The Effect of Caputo Fractional Variable Difference Operator on a Discrete-Time Hopfield Neural Network with Non-Commensurate Order
Abstract
:1. Introduction
2. Preliminaries on Discrete Fractional Calculus
Discrete Fractional Calculus
- The -th fractional sum for the function h is defined as [16]:
3. The Discrete-Time Neural Network with an Incommensurate Fractional Variable Order
- represents the activation function of the neurons;
- denotes the weights matrix which describes the connection between i and j neurons;
- represents the self-regulating neurons’ parameters;
- are the external inputs; in our work, they are equal to 0.
3.1. Dynamical Analysis and Numerical Simulations
3.2. Bifurcation Diagram and Maximum Lyapunov Exponents
3.3. Complexity
- We calculate the discrete Fourier transform of the sequence as:
- The mean square value is given as:
- We set
- We define the inverse Fourier transform of as follows:Finally, the formula of the complexity is defined as:
3.4. The 0-1 Test Method for Chaos
4. Conclusions and Future Research Directions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kocarev, L.; Szczepanski, J.; Amigo, J.M.; Tomovski, I. Discrete Chaos—I: Theory. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 1300–1309. [Google Scholar] [CrossRef]
- Li, C.; Song, Y.; Wang, F.; Liang, Z.; Zhu, B. Chaotic path planner of autonomous mobile robots based on the standard map for surveillance missions. Math. Prob. Eng. 2015, 2015, 263964. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, S.; Bezerianosa, A.; Bountis, T.; Pavlides, G. Secure communication protocols with discrete nonlinear chaotic maps. J. Syst. Archit. 2001, 47, 61–72. [Google Scholar] [CrossRef]
- Kwok, H.S.; Tang, W.K.S.; Man, K.F. Online secure chatting system using discrete chaotic map. Int. J. Bifurcat. Chaos 2004, 14, 285–292. [Google Scholar] [CrossRef]
- Banerjee, S.; Kurth, J. Chaos and cryptography: A new dimension in secure communications. Eur. Phys. J. Spec. Top. 2014, 223, 1441–1445. [Google Scholar] [CrossRef]
- Fataf, N.A.A.; Mukherjee, S.; Said, M.R.M.; Rauf, U.F.A.; Hina, A.D.; Banerjee, S. Synchronization between two discrete chaotic systems for secure communications. Int. Conf. Comms. Elec. (ICCE) 2016, 477–481. [Google Scholar] [CrossRef]
- Hénon, M. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 1976, 50, 69–77. [Google Scholar] [CrossRef]
- Lozi, R. Un atracteur étrange du type attracteur de Hénon. J. Phys. Colloq. 1978, 39, 9–10. [Google Scholar] [CrossRef] [Green Version]
- Zeraoulia, E.; Sprott, J.C. The discrete hyperchaotic double scroll. Int. J. Bifurc. Chaos. 2009, 19, 1023–1027. [Google Scholar] [CrossRef]
- Hitzl, D.L.; Zele, F. An exploration of the Hénon quadratic map. Phys. D Nonlinear Phenom. 1985, 14, 305–326. [Google Scholar] [CrossRef]
- Baier, G.; Sahle, S. Design of hyperchaotic flows. Phys. Rev. E 1995, 51, 2712–2714. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z. (complete or anticipated) synchronization backstepping scheme in a class of discrete–time chaotic (hyperchaotic) systems: A symbolic–numeric computation approach. Chaos 2006, 16, 1930727. [Google Scholar] [CrossRef] [PubMed]
- Ouannas, A.; Bendoukha, S.; Khennaoui, A.A.; Grassi, G.; Wang, X.; Pham, V.T. Chaos synchronization of fractional-order discrete-time systems with different dimensions using two scaling matrices. Open Phys. J. 2019, 17, 942–949. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1999; ISBN 9780080531984. [Google Scholar]
- Ostalczyk, P. Discrete Fractional Calculus: Applications in Control and Image Processing; World Scientific: Singapore, 2015. [Google Scholar] [CrossRef]
- Atici, F.M.; Eloe, P. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 2009, 1–12. [Google Scholar] [CrossRef]
- Diaz, J.B.; Osler, T.J. Differences of fractional order. Math. Comput. 1974, 28, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Baleanu, D. Discrete fractional logistic map and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Wang, X.; Pham, V.T.; Alsaadi, F.E. Chaos, control, and synchronization in some fractional-order difference equations. Adv. Differ. Equ. 2019, 2019, 412. [Google Scholar] [CrossRef] [Green Version]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Lozi, R.P.; Pham, V.T. On Fractional Order Discrete Time Systems: Chaos, Stabilization and Synchronization. Chaos Solit. Fractals 2019, 119, 150–162. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Odibat, Z.; Pham, V.T.; Grassi, G. On the dynamics, control and synchronization of fractional-order Ikeda map. Chaos Solit. Fractals 2019, 123, 108–115. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Grassi, G.; Pham, V.T.; El-Khazali, R.; Vo Hoang, D. A Quadratic Fractional Map without Equilibria: Bifurcation, 0-1 Test, Complexity, Entropy, and Control. Int. J. Electron. 2020, 9, 748. [Google Scholar] [CrossRef]
- Ouannas, A.; Almatroud, O.A.; Khennaoui, A.A.; Al-sawalha, M.M.; Baleanu, D.; Huynh, V.V.; Pham, V.T. Bifurcations, Hidden Chaos and Control in Fractional Maps. Symmetry 2020, 12, 879. [Google Scholar] [CrossRef]
- Hadjabi, F.; Ouannas, A.; Shawagfeh, N.; Khennaoui, A.A.; Grassi, G. On Two-Dimensional Fractional Chaotic Maps with Symmetries. Symmetry 2020, 12, 756. [Google Scholar] [CrossRef]
- Abdeljawad, T. On Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yu, Y.; Wen, G. Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw. 2014, 55, 98–109. [Google Scholar] [CrossRef]
- Lazarević, M. Stability and stabilization of fractional order time delay systems. Sci. Tech. Rev. 2011, 61, 31–45. [Google Scholar]
- Chen, L.; Chai, Y.; Wu, R.; Ma, T.; Zhai, H. Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 2013, 111, 190–194. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Wang, H.; Huo, Y.; Luo, J. Adaptive synchronization for a class of uncertain fractional-order neural networks. Entropy 2015, 17, 7185–7200. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Yu, Y.; Zhang, S.; Hai, X. Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control. Chin. Phys. B 2018, 27, 010202. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.; Yu, J. LMI conditions for global stability of fractional-order neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2423–2433. [Google Scholar] [CrossRef]
- Roohi, M.; Zhang, C.; Chen, Y. Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography. Nonlinear Dyn. 2020, 100, 3979–4001. [Google Scholar] [CrossRef]
- Chen, L.; Chai, Y.; Wu, R.; Yang, J. Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II 2012, 59, 602–606. [Google Scholar] [CrossRef]
- Ahn, H.S.; Chen, Y. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica 2008, 44, 2985–2988. [Google Scholar] [CrossRef]
- Farges, C.; Moze, M.; Sabatier, J. Pseudo state feedback stabilization of commensurate fractional order systems. In Proceedings of the 2009 European Control Conference (ECC), Budapest, Hungary, 23–26 August 2009; pp. 3395–3400. [Google Scholar] [CrossRef]
- Utkin, V.I. Sliding mode control in discrete-time and difference systems. Var. Struct. Lyapunov Control 1994, 193, 87–107. [Google Scholar] [CrossRef]
- Slotine, J.J.; Li, W. Adaptive strategies in constrained manipulation. In Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Raleigh, NC, USA, 31 March–3 April 1987; pp. 595–601. [Google Scholar] [CrossRef]
- Ouannas, A.; Khenaoui, A.A.; Almatroud, A.O.; Gasri, A.; Al-Sawalha, M.M.; Jahanshahi, H. Coexisting Behaviors of Asymmetric Attractors in New Fractional Discrete-Time Neural Network with Variable Order and Short Memory Effect: Chaos, Complexity and Multistability. in press.
- Kaslik, E.; Racdulescu, I.R. Dynamics of complex-valued fractional-order neural networks. Neural Netw. 2017, 89, 39–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbes, A.; Ouannas, A.; Shawagfeh, N.; Khennaoui, A.A. Incommensurate Fractional Discrete Neural Network: Chaos and complexity. Eur. Phys. J. Plus 2022, 137, 235. [Google Scholar] [CrossRef]
- Kaslik, E.; Sivasundaram, S. Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 2012, 32, 245–256. [Google Scholar] [CrossRef]
- Chen, F.; Luo, X.; Zhou, Y. Existence results for nonlinear fractional difference equation. Adv. Differ. Equation 2011, 2011, 713201. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.C.; Baleanu, D. Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 95–100. [Google Scholar] [CrossRef]
- Tavazoei, M.S.; Haeri, M. A proof for non existence of periodic solutions in time invariant fractional order systems. Automatica 2009, 45, 1886–1890. [Google Scholar] [CrossRef]
- Tavazoei, M.S. A note on fractional-order derivatives of periodic functions. Automatica 2010, 46, 945–948. [Google Scholar] [CrossRef]
- Zhang, X. Relationship Between Integer Order Systems and Fractional Order Systems and Its Two Applications. IEEE/CAA J. Autom. Sin. 2018, 5, 639–643. [Google Scholar] [CrossRef]
- Ran, J. Discrete chaos in a novel two-dimensional fractional chaotic map. Adv. Differ. Equation 2018, 2018, 294. [Google Scholar] [CrossRef] [Green Version]
- Gottwald, G.A.; Melbourne, I. A new test for chaos in deterministic systems. Proc. Math. Phys. Eng. Sci. 2004, 460, 603–611. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karoun, R.C.; Ouannas, A.; Horani, M.A.; Grassi, G. The Effect of Caputo Fractional Variable Difference Operator on a Discrete-Time Hopfield Neural Network with Non-Commensurate Order. Fractal Fract. 2022, 6, 575. https://doi.org/10.3390/fractalfract6100575
Karoun RC, Ouannas A, Horani MA, Grassi G. The Effect of Caputo Fractional Variable Difference Operator on a Discrete-Time Hopfield Neural Network with Non-Commensurate Order. Fractal and Fractional. 2022; 6(10):575. https://doi.org/10.3390/fractalfract6100575
Chicago/Turabian StyleKaroun, Rabia Chaimaà, Adel Ouannas, Mohammed Al Horani, and Giuseppe Grassi. 2022. "The Effect of Caputo Fractional Variable Difference Operator on a Discrete-Time Hopfield Neural Network with Non-Commensurate Order" Fractal and Fractional 6, no. 10: 575. https://doi.org/10.3390/fractalfract6100575
APA StyleKaroun, R. C., Ouannas, A., Horani, M. A., & Grassi, G. (2022). The Effect of Caputo Fractional Variable Difference Operator on a Discrete-Time Hopfield Neural Network with Non-Commensurate Order. Fractal and Fractional, 6(10), 575. https://doi.org/10.3390/fractalfract6100575