Error Bounds for Fractional Integral Inequalities with Applications
Abstract
:1. Introduction
2. Main Results
3. Applications to Matrix Inequalities
Applications to Special Means
4. q-Digamma Function
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef]
- Cesarone, F.; Caputo, M.; Cametti, C. Memory formalism in the passive diffusion across a biological membrane. J. Membr. Sci. 2004, 250, 79–84. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Etemad, S.; Avci, I.; Kumar, P.; Baleanu, D.; Rezapour, S. Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos Solitons Fractals 2022, 162, 112511. [Google Scholar] [CrossRef]
- Iaffaldano, G.; Caputo, M.; Martino, S. Experimental and theoretical memory diffusion of water in sand. Hydrol. Earth Syst. Sci. 2006, 10, 93–100. [Google Scholar] [CrossRef]
- Jumarie, G. New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations. Math. Comput. Model. 2006, 44, 231–254. [Google Scholar] [CrossRef]
- Caputo, M. Alternative Public Economics; Elgar: Cheltenham, UK, 2014. [Google Scholar]
- Etemad, S.; Iqbal, I.; Samei, M.E.; Rezapour, S.; Alzabut, J.; Sudsutad, W.; Goksel, I. Some inequalities on multi-functions for applying in the fractional Caputo—Hadamard jerk inclusion system. J. Inequal. Appl. 2022, 2022, 84. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C. Selected topics on Hermite-Hadamard Inequalities and Applications; Science Direct Working Paper (S1574-0358). Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3158351 (accessed on 20 March 2024).
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Note 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Gulshan, G.; Budak, H.; Hussain, R.; Nonlaopon, K. Some new quantum Hermite-Hadamard type inequalities for s-convex functions. Symmetry 2022, 14, 870. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Baleanu, D. Integration by parts and its applications of a new nonlocal fractional derivative with Mittag–Leffler nonsingular kernel. arXiv 2016, arXiv:1607.00262. [Google Scholar] [CrossRef]
- Krishna, V.; Maenner, E. Convex potentials with an application to mechanism design. Econometrica 2001, 69, 1113–1119. [Google Scholar] [CrossRef]
- Okubo, S.; Isihara, A. Inequality for convex functions in quantum-statistical mechanics. Physica 1972, 59, 228–240. [Google Scholar] [CrossRef]
- Peajcariaac, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Murota, K.; Tamura, A. New characterizations of M-convex functions and their applications to economic equilibrium models with indivisibilities. Discret. Appl. Math. 2003, 131, 495–512. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Sahoo, S.K.; Aljoufi, L.S.; Awan, S.K. A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions. J. Math. Comput. Sci. 2021, 26, 330–348. [Google Scholar] [CrossRef]
- Raees, M.; Anwar, M.; Farid, G. Error bounds associated with different versions of Hadamard inequalities of mid-point type. J. Math. Comput. Sci. 2021, 23, 213–229. [Google Scholar] [CrossRef]
- Hyder, A.A.; Barakat, M.A.; Fathallah, A.; Cesarano, C. Further integral inequalities through some generalized fractional integral operators. Fractal Fract. 2021, 5, 282. [Google Scholar] [CrossRef]
- Budak, H.; Sarikaya, M.Z. On refinements of Hermite-Hadamard type inequalities with generlized fractional integral operators. Frac. Differ. Calc. 2021, 11, 121–132. [Google Scholar]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
- Budak, H.; Hezenci, F.; Kara, H. On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals. Math. Methods Appl. Sci. 2021, 44, 12522–12536. [Google Scholar] [CrossRef]
- Hyder, A.A.; Budak, H.; Almoneef, A.A. Further midpoint inequalities via generalized fractional operators in Riemann–Liouville sense. Fractal Fract. 2022, 6, 496. [Google Scholar] [CrossRef]
- Wang, X.; Saleem, M.S.; Aslam, K.N.; Wu, X.; Zhou, T. On Caputo-Fabrizio fractional integral inequalities of Hermite-Hadamard type for Modified h-convex functions. J. Math. 2020, 2020, 8829140. [Google Scholar] [CrossRef]
- Abbasi, A.M.K.; Anwar, M. Hermite-Hadamard inequality involving Caputo-Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense. AIMS Math. 2022, 7, 18565–18575. [Google Scholar] [CrossRef]
- Yang, H.; Qaisar, S.; Munir, A.; Naeem, M. New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Math. 2023, 8, 19391–19412. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Karaoğlan, A.; Ragusa, M.A.; Set, E. Fractional integral inequalities via Atangana-Baleanu operators for convex and concave functions. J. Funct. Spaces 2021, 2021, 1055434. [Google Scholar] [CrossRef]
- Hwang, H.R.; Tseng, K.L.; Hsu, K.C. New inequalities for fractional integrals and their applications. Turk. Math. 2016, 40, 471–486. [Google Scholar] [CrossRef]
- Lian, T.; Tang, W.; Zhou, R. Fractional Hermite–Hadamard inequalities for (s,m)-convex or s-concave functions. J. Inequalities Appl. 2018, 2018, 240. [Google Scholar] [CrossRef] [PubMed]
- Xi, B.Y.; Qi, F. Inequalities of Hermite-Hadamard type for extended s-convex functions and applications to means. J. Nonlinear Convex Anal. 2015, 16, 873–890. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Vienna, Austria, 1997; pp. 223–276. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Munir, A.; Budak, H.; Faiz, I.; Qaisar, S. Generalizations of Simpson type inequality for (α,m)-convex functionsin. Filomat 2024, 38. in press. [Google Scholar]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard inequality for fractional integrals of Caputo—Fabrizio type and related inequalities. J. Inequal. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions pertaining to Caputo–Fabrizio operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Sababheh, M. Convexity and matrix means. Linear Algebra Appl. 2016, 506, 588–602. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions, 2nd ed.; Cambridge Mathematical Library, Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, N.A.; Qaisar, S.; Munir, A.; Naeem, M.; Budak, H. Error Bounds for Fractional Integral Inequalities with Applications. Fractal Fract. 2024, 8, 208. https://doi.org/10.3390/fractalfract8040208
Alqahtani NA, Qaisar S, Munir A, Naeem M, Budak H. Error Bounds for Fractional Integral Inequalities with Applications. Fractal and Fractional. 2024; 8(4):208. https://doi.org/10.3390/fractalfract8040208
Chicago/Turabian StyleAlqahtani, Nouf Abdulrahman, Shahid Qaisar, Arslan Munir, Muhammad Naeem, and Hüseyin Budak. 2024. "Error Bounds for Fractional Integral Inequalities with Applications" Fractal and Fractional 8, no. 4: 208. https://doi.org/10.3390/fractalfract8040208
APA StyleAlqahtani, N. A., Qaisar, S., Munir, A., Naeem, M., & Budak, H. (2024). Error Bounds for Fractional Integral Inequalities with Applications. Fractal and Fractional, 8(4), 208. https://doi.org/10.3390/fractalfract8040208