On q-Hermite–Hadamard Type Inequalities via s-Convexity and (α,m)-Convexity
Abstract
:1. Introduction
2. Preliminaries of Quantum Calculus and Hermite–Hadamard’s Inequality
3. Results
3.1. Hermite–Hadamard Type Inequalities for Functions with the Modulus of Quantum Third Derivatives Being s-Convex
3.2. Quantum Integral Inequalities for Convex Functions
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb 1909, 2, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ernst, T.A. Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2003; p. 652. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite interval. J. Inequal. Appl. 2014, 121, 13. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 19. [Google Scholar] [CrossRef]
- Hadamard, J. Etude sur les proprietes des fonctions entieres en particulier d’une fonction consideree par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications; RGMIA Monographs, Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Alomari, M.; Darus, M. Co-ordinated s-convex function in the first sense with some Hadamard-type inequalities. Int. J. Contemp. Math. Sci. 2008, 3, 1557–1567. [Google Scholar]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Alomari, M.; Latif, M.A. On Hadamard-type inequalities for h-convex functions on the co-ordinates. Int. J. Math. Anal. 2009, 3, 1645–1656. [Google Scholar]
- Khan, A.; Chu, Y.M.; Khan, T.U.; Khan, J. Some inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Kirmaci, U.S. Some inequalities of Hermite-Hadamard type for s-convex functions. Acta Math. Sci. 2011, B, 1643–1652. [Google Scholar] [CrossRef]
- Barsam, H.; Ramezani, S.M.; Sayyari, Y. On the new Hermite-Hadamard type inequalities for s-convex functions. Afr. Math. 2021, 32, 1355–1367. [Google Scholar] [CrossRef]
- Kunt, M.; Iscan, I. Fractional Hermite-Hadamard-Fejer type inequalities for GA-convex functions. Turk. J. Inequal. 2018, 2, 1–20. [Google Scholar]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 51, 65–75. [Google Scholar]
- Ciurdariu, L. On some Hermite-Hadamard type inequalities for functions whose power of absolute value of derivatives are (α,m)-convex. Int. J. Math. Anal. 2012, 6, 2361–2383. [Google Scholar]
- Ciurdariu, L. Hermite-Hadamard type inequalities for fractional integrals operators. Appl. Math. Sci. 2017, 11, 1745–1754. [Google Scholar] [CrossRef]
- Khan, M.A.; Anwar, S.; Khalid, S.; Sayed, Z.M.M.M. Inequalities of the type Hermite-Hadamard-Jensen-Mercer for strong convexity. Math. Probl. Eng. 2021, 2021, 5386488. [Google Scholar]
- Xu, P.; Butt, S.I.; Ain, Q.U.I.; Budak, H. Nex estimates for Hermite-Hadamard inequality in quantum calculus via (α,m) convexity. Symmetry 2022, 14, 1394. [Google Scholar] [CrossRef]
- Alp, N.; Budak, H.; Sarikaya, M.Z.; Ali, M.A. On new refinements and generalizations of q-Hermite-Hadamard inequalities for convex functions. Rocky Mt. J. Math. 2023. Available online: https://projecteuclid.org/journals/rmjm/rocky-mountain-journalof-mathematics/DownloadAcceptedPapers/220708-Budak.pdf (accessed on 4 June 2023).
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; Iscan, I. q2-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal Fract. 2022, 6, 129. [Google Scholar] [CrossRef]
- Latif, M.A.; Kunt, M.; Dragomir, S.S.; Iscan, I. Post-quantum trapezoid type inequalities. AIMS Math. 2020, 5, 4011–4026. [Google Scholar] [CrossRef]
- Ciurdariu, L.; Grecu, E. Several quantum Hermite-Hadamard-type integral inequalities for convex functions. Fractal Fract. 2023, 7, 463. [Google Scholar] [CrossRef]
- Noor, M.; Noor, K.; Awan, M. Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar] [CrossRef]
- Ciurdariu, L.; Grecu, E. New perspectives of symmetry conferred by q-Hermite-Hadamard type integrals. Symmetry 2023, 15, 1514. [Google Scholar] [CrossRef]
- Orlicz, W. A note on modular spaces I. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 1961, 9, 157–162. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Bermudo, S.; Korus, P.; Valdes, J.N. On q-Hermite-Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Rajkovic, P.M.; Stankovic, M.S.; Marinkovic, S.D. The zeros of polynomials orthogonal with respect to q-integral on several intervals in the complex plane. In Proceedings of the Fifth International Conference of Geometry Integrability and Quantization, Varna, Bulgaria, 5–12 June 2003; pp. 178–188. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurdariu, L.; Grecu, E. On q-Hermite–Hadamard Type Inequalities via s-Convexity and (α,m)-Convexity. Fractal Fract. 2024, 8, 12. https://doi.org/10.3390/fractalfract8010012
Ciurdariu L, Grecu E. On q-Hermite–Hadamard Type Inequalities via s-Convexity and (α,m)-Convexity. Fractal and Fractional. 2024; 8(1):12. https://doi.org/10.3390/fractalfract8010012
Chicago/Turabian StyleCiurdariu, Loredana, and Eugenia Grecu. 2024. "On q-Hermite–Hadamard Type Inequalities via s-Convexity and (α,m)-Convexity" Fractal and Fractional 8, no. 1: 12. https://doi.org/10.3390/fractalfract8010012
APA StyleCiurdariu, L., & Grecu, E. (2024). On q-Hermite–Hadamard Type Inequalities via s-Convexity and (α,m)-Convexity. Fractal and Fractional, 8(1), 12. https://doi.org/10.3390/fractalfract8010012