Shear Behavior of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers: A State-of-the-Art Review
Abstract
:1. Introduction
2. Shear Behavior of UHPC Deep Beams in International Standards
2.1. Minimum Shear Reinforcement
2.1.1. ACI 318-19 [30]
2.1.2. Eurocode 2 (EC-2) [31]
2.2. Recommended Shear Design Guidelines for UHPC Deep Beams
2.2.1. France Association of Civil Engineering (AFGC-13) [32]
2.2.2. Korea Concrete Institute (KCI-2012) [33]
2.2.3. Federal Highway Administration Research and Technology (FHWA) [34]
3. Significance of Study
4. Influence of Effective Factors on the Shear Capacity of UHPC-DBs
4.1. Influence of Fiber Content (FC)
4.2. Influence of Vertical Web Reinforcement (ρsv)
4.3. Influence of Horizontal Web Reinforcement (ρsh)
4.4. Influence of Longitudinal Reinforcement (ρs)
4.5. Influence of Shear Span-to-Depth Ratio (λ)
5. Effect of Compressive Strength on the Shear Capacity of UHPC Deep Beams
6. Effect of Vertical Web Reinforcement (ρsv) on the Shear Capacity of UHPC Deep Beams
7. Effect of Longitudinal Reinforcement (ρs) on the Shear Capacity of UHPC Deep Beams
8. Effect of Horizontal Web Reinforcement (ρsh) on the Shear Capacity of UHPC Deep Beams
9. Effect of Shear Span-to-Depth Ratio (λ) on the Shear Capacity of UHPC Deep Beams
10. Effect of Fiber Content (FC) on the Shear Capacity of UHPC Deep Beams
11. Finite Element Analysis of Shear Behavior in UHPC-DBs
12. Conclusions and Recommendations
- In terms of the impact of compressive strength on the shear capacity of UHPC deep beams, a 63.36% improvement, the maximum observed, occurs when compressive strength increases by up to 29%.
- The shear capacity of UHPC-DBs can be enhanced by up to 38.14% by incorporating ρsv of 0.6, compared to those without any ρsv.
- An increase in ρs by up to 48.15% results in a maximum improvement of 19.02% in the shear capacity of UHPC-DBs.
- A maximum improvement of 38.14% in the shear capacity of UHPC-DBs can be achieved when ρsh increases by up to 0.33.
- A reduction of 61.29% in λ resulted in a maximum increase of 49.29% in the shear capacity of UHPC-DBs.
- Incorporating steel fiber with a content of 2% resulted in a maximum improvement of 63.24% in the shear capacity of UHPC-DBs, compared to those reinforced with no fibers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Wu, Z.; Shi, C.; Yuan, Q.; Zhang, Z. Durability of ultra-high performance concrete—A review. Constr. Build. Mater. 2020, 255, 119296. [Google Scholar] [CrossRef]
- Amran, M.; Huang, S.-S.; Onaizi, A.M.; Makul, N.; Abdelgader, H.S.; Ozbakkaloglu, T. Recent trends in ultra-high performance concrete (UHPC): Current status, challenges, and future prospects. Constr. Build. Mater. 2022, 352, 129029. [Google Scholar] [CrossRef]
- Bajaber, M.A.; Hakeem, I.Y. UHPC evolution, development, and utilization in construction: A review. J. Mater. Res. Technol. 2021, 10, 1058–1074. [Google Scholar] [CrossRef]
- ACI-Committee. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14); American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Abadel, A.A.; Albidah, A.S. Investigation of Shear Reinforcement Schemes for RC Deep Beams. Arab. J. Sci. Eng. 2021, 46, 4747–4763. [Google Scholar] [CrossRef]
- Abadel, A.; Alenzi, S.; Almusallam, T.; Abbas, H.; Al-Salloum, Y. Shear behavior of self-consolidating concrete deep beams reinforced with hybrid of steel and GFRP bars. Ain Shams Eng. J. 2023, 14, 102136. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, J.; Zhang, D.; Su, J.; Nuti, C.; Sennah, K. Experimental study on shear performances of ultra-high performance concrete deep beams. Structures 2022, 39, 310–322. [Google Scholar] [CrossRef]
- Smarzewski, P. Analysis of failure mechanics in hybrid fiber-reinforced high-performance concrete deep beams with and without openings. Materials 2018, 12, 101. [Google Scholar] [CrossRef]
- Deng, B.; Zhang, L.; Wu, S.; Jiang, H.; Tian, Y.; Fang, J.; Zhou, C. Shear Behavior of Non-Stirrup Ultra-High-Performance Concrete Beams: Contribution of Steel Fibers and UHPC. Buildings 2024, 14, 2705. [Google Scholar] [CrossRef]
- Ahmad, S.; Bahij, S.; Al-Osta, M.; Adekunle, S.; Al-Dulaijan, S. Shear behavior of ultra-high-performance concrete beams reinforced with high-strength steel bars. ACI Struct. J. 2019, 116, 3–14. [Google Scholar] [CrossRef]
- Abadel, A.A.; Abbas, H.; Alshaikh, I.M.; Tuladhar, R.; Altheeb, A.; Alamri, M. Experimental study on the effects of external strengthening and elevated temperature on the shear behavior of ultra-high-performance fiber-reinforced concrete deep beams. Structures 2023, 49, 943–957. [Google Scholar] [CrossRef]
- Abadel, A.; Abbas, H.; Almusallam, T.; Alshaikh IM, H.; Khawaji, M.; Alghamdi, H.; Salah, A.A. Experimental study of shear behavior of CFRP strengthened ultra-high-performance fiber-reinforced concrete deep beams. Case Stud. Constr. Mater. 2022, 16, e01103. [Google Scholar] [CrossRef]
- Yousef, A.M.; Tahwia, A.M.; Marami, N.A. Minimum shear reinforcement for ultra-high performance fiber reinforced concrete deep beams. Constr. Build. Mater. 2018, 184, 177–185. [Google Scholar] [CrossRef]
- Al-Enezi, M.S.; Yousef, A.M.; Tahwia, A.M. Shear capacity of UHPFRC deep beams with web openings. Case Stud. Constr. Mater. 2023, 18, e02105. [Google Scholar] [CrossRef]
- Erfan, A.M.; Hafez, R.; Badawy, M.M. Behavior of High Strength Concrete Deep Beams Reinforced with Basalt Fiber Reinforced Polymer Bars with and without Openings. Structures 2024, 69, 107397. [Google Scholar] [CrossRef]
- Si, X.-Y.; Zhang, G.-Y.; Zheng, C.; Xu, C.-Y.; Xu, H.; Wang, Y.-L. Experimental study on shear behavior of reinforced concrete deep beams with high-strength bars under uniform load. Structures 2022, 41, 553–567. [Google Scholar] [CrossRef]
- Habel, K.; Viviani, M.; Denarié, E.; Brühwiler, E. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cem. Concr. Res. 2006, 36, 1362–1370. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, L.; Ji, X.; Zeng, W.; Liu, J. Mechanical Properties of Polyethylene Fiber Reinforced Ultra High-Performance Concrete (UHPC). Materials 2022, 15, 8734. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Kim, S.; Park, G.-J.; Park, J.-J.; Kim, S.-W. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Compos. Struct. 2017, 174, 375–388. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high-performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Pyo, S.; Koh, T.; Tafesse, M.; Kim, H.-K. Chloride-induced corrosion of steel fiber near the surface of ultra-high performance concrete and its effect on flexural behavior with various thickness. Constr. Build. Mater. 2019, 224, 206–213. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Shin, W. Improvement of fiber corrosion resistance of ultra-high-performance concrete by means of crack width control and repair. Cem. Concr. Compos. 2021, 121, 104073. [Google Scholar] [CrossRef]
- Lv, L.-S.; Wang, J.-Y.; Xiao, R.-C.; Fang, M.-S.; Tan, Y. Influence of steel fiber corrosion on tensile properties and cracking mechanism of ultra-high performance concrete in an electrochemical corrosion environment. Constr. Build. Mater. 2021, 278, 122338. [Google Scholar] [CrossRef]
- Ghasemzadeh Mosavinejad, S.H.; Langaroudi MA, M.; Barandoust, J.; Ghanizadeh, A. Electrical and microstructural analysis of UHPC containing short PVA fibers. Constr. Build. Mater. 2020, 235, 117448. [Google Scholar] [CrossRef]
- Shi, F.; Yin, S.; Pham, T.M.; Tuladhar, R.; Hao, H. Pullout and flexural performance of silane groups and hydrophilic groups grafted polypropylene fiber reinforced UHPC. Constr. Build. Mater. 2021, 277, 122335. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, J.; Yang, X.; Dong, Y.; Feng, T.; Liu, J. Enhancing the PVA fiber-matrix interface properties in ultra high performance concrete: An experimental and molecular dynamics study. Constr. Build. Mater. 2021, 285, 122862. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D. Effect of lateral restraint and inclusion of polypropylene and steel fibers on spalling behavior, pore pressure, and thermal stress in ultra-high-performance concrete (UHPC) at elevated temperature. Constr. Build. Mater. 2021, 271, 121879. [Google Scholar] [CrossRef]
- Gong, J.; Ma, Y.; Fu, J.; Hu, J.; Ouyang, X.; Zhang, Z.; Wang, H. Utilization of fibers in ultra-high performance concrete: A review. Compos. Part B Eng. 2022, 241, 109995. [Google Scholar] [CrossRef]
- Hamzenezhadi, A.; Sharbatdar, M.K.; Kheyroddin, A. Experimental investigation of dimensional ratio effects on shear capacity of high-performance cementitious composites deep beams. J. Build. Eng. 2021, 43, 102862. [Google Scholar] [CrossRef]
- ACI 318-19; Building Code Requirements for Structural Concrete. ACI: ACI Farmington Hills, MI, USA, 2019.
- European Committee for Standardization. Eurocode 2: Design of Concrete Structures-Part 1; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Association Francaise du Genil Civil (AFGC). Ultra High-Performance Fiber Reinforced Concrete; Association Francaise du Genil Civil (AFGC): Paris, France, 2013. [Google Scholar]
- KCI-M-12-003; Design Recommendations for Ultra High Performance Concrete (K-UHPC). Korea Concrete Institute: Seoul, Republic of Korea, 2012.
- Russell, H.G.; Graybeal, B.A.; Russell, H.G. Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community, FHWA-HRT-13-060. 2013. Available online: https://rosap.ntl.bts.gov/view/dot/26387 (accessed on 1 June 2013).
- AASHTO (American Association of State Highway and Transportation Officials). AASHTO LRFD Bridge Design Specifications, 6th ed.; AASHTO (American Association of State Highway and Transportation Officials): Washington, DC, USA, 2012. [Google Scholar]
- Hamoda, A.; Ghalla, M.; Yehia, S.A.; Ahmed, M.; Abadel, A.A.; Baktheer, A.; Shahin, R.I. Experimental and numerical investigations of the shear performance of reinforced concrete deep beams strengthened with hybrid SHCC-mesh. Case Stud. Constr. Mater. 2024, 21, e03495. [Google Scholar] [CrossRef]
- Yousef, A.M.; Tahwia, A.M.; Al-Enezi, M.S. Experimental and Numerical Study of UHPFRC Continuous Deep Beams with Openings. Buildings 2023, 13, 1723. [Google Scholar] [CrossRef]
- He, J.; Chao, L. Numerical analysis on shear resistance of ultra-high performance concrete-normal strength concrete composite beam. Struct. Concr. 2021, 22, 1128–1146. [Google Scholar] [CrossRef]
- Mohammed, M.Y.; Ali, A.Y.; Kadhim, M.M.; Jawdhari, A. RC Deep Beams with Vertical Openings: Behavior and Proposed Mitigation Techniques. Pract. Period. Struct. Des. Constr. 2024, 29, 04023060. [Google Scholar] [CrossRef]
- Hussain, L.N.; Hamood, M.J.; Al-Shaarbaf, E.A. Behavior of ultra-high-performance concrete deep beams reinforced by basalt fibers. Open Eng. 2024, 14, 20240019. [Google Scholar] [CrossRef]
- Garber, D.; El-Helou, R.; Graybeal, B. Possible Framework for Using the Strut-and-Tie Method (STM) with Ultra-High Performance Concrete (UHPC), FHWA-RC-24-0004; US. Department of Transportation Federal Highway Administration: Washington, DC, USA, 2024. [Google Scholar]
- Shousha, H.; Mabrouk, R.T.; Torkey, A. Shear behavior of reinforced concrete inverted-T deep beam. Civ. Eng. J. 2023, 9, 1059–1084. [Google Scholar] [CrossRef]
- Li, S.; Wu, Z.; Zhang, J.; Xie, W. Experimental Study and Calculation Methods of Shear Capacity for High-Strength Reinforced Concrete Full-Scale Deep Beams. Materials 2022, 15, 6017. [Google Scholar] [CrossRef]
References | Compressive Strength (MPa) | Beam Dimensions (l × w × d) (mm) | ρs (%) | ρsv (%) | ρsh (%) | λ | a/mm | Fiber Type | Fiber Content (kg/m3) | Fiber Aspect Ratio (Length/Diameter) | Fiber Tensile Strength (MPa) | Ultimate Shear Capacity (kN) | Mid-span Deflection (mm) | Failure Mode | FEA | Loading Conditions | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Steel | Syn | Steel | Syn | Steel | Syn | Steel | Syn | |||||||||||||
[7] | 86.5 | 1200 × 150 × 600 | 3.62 | 0.19 | 0.16 | 0.923 | 500 | - | - | 0 | 0 | - | - | - | - | 609.42 | 2.25 | Diagonal compression failure | N | Three-point loading |
113.4 | S | 0.5 | 65 | 2300 | 873.31 | 3.25 | Shear compression (SC) failure | |||||||||||||
125.6 | 1 | 1089.40 | 3.5 | |||||||||||||||||
151.4 | 2 | 1356.96 | 3.70 | |||||||||||||||||
173.6 | 3 | 1407.18 | 3.75 | |||||||||||||||||
138.5 | 0.554 | 300 | 1 | 1409.21 | 4.45 | Diagonal compression failure | ||||||||||||||
0.739 | 400 | 1411.80 | 4.60 | Shear compression failure | ||||||||||||||||
0.923 | 500 | 1208.20 | 4.30 | |||||||||||||||||
3.19 | 1150.70 | 4.14 | ||||||||||||||||||
3.35 | 1176.40 | 4.25 | ||||||||||||||||||
3.62 | 0 | 1056.30 | 3.35 | |||||||||||||||||
0.38 | 1392.24 | 6.9 | ||||||||||||||||||
0.15 | 1180.60 | 4.27 | ||||||||||||||||||
0.19 | 0.24 | 1270.6 | 4.80 | |||||||||||||||||
0.31 | 1358.70 | 7.2 | ||||||||||||||||||
[8] | 114.2 | 1000 × 100 × 500 | 3.49 | 0.6 | 0.33 | 0.8 | 400 | - | - | 0 | 0 | - | - | - | - | 915 | 6.1 | Shear compression (SC) failure | N | Three-point loading |
88.1 | 0 | 0 | HE | PP | 1 | 0.25 | 50 | 480 | 1100 | 350 | 566 | 8.2 | ||||||||
84.7 | 2 | 0.5 | 571 | 7.8 | ||||||||||||||||
[11] | 139 | 1000 × 150 × 300 | 2.01 | 0 | 0 | 0.961 | 250 | HE | - | 1.5 | 0 | 54.55 | - | 1345 | - | 1115 | 4.40 | Diagonal shear crack | N | Four-point loading |
0.78 | 1260 | 8 | ||||||||||||||||||
[15] | 60 | 1500 × 150 × 500 | 0.42 (BFRP) | 0.6 | 0.349 | 0.87 | 400 | - | - | 0 | 0 | - | - | - | - | 583 | 22 | Diagonal cracks | Ansys software (v19): 10% difference compared to EXP results | Four-point loading |
0.51 (BFRP) | 659 | 14.8 | Compression cracks and BFRP failure rupture | |||||||||||||||||
0.81 (BFRP) | 720 | 13.4 | ||||||||||||||||||
0.51 | 511 | 14.4 | Flexural tension failure | |||||||||||||||||
[36] | 67 | 750 × 150 × 400 | 1.38% | 0.419 | 0 | 0.75 | 300 | - | PP | 0 | 1 | - | 480 | - | 350 | 85.32 | 7.79 | Diagonal shear crack | Abaqus software: 3% difference compared to EXP results | Three-point loading |
[37] | 132.5 | 1900 × 80 × 400 | 9.5 | 0.708 | 0.236 | 0.875 | 350 | HE | - | 1.5 | 0 | 65 | - | 828 | - | 1140 | 3.25 | Diagonal shear crack | Abaqus software (v6.14): 7% difference compared to EXP results | Continuous beam |
[12] | 139 | 1000 × 150 × 300 | 2.01 | 0 | 0 | 0.961 | 250 | HE | - | 1.5 | 0 | 54.55 | - | 1345 | - | 1104.9 | 4.35 | Splitting shear failure | N | Four-point loading |
0.78 | 1334.0 | 8.1 | ||||||||||||||||||
[16] | 73.16 | 1600 × 200 × 600 | 0.67 | 0.33 | 0.33 | 0.13 | 75 | - | - | 0 | 0 | - | - | - | - | 1321 | 2.51 | Splitting | N | Uniform load |
1.05 | 1401 | 3.18 | Local pressure | |||||||||||||||||
1.27 | 1409 | 3.43 | Diagonal-compression | |||||||||||||||||
1.05 | 0.25 | 1226 | 2.03 | |||||||||||||||||
0.5 | 1531 | 2.42 | ||||||||||||||||||
[13] | 172.9 | 1000 × 80 × 400 | 3.67 | 0.47 | 0 | 0.79 | 276.5 | HE | - | 1.5 | 0 | 25 | - | 828.3 | - | 890 | 1.9 | Diagonal shear crack | Abaqus software (v6.9): 10% difference compared to EXP results | Four-point loading |
0.84 | 1060 | 2 | ||||||||||||||||||
0.47 | 0.94 | 329 | 830 | 1.7 | ||||||||||||||||
0.84 | 910 | 1.8 | ||||||||||||||||||
1.68 | 1010 | 1.85 | ||||||||||||||||||
[38] | 150 | 2700 × 200 × 500 | 3.44 | 0.5 | 0 | 2.7 | 1350 | S | 2.5 | 0 | 80 | - | 2500 | - | 717 | 12 | Diagonal shear crack | Abaqus software- 3% difference compared to EXP results | Three-point loading | |
[39] | 84.63 | 1200 × 150 × 400 | 1.05 | 0 | 0 | 1 | 400 | S | - | 1.5 | 0 | 65 | - | 2300 | - | 361 | 4.03 | Diagonal shear crack | N | Three-point loading |
[9] | 158.8 | 800 × 150 × 300 | 7.05 | 0 | 0 | 1.2 | 293.4 | S | - | 2 | 0 | - | - | - | - | 737.5 | 2.97 | Shear compression failure | N | Three-point loading |
1100 × 150 × 300 | 1.8 | 440.1 | 538 | 5.00 | ||||||||||||||||
1700 × 150 × 300 | 3.1 | 758.0 | 374 | 21.59 | Flexural failure | |||||||||||||||
126.1 | 800 × 150 × 300 | 1.2 | 293.4 | - | 0 | 434 | 2.73 | Diagonal compression failure | ||||||||||||
126.1 | 1100 × 150 × 300 | 1.8 | 440.1 | 112.5 | 1.84 | Diagonal tension failure | ||||||||||||||
126.1 | 1700 × 150 × 300 | 3.1 | 758.0 | 173 | 5.98 | |||||||||||||||
160.3 | 1800 × 200 × 350 | 7.62 | 2 | 582 | S | 2 | 1250 | 5.56 | Shear compression failure | |||||||||||
155 | 1.5 | 931 | 4.23 | |||||||||||||||||
113.8 | - | 0 | 459.5 | 2.55 | Diagonal compression failure | |||||||||||||||
160.3 | 1800 × 200 × 400 | 6.67 | 2 | 682 | S | 2 | 1083.5 | 4.69 | Shear compression failure | |||||||||||
155 | 1.5 | 801.5 | 4.25 | |||||||||||||||||
113.8 | - | 0 | 397 | 2.75 | Diagonal tension failure | |||||||||||||||
[10] | 140 | 2000 × 150 × 225 | 2.62 | 2.33 | 0 | 1.8 | 328.5 | S | - | 1 | 0 | 59 | - | 2500 | - | 172.5 | 21.14 | Shear tension failure | N | Four-point loading |
150 | 2 | 186 | 23.30 | Shear compression failure | ||||||||||||||||
140 | 1.40 | 1 | 147.5 | 16.10 | Shear tension failure | |||||||||||||||
150 | 2 | 176 | 18.06 | Shear compression failure | ||||||||||||||||
140 | 3.67 | 1 | 155.5 | 17.85 | Shear tension failure | |||||||||||||||
150 | 2 | 182.8 | 19.86 | Shear compression failure | ||||||||||||||||
140 | 2.62 | 2.6 | 474.5 | 1 | 104.0 | 14.19 | Shear tension failure | |||||||||||||
3.67 | 114.5 | 13.18 | ||||||||||||||||||
150 | 2.62 | 2 | 116 | 15.03 | Shear compression failure | |||||||||||||||
3.67 | 125.05 | 16.18 | ||||||||||||||||||
[14] | 132.10 | 1000 × 80 × 400 | 5.46 | 0.35 | 0 | 0.79 | 276.5 | HE | - | 1.5 | - | 25 | - | 828.3 | - | 760 | 2.5 | Shear compression failure | N | Four-point loading |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirzaaghabeik, H.; Mashaan, N.S.; Shukla, S.K. Shear Behavior of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers: A State-of-the-Art Review. Infrastructures 2025, 10, 67. https://doi.org/10.3390/infrastructures10030067
Mirzaaghabeik H, Mashaan NS, Shukla SK. Shear Behavior of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers: A State-of-the-Art Review. Infrastructures. 2025; 10(3):67. https://doi.org/10.3390/infrastructures10030067
Chicago/Turabian StyleMirzaaghabeik, Hossein, Nuha S. Mashaan, and Sanjay Kumar Shukla. 2025. "Shear Behavior of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers: A State-of-the-Art Review" Infrastructures 10, no. 3: 67. https://doi.org/10.3390/infrastructures10030067
APA StyleMirzaaghabeik, H., Mashaan, N. S., & Shukla, S. K. (2025). Shear Behavior of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers: A State-of-the-Art Review. Infrastructures, 10(3), 67. https://doi.org/10.3390/infrastructures10030067