 ab 3.48 ± 0.08 ab | 636.16 ± 69.94 a 3.56 ± 0.17 a | 514.22 ± 30.70 c 3.24 ± 0.09 c | 558.38 ± 21.37 bc 3.36 ± 0.06 bc |
CF (g/cm3) | 2.13 ± 0.36 ab | 2.17 ± 0.16 ab | 2.39 ± 0.21 a | 2.11 ± 0.33b | 2.13 ± 0.56 ab |
VSI (%) | 7.22 ± 0.72 | 6.98 ± 0.64 | 6.89 ± 0.6 | 7.17 ± 0.64 | 6.7 ± 1.32 |
Item | CON | 0.2% Glu | 0.4% Glu | 0.6% Glu | 0.8% Glu |
---|---|---|---|---|---|
Crude protein | 57.29 ± 0.96 | 58.96 ± 1.35 | 57.60 ± 0.55 | 58.34 ± 2.38 | 58.55 ± 1.51 |
Crude lipid | 21.29 ± 2.57 | 21.22 ± 1.90 | 21.95 ± 0.77 | 22.83 ± 2.46 | 21.88 ± 1.06 |
Moisture | 69.91 ± 1.09 | 69.7 ± 0.15 | 69.47 ± 0.83 | 70.09 ± 1.17 | 68.97 ± 1.18 |
Crude ash | 14.75 ± 0.96 | 13.63 ± 0.54 | 13.52 ± 0.17 | 13.21 ± 0.33 | 13.75 ± 0.56 |
Item | CON | 0.2% Glu | 0.4% Glu | 0.6% Glu | 0.8% Glu |
---|---|---|---|---|---|
Crude protein | 84.91 ± 0.73 a | 86.89 ± 0.03 b | 87.02 ± 0.04 bc | 87.56 ± 0.03 c | 86.76 ± 0.05 b |
Inosine monophosphate | 2.12 ± 0.06 a | 2.80 ± 0.07 bc | 3.10 ± 0.11 bc | 2.69 ± 0.01 bc | 2.58 ± 0.06 abc |
Aspartic acid | 9.13 ± 0.11 a | 9.41 ± 0.13 bc | 9.47 ± 0.06 c | 9.40 ± 0.07 bc | 9.38 ± 0.06 bc |
Glutamic acid | 14.43 ± 0.26 a | 14.75 ± 0.12 ab | 14.89 ± 0.03 b | 14.92 ± 0.31 b | 14.87 ± 0.09 b |
Phenylalanine | 3.83 ± 0.12 | 3.91 ± 0.07 | 3.96 ± 0.04 | 3.91 ± 0.58 | 3.91 ± 0.02 |
Alanine | 6.04 ± 0.10 | 6.07 ± 0.18 | 6.15 ± 0.13 | 6.21 ± 0.09 | 6.20 ± 0.02 |
Glycine | 4.15 ± 0.05 | 4.23 ± 0.15 | 4.29 ± 0.08 | 4.24 ± 0.13 | 4.31 ± 0.02 |
Tyrosine | 4.15 ± 0.05 a | 4.23 ± 0.15 c | 4.29 ± 0.08 c | 4.24 ± 0.13 c | 4.31 ± 0.02 bc |
Serine | 3.39 ± 0.12 a | 3.49 ± 0.05 b | 3.51 ± 0.02 b | 3.49 ± 0.04 b | 3.50 ± 0.00 b |
Glycine | 4.15 ± 0.05 a | 4.23 ± 0.15 b | 4.29 ± 0.08 b | 4.24 ± 0.13 b | 4.31 ± 0.02 b |
Threonine | 3.89 ± 0.02 a | 4.02 ± 0.04 b | 4.05 ± 0.04 b | 4.02 ± 0.05 b | 4.03 ± 0.01 b |
Histidine | 2.14 ± 0.08 | 2.21 ± 0.04 | 2.18 ± 0.06 | 2.20 ± 0.06 | 2.18 ± 0.01 |
Arginine | 5.56 ± 0.45 | 5.70 ± 0.09 | 5.73 ± 0.07 | 5.73 ± 0.02 | 5.73 ± 0.07 |
Valine | 4.10 ± 0.08 a | 4.23 ± 0.06 b | 4.25 ± 0.05 b | 4.23 ± 0.05 b | 4.17 ± 0.02 ab |
Methionine | 2.69 ± 0.03 a | 2.79 ± 0.03 b | 2.81 ± 0.03 b | 2.79 ± 0.01 b | 2.78 ± 0.11 b |
Isoleucine | 4.27 ± 0.05 a | 4.43 ± 0.06 b | 4.45 ± 0.04 b | 4.41 ± 0.05 b | 4.37 ± 0.01 b |
Leucine | 7.07 ± 0.14 a | 7.35 ± 0.08 b | 7.38 ± 0.12 b | 7.35 ± 0.08 b | 7.35 ± 0.10 b |
Lysine | 8.18 ± 0.08 a | 8.48 ± 0.08 b | 8.58 ± 0.11 b | 8.53 ± 0.22 b | 8.66 ± 0.02 b |
Total amino acids IMP (mg/kg) | 81.80 ± 0.71 a 2.12 ± 0.06 a | 84.12 ± 0.64 b 2.80 ± 0.07 bc | 84.78 ± 0.21 b 3.10 ± 0.11 bc | 84.45 ± 0.33 b 2.69 ± 0.01 bc | 84.46 ± 0.02 b 2.58 ± 0.06 abc |
Item | CON | 0.2%Glu | 0.4%Glu | 0.6%Glu | 0.8%Glu |
---|---|---|---|---|---|
Amylase | 369.57 ± 12.46 b | 440.88 ± 6.81 d | 410.48 ± 15.85 cd | 378.68 ± 0.85 bc | 305.37 ± 42.09 a |
Lipase | 372.90 ± 37.93 a | 444.75 ± 10.25 b | 495.73 ± 15.04 c | 499.83 ± 26.72 c | 464.88 ± 5.11 bc |
Protease | 731.68 ± 25.56 a | 1041.18 ± 57.12 b | 1398.53 ± 12.05 c | 1184.85 ± 156.94 b | 841.77 ± 60.19 a |
Item | CON | 0.2% Glu | 0.4% Glu | 0.6% Glu | 0.8% Glu |
---|---|---|---|---|---|
Villus height (µm) | 225.38 ± 31.76 a | 261.52 ± 32.16 ab | 308.3 ± 29.11 b | 257.29 ± 43.62 ab | 266.28 ± 16.09 ab |
Villus width (µm) | 44.64 ± 6.17 ab | 45.27 ± 3.60 ab | 41.26 ± 7.40 a | 51.43 ± 3.61 b | 46.82 ± 1.63 ab |
Intestinal wall thickness (µm) | 64.38 ± 4.80 | 71.93 ± 2.66 | 76.66 ± 14.19 | 65.05 ± 10.26 | 64.14 ± 6.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.; Huang, W.; Zhou, M.; Gao, H.; Lu, X.; Yu, Z.; Sun, M.; Huang, Y. Effects of Dietary L-glutamic acid on the Growth Performance, Gene Expression Associated with Muscle Growth-Related Gene Expression, and Intestinal Health of Juvenile Largemouth Bass (Micropterus salmoides). Fishes 2024, 9, 312. https://doi.org/10.3390/fishes9080312
Jiang F, Huang W, Zhou M, Gao H, Lu X, Yu Z, Sun M, Huang Y. Effects of Dietary L-glutamic acid on the Growth Performance, Gene Expression Associated with Muscle Growth-Related Gene Expression, and Intestinal Health of Juvenile Largemouth Bass (Micropterus salmoides). Fishes. 2024; 9(8):312. https://doi.org/10.3390/fishes9080312
Chicago/Turabian StyleJiang, Feifan, Wenqing Huang, Meng Zhou, Hongyan Gao, Xiaozhou Lu, Zhoulin Yu, Miao Sun, and Yanhua Huang. 2024. "Effects of Dietary L-glutamic acid on the Growth Performance, Gene Expression Associated with Muscle Growth-Related Gene Expression, and Intestinal Health of Juvenile Largemouth Bass (Micropterus salmoides)" Fishes 9, no. 8: 312. https://doi.org/10.3390/fishes9080312
APA StyleJiang, F., Huang, W., Zhou, M., Gao, H., Lu, X., Yu, Z., Sun, M., & Huang, Y. (2024). Effects of Dietary L-glutamic acid on the Growth Performance, Gene Expression Associated with Muscle Growth-Related Gene Expression, and Intestinal Health of Juvenile Largemouth Bass (Micropterus salmoides). Fishes, 9(8), 312. https://doi.org/10.3390/fishes9080312