Topic Editors

Department of Civil and Environmental Engineering, Incheon National University, Incheon, Republic of Korea
Associate Professor, Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD 57007, USA

Advances on Structural Engineering, 3rd Edition

Abstract submission deadline
31 December 2025
Manuscript submission deadline
31 March 2026
Viewed by
1442

Topic Information

Dear Colleagues,

Structural engineering is centered on the analysis, design, and evaluation of engineering structures. This topic reports key findings from unpublished studies on advances and applications in all structural engineering fields. As we are aware of the comprehensiveness of the suggested topic, we encourage you to send manuscripts containing scientific findings within the broad field of structural engineering, which includes but is not limited to the following:

  • structural analysis and design;
  • bridge engineering;
  • building assessment;
  • earthquake engineering;
  • wind engineering;
  • impact engineering;
  • reliability evaluation;
  • structural monitoring;
  • image analysis;
  • noncontact sensors;
  • control structures;
  • multi-hazard simulation;
  • computational analysis;
  • lab and field testing;
  • multiscale analysis;
  • smart structures;
  • disaster mitigation;
  • big data evaluation.

Both theoretical and practice-oriented papers, including case studies and reviews, are encouraged.

Prof. Dr. Jong Wan Hu
Dr. Junwon Seo
Topic Editors

Keywords

  • structural analysis and design
  • structural experiments
  • concrete and composite structures
  • structural control
  • disaster mitigation
  • seismic design
  • structural monitoring
  • smart structures
  • big data evaluation
  • structural performance assessments
  • building and bridge

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Mechanics
applmech
- 2.3 2020 23.1 Days CHF 1200 Submit
Applied Sciences
applsci
2.5 5.3 2011 18.4 Days CHF 2400 Submit
Buildings
buildings
3.1 3.4 2011 15.3 Days CHF 2600 Submit
CivilEng
civileng
- 2.8 2020 24.4 Days CHF 1200 Submit
Infrastructures
infrastructures
2.7 5.2 2016 17.8 Days CHF 1800 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (3 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
23 pages, 3932 KiB  
Article
A Predictive Model for the Shear Capacity of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers Using a Hybrid ANN-ANFIS Algorithm
by Hossein Mirzaaghabeik, Nuha S. Mashaan and Sanjay Kumar Shukla
Appl. Mech. 2025, 6(2), 27; https://doi.org/10.3390/applmech6020027 - 4 Apr 2025
Viewed by 93
Abstract
Ultra-high-performance concrete (UHPC) has attracted considerable attention from both the construction industry and researchers due to its outstanding durability and exceptional mechanical properties, particularly its high compressive strength. Several factors influence the shear capacity of UHPC deep beams, including compressive strength, the shear [...] Read more.
Ultra-high-performance concrete (UHPC) has attracted considerable attention from both the construction industry and researchers due to its outstanding durability and exceptional mechanical properties, particularly its high compressive strength. Several factors influence the shear capacity of UHPC deep beams, including compressive strength, the shear span-to-depth ratio (λ), fiber content (FC), vertical web reinforcement (ρsv), horizontal web reinforcement (ρsh), and longitudinal web reinforcement (ρs). Considering these factors, this research proposes a novel hybrid algorithm that combines an adaptive neuro-fuzzy inference system (ANFIS) with an artificial neural network (ANN) to predict the shear capacity of UHPC deep beams. To achieve this, ANN and ANFIS algorithms were initially employed individually to predict the shear capacity of UHPC deep beams using available experimental data for training. Subsequently, a novel hybrid algorithm, integrating an ANN and ANFIS, was developed to enhance prediction accuracy by utilizing numerical data as input for training. To evaluate the accuracy of the algorithms, the performance metrics R2 and RMSE were selected. The research findings indicate that the accuracy of the ANN, ANFIS, and the hybrid ANN-ANFIS algorithm was observed as R2 = 0.95, R2 = 0.99, and R2 = 0.90, respectively. This suggests that despite not using experimental data as input for training, the ANN-ANFIS algorithm accurately predicted the shear capacity of UHPC deep beams, achieving an accuracy of up to 90.90% and 94.74% relative to the ANFIS and ANN algorithms trained on experimental results. Finally, the shear capacity of UHPC deep beams predicted using the ANN, ANFIS, and the hybrid ANN-ANFIS algorithm was compared with the values calculated based on ACI 318-19. Subsequently, a novel reliability factor was proposed, enabling the prediction of the shear capacity of UHPC deep beams reinforced with fibers with a 0.66 safety margin compared to the experimental results. This indicates that the proposed model can be effectively employed in real-world design applications. Full article
(This article belongs to the Topic Advances on Structural Engineering, 3rd Edition)
Show Figures

Figure 1

26 pages, 3014 KiB  
Review
Shear Behavior of Ultra-High-Performance Concrete Deep Beams Reinforced with Fibers: A State-of-the-Art Review
by Hossein Mirzaaghabeik, Nuha S. Mashaan and Sanjay Kumar Shukla
Infrastructures 2025, 10(3), 67; https://doi.org/10.3390/infrastructures10030067 - 20 Mar 2025
Viewed by 210
Abstract
Ultra-high-performance concrete (UHPC) is considered a highly applicable composite material due to its exceptional mechanical properties, such as high compressive strength and ductility. UHPC deep beams are structural elements suitable for short spans, transfer girders, pile caps, offshore platforms, and bridge applications where [...] Read more.
Ultra-high-performance concrete (UHPC) is considered a highly applicable composite material due to its exceptional mechanical properties, such as high compressive strength and ductility. UHPC deep beams are structural elements suitable for short spans, transfer girders, pile caps, offshore platforms, and bridge applications where they are designed to carry heavy loads. Several key factors significantly influence the shear behavior of UHPC deep beams, including the compressive strength of UHPC, the vertical web reinforcement (ρsv), horizontal web reinforcement (ρsh), and longitudinal reinforcement (ρs), as well as the shear span-to-depth ratio (λ), fiber type, fiber content (FC), and geometrical dimensions. In this paper, a comprehensive literature review was conducted to evaluate factors influencing the shear behavior of UHPC deep beams, with the aim of identifying research gaps and enhancing understanding of these influences. The findings from the literature were systematically classified and analyzed to clarify the impact and trends associated with each factor. The analyzed data highlight the effect of each factor on the shear behavior of UHPC deep beams, along with the overall trends. The findings indicate that an increase in compressive strength, FC, ρsv, ρs, and ρsh can enhance the shear capacity of UHPC-DBs by up to 63.36%, 63.24%, 38.14%, 19.02%, and 38.14%, respectively. Additionally, a reduction of 61.29% in λ resulted in a maximum increase of 49.29% in the shear capacity of UHPC-DBs. Full article
(This article belongs to the Topic Advances on Structural Engineering, 3rd Edition)
Show Figures

Figure 1

21 pages, 13440 KiB  
Article
Dynamic Adaptability of Spherical Bearings in Small-Span Bridges for Heavy-Haul Railways
by Shuli Chen, Ye Zhou, Kaize Xie, Panhui Zhang and Chen Li
Buildings 2025, 15(4), 619; https://doi.org/10.3390/buildings15040619 - 17 Feb 2025
Viewed by 348
Abstract
Plate bearings in existing small-span bridges for heavy-haul railways have exhibited corrosion, detachment, and surface cracks under large axle loads, making them inadequate for the “capacity expansion and renovation” of heavy-haul railways. Therefore, identifying new bearings suitable for small-span bridges and developing a [...] Read more.
Plate bearings in existing small-span bridges for heavy-haul railways have exhibited corrosion, detachment, and surface cracks under large axle loads, making them inadequate for the “capacity expansion and renovation” of heavy-haul railways. Therefore, identifying new bearings suitable for small-span bridges and developing a rapid bearing replacement method tailored to the operational needs of heavy-haul railways are urgent priorities. This paper takes spherical bearings as an example and proposes a method for rapidly replacing plate bearings with spherical bearings. The bearing replacement tests of six simply supported beams were carried out to verify the effectiveness of the proposed method. Dynamic performance tests of bridges and bearings were performed before and after the replacement. A finite element model was established to analyze the effects of bridge span and pier height. The results show that the entire bearing replacement process for a span bridge could be completed within 4 h using the proposed method. Compared to plate bearings, spherical bearings could improve the lateral dynamic performance of both the bridge and bearings. However, the improvement decreases as bridge span and pier height increase. For 2.2 m diameter cylindrical piers commonly used in heavy-haul railways, the pier height with spherical bearings should be limited to 10 m. Full article
(This article belongs to the Topic Advances on Structural Engineering, 3rd Edition)
Show Figures

Figure 1

Back to TopTop