Geocoding Applications for Enhancing Urban Water Supply Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Services Applied
2.2.1. Bing Maps [28]
2.2.2. Google Maps [30]
2.2.3. OpenStreetMap (OSM) [31]
2.2.4. Geoapify Location Platform [33]
2.2.5. ArcGIS World Geocoding Service [34]
2.2.6. Lechner Knowledge Center—Location Database [35]
2.3. Data Processing Workflow
3. Results and Discussion
4. Conclusions
- The frequency of identical coordinates assigned to multiple addresses was notably high in Geoapify Location Platform (81.51%) and OpenStreetMap/Nominatim (75.00%). This indicates that these platforms frequently failed to resolve unique addresses, and instead assigned them the same geocoded location, potentially compromising the precision required for applications such as water network modeling.
- Statistical analysis of the geocoding results showed that Lechner Knowledge Center outperformed other services in terms of accuracy and precision. The Lechner Knowledge Center exhibited the smallest average deviations (Y: 25.87 m, X: 22.73 m) and minimal standard deviations, with no instances of multiple addresses geocoded to the same coordinates. In comparison, other services like Geoapify and OpenStreetMap demonstrated larger deviations, highlighting the importance of selecting precise and reliable geocoding tools for urban water supply network applications. It is important to note that this service can only be considered the best among the examined services for addresses in Hungary.
- Google’s geocoding services successfully demonstrated the level of accuracy required for modeling municipal water utility networks. As alternatives, Bing’s free service and the ESRI ArcGIS-integrated geocoding service are also recommended for use.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sapkota, M.; Arora, M.; Malano, H.; Moglia, M.; Sharma, A.; George, B.; Pamminger, F. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities. Water 2014, 7, 153–174. [Google Scholar] [CrossRef]
- Leigh, N.G.; Lee, H. Sustainable and Resilient Urban Water Systems: The Role of Decentralization and Planning. Sustainability 2019, 11, 918. [Google Scholar] [CrossRef]
- Rathnayaka, K.; Malano, H.; Arora, M. Assessment of Sustainability of Urban Water Supply and Demand Management Options: A Comprehensive Approach. Water 2016, 8, 595. [Google Scholar] [CrossRef]
- Liu, W.; Song, Z. Review of Studies on the Resilience of Urban Critical Infrastructure Networks. Reliab. Eng. Syst. Saf. 2020, 193, 106617. [Google Scholar] [CrossRef]
- Iannacone, L.; Sharma, N.; Tabandeh, A.; Gardoni, P. Modeling Time-Varying Reliability and Resilience of Deteriorating Infrastructure. Reliab. Eng. Syst. Saf. 2022, 217, 108074. [Google Scholar] [CrossRef]
- Koks, E.; Van Ginkel, K.; Van Marle, M.; Lemnitzer, A. Brief Communication: Critical Infrastructure Impacts of the 2021 Mid-July Western European Flood Event. Nat. Hazards Earth Syst. Sci. Discuss. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Montalvo, I.; Izquierdo, J.; Schwarze, S.; Pérez-García, R. Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematics and Computers in Simulation 2010, 52, 1219–1227. [Google Scholar] [CrossRef]
- Osei-Kyei, R.; Tam, V.; Ma, M.; Mashiri, F. Critical review of the threats affecting the building of critical infrastructure resilience. Int. J. Disaster Risk Reduct. 2021, 60, 102316. [Google Scholar] [CrossRef]
- Abu-Bakar, H.; Williams, L.; Hallett, S.H. A review of household water demand management and consumption measurement. J. Clean. Prod. 2021, 292, 125872. [Google Scholar] [CrossRef]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review. Environ. Model. Softw. 2015, 72, 198–214. [Google Scholar] [CrossRef]
- Meng, F.; Fu, G.; Farmani, R.; Sweetapple, C.; Butler, D. Topological attributes of network resilience: A study in water distribution systems. Water Res. 2018, 143, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Giudicianni, C.; Di Nardo, A.; Di Natale, M.; Greco, R.; Santonastaso, G.F.; Scala, A. Topological taxonomy of water distribution networks. Water 2018, 10, 444. [Google Scholar] [CrossRef]
- Orgoványi, P.; Karches, T. GIS-Based Model Parameter Enhancement for Urban Water Utility Networks. Urban Sci. 2024, 8, 35. [Google Scholar] [CrossRef]
- Beal, C.D.; Flynn, J. Toward the digital water age: Survey and case studies of Australian water utility smart-metering programs. Utilities Policy 2015, 32, 29–37. [Google Scholar] [CrossRef]
- Kebe, A.M.; Faye, R.M.; Lishou, C. Multi agent-based addresses geocoding for more efficient home delivery service in developing countries. In e-Infrastructure and e-Services for Developing Countries, Proceedings of the 10th EAI International Conference, AFRICOMM 2018, Dakar, Senegal, 29–30 November 2019, Proceedings 10; Springer International Publishing: New York, NY, USA, 2019; pp. 294–304. [Google Scholar] [CrossRef]
- von Rhein, J.; Henze, G.P.; Long, N.; Fu, Y. Development of a topology analysis tool for fifth-generation district heating and cooling networks. Energy Convers. Manag. 2019, 196, 705–716. [Google Scholar] [CrossRef]
- Bermúdez, J.R.; López-Estrada, F.R.; Besançon, G.; Valencia-Palomo, G.; Torres, L.; Hernández, H.R. Modeling and simulation of a hydraulic network for leak diagnosis. Math. Comput. Appl. 2018, 23, 70. [Google Scholar] [CrossRef]
- Alegre, H.; Baptista, J.M.; Cabrera, E., Jr.; Cubillo, F.; Duarte, P.; Hirner, W.; Merkel, W.; Parena, R. Performance Indicators for Water Supply Services; IWA Publishing: London, UK, 2016. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plann. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Singh, S.K. Evaluating two freely available geocoding tools for geographical inconsistencies and geocoding errors. Open Geospat. Data Softw. Stand. 2017, 2, 1–8. [Google Scholar] [CrossRef]
- Chow, T.E.; Dede-Bamfo, N.; Dahal, K.R. Geographic disparity of positional errors and matching rate of residential addresses among geocoding solutions. Ann. GIS 2015, 22, 29–42. [Google Scholar] [CrossRef]
- Carriço, N.; Ferreira, B.; Barreira, R.; Antunes, A.; Grueau, C.; Mendes, A.; Brito, I.S. Data integration for infrastructure asset management in small to medium-sized water utilities. Water Sci. Technol. 2020, 82, 2737–2744. [Google Scholar] [CrossRef]
- Tiedmann, H.R.; Sela, L.; Stephens, K.K.; Faust, K.M. Leveraging water utility customer reporting for resilient operations and management. Sustain. Cities Soc. 2024, 101, 105087. [Google Scholar] [CrossRef]
- Di Mauro, A.; Cominola, A.; Castelletti, A.; Di Nardo, A. Urban water consumption at multiple spatial and temporal scales: A review of existing datasets. Water 2021, 13, 36. [Google Scholar] [CrossRef]
- Zandbergen, P.A. Geocoding quality and implications for spatial analysis. Geogr. Compass 2009, 3, 647–680. [Google Scholar] [CrossRef]
- Goldberg, D.W.; Wilson, J.P.; Knoblock, C.A. From text to geographic coordinates: The current state of geocoding. URISA J. 2007, 19, 33–46. [Google Scholar]
- Sharafat, A.; Khan, M.S.; Latif, K.; Tanoli, W.A.; Park, W.; Seo, J. BIM-GIS-Based Integrated Framework for Underground Utility Management System for Earthwork Operations. Appl. Sci. 2021, 11, 5721. [Google Scholar] [CrossRef]
- Bing Maps Documentation. Available online: https://learn.microsoft.com/en-us/bingmaps/ (accessed on 19 January 2025).
- Kılıç, B.; Gülgen, F. Accuracy and similarity aspects in online geocoding services: A comparative evaluation for Google and Bing maps. Int. J. Eng. Geosci. 2020, 5, 109–119. [Google Scholar] [CrossRef]
- Google Maps Documentation. Available online: https://developers.google.com/maps/documentation (accessed on 19 January 2025).
- Open Street Map. Available online: https://www.openstreetmap.org/help (accessed on 19 January 2025).
- Adding Basemaps in QGIS. Available online: https://mapscaping.com/adding-basemaps-in-qgis/ (accessed on 19 January 2025).
- Geoapify Location Platform. Available online: https://www.geoapify.com/ (accessed on 19 January 2025).
- ArcGIS World Geocoding Service. Available online: https://developers.arcgis.com/documentation/mapping-apis-and-services/geocoding/ (accessed on 19 January 2025).
- Lechner Knowledge Center. Available online: https://lechnerkozpont.hu/en (accessed on 19 January 2025).
- Pérez, V.; Aybar, C. Challenges in Geocoding: An Analysis of R Packages and Web Scraping Approaches. ISPRS Int. J. Geo-Inf. 2024, 13, 170. [Google Scholar] [CrossRef]
- Kinnee, E.J.; Tripathy, S.; Schinasi, L.; Shmool, J.L.C.; Sheffield, P.E.; Holguin, F.; Clougherty, J.E. Geocoding Error, Spatial Uncertainty, and Implications for Exposure Assessment and Environmental Epidemiology. Int. J. Environ. Res. Public Health 2020, 17, 5845. [Google Scholar] [CrossRef]
Geocoding Service Provider | Number of Addresses Geocoded (pcs) | Rate of Geocoded Addresses (%) |
---|---|---|
Bing Maps | 381 | 99.22 |
Google Earth Pro | 384 | 100.00 |
Google My Maps | 381 | 99.22 |
Google Cloud Platform | 384 | 100.00 |
OpenStreetMap/Nominatim | 376 | 97.92 |
Geoapify Location Platform | 381 | 99.22 |
ArcGIS World Geocoding Service | 384 | 100.00 |
Lechner Knowledge Center | 280 | 72.92 |
Geocoding Service Provider | Number of Addresses Geocoded with the Same Coordinates (pcs) | Rate of Geocoded Addresses with Identical Coordinates (%) |
---|---|---|
Bing Maps | - | - |
Google Earth Pro | 17 | 4.43 |
Google My Maps | 13 | 3.39 |
Google Cloud Platform | 21 | 5.47 |
OpenStreetMap/Nominatim | 288 | 75.00 |
Geoapify Location Platform | 313 | 81.51 |
ArcGIS World Geocoding Service | 32 | 8.33 |
Lechner Knowledge Center | 0 | 0.00 |
Geocoding Service Provider | Y|X Average (m) | Y|X Standard Deviation (m) | Y|X Maximum Absolute Deviation (m) | Y|X Minimum Absolute Deviation (m) |
---|---|---|---|---|
Bing—G-E | 24.39|21.28 | 22.31|17.29 | 873.15|549.36 | 0.09|0.13 |
Bing—G-M | 20.25|23.70 | 16.33|21.09 | 688.85|2180.85 | 0.05|0.13 |
Bing—G-C | 19.63|21.42 | 15.33|17.47 | 396.68|561.72 | 0.06|0.12 |
Bing—Nom | 123.39|106.70 | 92.07|77.78 | 683.57|483.14 | 0.02|0.02 |
Bing—Geo | 127.43|110.19 | 93.85|80.55 | 683.58|576.44 | 0.03|0.01 |
Bing—Gis | 47.46|39.01 | 64.50|51.40 | 1092.81|839.60 | 0.01|0.01 |
Bing—LKCLD | 25.87|22.73 | 16.64|12.10 | 560.87|202.50 | 0.56|1.02 |
G-E—G-M | 4.14|6.84 | 8.14|13.61 | 1375.47|1631.49 | 0.04|0.00 |
G-E—G-C | 8.60|2.70 | 16.87|5.27 | 1375.48|974.04 | 0.02|0.01 |
G-E—Nom | 125.01|108.86 | 88.95|75.83 | 599.43|456.19 | 0.07|0.08 |
G-E—Geo | 130.97|114.75 | 93.33|81.57 | 599.43|634.00 | 0.06|0.06 |
G-E—Gis | 44.58|41.47 | 66.31|58.99 | 1157.45|975.89 | 0.03|0.26 |
G-E—LKCLD | 32.47|41.47 | 28.52|17.62 | 991.57|242.80 | 0.00|0.03 |
G-M—G-C | 0.80|4.28 | 1.56|8.48 | 292.17|1619.14 | 0.00|0.01 |
G-M—Nom | 125.02|108.86 | 88.95|75.83 | 599.38|456.19 | 0.07|0.08 |
G-M—Geo | 131.98|118.12 | 94.51|85.18 | 973.10|1604.42 | 0.08|0.06 |
G-M—Gis | 41.46|40.96 | 61.25|58.48 | 1157.50|2607.38 | 0.08|0.03 |
G-M—LKCLD | 23.09|24.72 | 14.93|16.08 | 450.44|241.67 | 0.04|0.26 |
G-C—Nom | 125.00|108.87 | 88.93|75.85 | 599.39|456.20 | 0.08|0.06 |
G-C—Geo | 131.20|113.96 | 93.80|80.69 | 973.11|633.99 | 0.09|0.05 |
G-C—Gis | 47.15|44.14 | 70.99|63.91 | 1157.49|1343.00 | 0.07|0.01 |
G-C—LKCLD | 27.36|26.14 | 20.65|17.72 | 515.09|255.15 | 0.04|0.24 |
Nom—Geo | 2.86|2.73 | 5.37|5.12 | 48.74|46.48 | 0.01|0.01 |
Nom—Gis | 136.17|116.52 | 108.88|90.06 | 848.99|636.52 | 0.19|0.04 |
Nom—LKCLD | 111.60|102.40 | 83.18|73.66 | 576.08|472.43 | 0.07|0.46 |
Geo—Gis | 145.30|127.71 | 117.49|102.04 | 849.00|1002.96 | 0.18|0.02 |
Geo—LKCLD | 113.81|104.06 | 83.68|75.15 | 576.08|472.44 | 0.08|0.44 |
Gis—LKCLD | 47.46|46.03 | 54.35|45.91 | 1170.49|961.08 | 0.17|0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orgoványi, P.; Hammer, T.; Karches, T. Geocoding Applications for Enhancing Urban Water Supply Network Analysis. Urban Sci. 2025, 9, 51. https://doi.org/10.3390/urbansci9020051
Orgoványi P, Hammer T, Karches T. Geocoding Applications for Enhancing Urban Water Supply Network Analysis. Urban Science. 2025; 9(2):51. https://doi.org/10.3390/urbansci9020051
Chicago/Turabian StyleOrgoványi, Péter, Tamás Hammer, and Tamás Karches. 2025. "Geocoding Applications for Enhancing Urban Water Supply Network Analysis" Urban Science 9, no. 2: 51. https://doi.org/10.3390/urbansci9020051
APA StyleOrgoványi, P., Hammer, T., & Karches, T. (2025). Geocoding Applications for Enhancing Urban Water Supply Network Analysis. Urban Science, 9(2), 51. https://doi.org/10.3390/urbansci9020051