Next Article in Journal
Fractional Calculus to Analyze Efficiency Behavior in a Balancing Loop in a System Dynamics Environment
Previous Article in Journal
Extracting the Ultimate New Soliton Solutions of Some Nonlinear Time Fractional PDEs via the Conformable Fractional Derivative
Previous Article in Special Issue
Existence of Solutions for the Initial Value Problem with Hadamard Fractional Derivatives in Locally Convex Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators

1
Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh 5315836511, Iran
2
Department of Mathematics, University of Ioannina, 45110 Ioannina, Greece
3
Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
*
Author to whom correspondence should be addressed.
Fractal Fract. 2024, 8(4), 211; https://doi.org/10.3390/fractalfract8040211
Submission received: 5 March 2024 / Revised: 22 March 2024 / Accepted: 2 April 2024 / Published: 4 April 2024

Abstract

:
This paper deals with a nonlocal fractional coupled system of ( k , ψ ) -Hilfer fractional differential equations, which involve, in boundary conditions, ( k , ψ ) -Hilfer fractional derivatives and ( k , ψ ) -Riemann–Liouville fractional integrals. The existence and uniqueness of solutions are established for the considered coupled system by using standard tools from fixed point theory. More precisely, Banach and Krasnosel’skiĭ’s fixed-point theorems are used, along with Leray–Schauder alternative. The obtained results are illustrated by constructed numerical examples.

1. Introduction

Recently, there has been a great interest in fractional differential equations, since fractional order models are more accurate than integral models. For theoretical developments in fractional calculus and differential equations of fractional orders, see the books [1,2,3,4,5,6,7,8], while for an extensive study on fractional boundary value problems, see the monograph [9]. Usually, fractional derivative operators depend on Euler’s gamma function and are defined via fractional integral operators. One can find a variety of such operators in the literature, such as Riemann–Liouville, Erdélyi-Kober, Caputo, Hadamard, Katugampola, Hilfer fractional derivatives, etc. In [10], the concept of the Riemann–Liouville fractional integral operator was generalized to a k-Riemann–Liouville fractional integral operator, with the help of the generalized Euler’s k gamma function. The k-Riemann–Liouville fractional derivative was introduced in [11]. For some results on the k-Riemann–Liouville fractional derivative, we refer to [12,13,14,15,16,17] and the references cited therein. The ψ -Riemann–Liouville fractional integral and derivative were introduced in [2]. The ( k , ψ ) -Riemann–Liouville fractional integral and derivative were defined in [11,18]. The Hilfer fractional derivative defined in [19] extends both Riemann–Liouville and Caputo fractional derivatives. The ψ -Hilfer fractional derivative was defined in [20]. For applications of Hilfer fractional derivatives in mathematics, physics, etc., see [21,22,23,24,25,26]. For recent results in boundary value problems for fractional differential equations and inclusions with Hilfer fractional derivatives, see the survey paper by Ntouyas [27].
The ( k , ψ ) -Hilfer fractional derivative operator was introduced recently in [28], in which the authors studied the following ( k , ψ ) -Hilfer fractional nonlinear initial value problem of the form
D c + α , β ; ψ k , H ( ω ) = f ( ω , ( ω ) ) , ω ( c , d ] , 0 < α < k , 0 β 1 , I k θ k : φ k ( c ) = w c R .
Here, D α , β ; ψ k , H is the ( k , ψ ) -Hilfer derivative operator of fractional order α , 0 < α 1 , and parameter β , 0 β 1 , θ k = α + β ( k α ) , and f C ( [ c , d ] × R , R ) . By using Banach’s fixed-point theorem, the existence of a unique solution was proven. For some recent results on ( k , ψ ) -Hilfer fractional derivative operators of orders in ( 0 , 1 ] , see [29,30] and references cited therein.
Boundary value problems of the ( k , ψ ) -Hilfer fractional derivative operator of orders in ( 1 , 2 ] were initiated in [31] by studying the problem
D α , β ; ψ k , H ( ω ) = f ( ω , ( ω ) ) , ω ( c , d ] , ( c ) = 0 , ( d ) = i = 1 m λ i ( ξ i ) ,
where D α , β ; ψ k , H is the ( k , ψ ) -Hilfer fractional derivative of order α , 1 < α < 2 , and parameter β , 0 β 1 ; f : [ c , d ] × R R is a continuous function, λ i R , and c < ξ i < d , i = 1 , 2 , , m . Banach contraction mapping principle, Krasnosel’skiĭ’s fixed-point theorem, and Laray–Schauder nonlinear alternative are used to establish the existence and uniqueness results.
Nonlocal fractional order coupled systems are also significant, as such systems often occur in applications, for example in fractional dynamics [32], bio-engineering [33], financial economics [34], etc. In a series of papers [35,36,37], a variety of coupled systems for ( k , ψ ) -Hilfer differential equations of fractional order were investigated.
In [38], the authors discuss a coupled system of nonlinear fractional differential equations involving ( k , ψ ) -Hilfer fractional derivative operator of order α , 1 < α 2 , and parameter β , 0 β 1 , of the form
D α , β ; ψ k , H ( ω ) = f ( ω , ( ω ) , z ( ω ) ) , ω ( c , d ] , D α 1 , β 1 ; ψ k , H z ( ω ) = f 1 ( ω , ( ω ) , z ( ω ) ) , ω ( c , d ] , ( c ) = 0 , ( d ) = i = 1 m λ i z ( ξ i ) , z ( c ) = 0 , z ( d ) = j = 1 k μ j ( η j ) ,
in which D α , β ; ψ k , H , D α 1 , β 1 ; ψ k , H are the ( k , ψ ) -Hilfer derivative operators of fractional orders α , α 1 , 1 < α , α 1 < 2 , and parameters β , β 1 , 0 β , β 1 1 , respectively, f , f 1 C ( [ c , d ] × R 2 , R ) , λ i , μ j R , and a < ξ i , η j < b , i = 1 , 2 , , m , j = 1 , 2 , , k . By using standard fixed-point theorems such as Banach’s and Krasnosel’skiĭ’s fixed-point theorems along with Leray–Schauder alternative, the existence and uniqueness results were established.
In [39], a new class of boundary value problems of sequential ψ -Hilfer-type fractional integro-differential equations of the form
D α , β ; ψ H + λ D α 1 , β ; ψ H ( ω ) = Π ω , ( ω ) , ( P 1 ) ( ω ) , I a + 2 γ , ψ ( ω ) , ω [ a , T ] , ( a ) = 0 , I a + 2 γ , ψ ( T ) = i = 1 m λ 1 i ( η i ) + i = 1 m λ 2 i ( η i ) + P 2 ( ( ξ ) ) ,
was considered, where Π C ( [ a , T ] × R 3 , R ) , a < η 1 < < η m < ξ < T , λ , λ 1 i , λ 2 i R ( i = 1 , 2 , , m ) are given constants; P 1 : C ( [ a , T ] , R ) C ( [ a , T ] , R ) is an operator (not necessarily linear); P 2 : R R is a continuous function with P 2 ( a ) = 0 ; D α , β ; ψ H is the ψ -Hilfer fractional derivative of order 1 < α 2 ,   0 β 1 ; and I a + 2 γ , ψ denotes the Riemmann–Liouville fractional integral of order 2 α with γ = α + β ( 2 α ) . The existence and uniqueness of the solutions were investigated via Banach, Sadovski, and Krasnoselskiĭ-Schaefer fixed-point theorems.
In order to enrich the literature in the new research area of ( k , ψ ) -Hilfer coupled systems, in the present paper, motivated by the above cited papers, we investigate a coupled nonlinear fractional system of differential equations involving ( k , ψ ) -Hilfer fractional derivative operators of orders in ( 1 , 2 ] and ( k , ψ ) -Riemann–Liouville integral operators of the form
D a 1 , b 1 , ψ k , H ( ω ) = Π 1 ( ω , ( ω ) , m ( ω ) ) , ω [ 0 , 1 ] , D a 2 , b 2 , ψ k , H m ( ω ) = Π 2 ( ω , ( ω ) , m ( ω ) ) , ω [ 0 , 1 ] , ( 0 ) = 0 , I 2 γ 1 , ψ k ( 1 ) = i = 1 p 0 1 D r i , s i , ψ k , H m ( s ) d s + i = 1 p λ i m ( η i ) + j = 1 p μ i m ( η i ) , m ( 0 ) = 0 , I 2 γ 2 , ψ k m ( 1 ) = j = 1 q 0 1 D u j , v j , ψ k , H ( s ) d s + j = 1 q ξ j ( ζ j ) + j = 1 q θ j ( ζ j ) ,
where D χ , w , ψ k , H denotes the ( k , ψ ) -Hilfer derivative operator of order χ { a 1 , a 2 , r i , u j } and type w { b 1 , b 2 , s i , v j } ; Π 1 , Π 2 : [ 0 , 1 ] × R 2 R are continuous functions; I 2 γ 2 , ψ k is the ( k , ψ ) -Riemann–Liouville fractional integral operator of order 2 γ k > 0 , γ k = a k + b k ( 2 a k ) , k = 1 , 2 , λ i , μ i , ξ j , θ j R , η i , ζ j ( 0 , 1 ) , i = 1 , 2 , , p , j = 1 , 2 , , q . By using standard fixed-point theorems such as Banach’s and Krasnosel’skiĭ’s fixed-point theorems, along with the Leray–Schauder alternative existence and uniqueness, results are provided.
The rest of the paper is organized as follows. In Section 2, we collect some concepts and results used in this paper. An auxiliary result is also proven concerning a linear variant of the system (5). Section 3 presents the main results, while in Section 4, illustrative examples are presented. The results of this paper are new and enrich the literature on the new subject of coupled systems of ( k , ψ ) -Hilfer differential equations of fractional order. Although the used methods are standard, their configuration in the present problem is new.

2. Preliminaries

First, some essential concepts and results related to this article are presented.
Definition 1 
([18]). Let P L 1 ( [ c 1 , c 2 ] , R ) , k > 0 , and ψ is an increasing function such that ψ ( ω ) 0 for all ω [ c 1 , c 2 ] . The ( k , ψ ) -Riemann–Liouville fractional integral of the function P , of order 0 < a ( a R ) is given by
I c 1 + a ; ψ k P ( ω ) = 1 k Γ k ( a ) c 1 + θ ψ ( s ) ( ψ ( ω ) ψ ( s ) ) a k 1 P ( s ) d s ,
where Γ k ( z ) = 0 s z 1 e s k k d s is the k-Gamma function defined in [40] for z C with ( z ) > 0 and k R .
The following properties are well known:
Γ ( x ) = lim k 1 Γ k ( x ) , Γ k ( x ) = k x k 1 Γ x k and Γ k ( x + k ) = x Γ k ( x ) .
Definition 2 
([28]). Let a , k R + = ( 0 , ) , b [ 0 , 1 ] ; ψ is an increasing function such that ψ C n ( [ c 1 , c 2 ] , R ) , ψ ( s ) 0 , s [ c 1 , c 2 ] and P C n ( [ c 1 , c 2 ] , R ) . Then, the ( k , ψ ) -Hilfer fractional derivative of the function P of order a and type b , is defined by
D a , b ; ψ k , H P ( s ) = I c 1 + b ( n k a ) ; ψ k ψ ( s ) d d s n I c 1 + ( 1 b ) ( n k a ) ; ψ k P ( s ) , n = a k ,
where a k is the ceiling function of a k .
For special cases of the variables involved in the above definition, D a , b ; ψ k , H is reduced to many known fractional derivative operators; for details, see [27].
Lemma 1 
([28]). Let a , k R + and n = a k . Assume that P C n ( [ c 1 , c 2 ] , R ) and I c 1 + n k a ; ψ k P C n ( [ c 1 , c 2 ] , R ) . Then,
I a ; ψ k D a ; ψ k , R L P ( ω ) = P ( ω ) j = 1 n ( ψ ( ω ) ψ ( c 1 ) ) a k j Γ k ( a j k + k ) k ψ ( ω ) d d ω n j I c 1 + n k a ; ψ k P ( ω ) ω = c 1 .
Lemma 2 
([28]). Assume that a , k R + , a < k , and b [ 0 , 1 ] . If θ k = a + b ( k a ) , then we have
I θ k ; ψ k D θ k ; ψ k , R L P ( ω ) = I a ; ψ k D a , b ; ψ k , H P ( ω ) , P C n ( [ c 1 , c 2 ] , R ) .
Lemma 3 
([28]). Suppose that ζ , k R + , η R are such that η k > 1 . Then,
( i ) . I ζ , ψ k ( ψ ( s ) ψ ( c 1 ) ) η k = Γ k ( η + k ) Γ k ( η + k + ζ ) ( ψ ( s ) ψ ( c 1 ) ) η + ζ k .
( i i ) . D ζ , ψ k ( ψ ( s ) ψ ( c 1 ) ) η k = Γ k ( η + k ) Γ k ( η + k ζ ) ( ψ ( s ) ψ ( c 1 ) ) η ζ k .
Lemma 4 
([2]). Let a 1 , a 2 , b , k ( 0 , ) with a 2 > a 1 , k > 0 , and b [ 0 , 1 ] . Then,
D a 1 , b ; φ k , H I 0 + a 2 ; ψ k P ( ω ) = I 0 + a 2 a 1 ; ψ k P ( ω ) , P C ( [ c 1 , c 2 ] , R ) .
Remark 1. 
Note that the ( k , ψ ) -Hilfer derivative operator of fractional order can be defined in the form of ( k , ψ ) -Riemann–Liouville derivative of fractional order
D a , b ; ψ k , H P ( ω ) = I c 1 + θ k a ; ψ k k ψ ( w ) d d ω n I c 1 + n k θ k ; ψ k P ( ω ) = I c 1 + θ k a ; ψ k D θ k ; ψ k , R L P ( ω ) ,
if we use the relations b ( n k a ) = θ k a and ( 1 b ) ( n k a ) = n k θ k . Moreover, we have n 1 < θ k k n , for n 1 < a k n and 0 b 1 .
The following lemma is the basic tool for transforming the coupled system (5) into integral equations, and it concerns a linear variant of problem (5).
Lemma 5. 
Let k > 0 , 1 < a 1 , a 2 , r i , u j 2 , b 1 , b 2 , s i , v j [ 0 , 1 ] , γ 1 = a 1 + b 1 ( 2 k a 1 ) , γ 2 = a 2 + b 2 ( 2 k a 2 ) , γ 3 = r i + s i ( 2 k r i ) , γ 4 = u j + v j ( 2 k u j ) , i = 1 , 2 , , p , j = 1 , 2 , , q , π 1 , π 2 C 2 ( [ 0 , 1 ] , R ) and Θ 0 . Then, the unique solution of the nonlocal ( k , ψ ) -Hilfer system
D a 1 , b 1 , ψ k , H ( ω ) = π 1 ( ω ) , ω [ 0 , 1 ] , D a 2 , b 2 , ψ k , H m ( ω ) = π 2 ( ω ) , ω [ 0 , 1 ] , ( 0 ) = 0 , I 2 γ 1 , ψ k ( 1 ) = i = 1 p 0 1 D r i , s i , ψ k , H m ( s ) d s + i = 1 p λ i m ( η i ) + j = 1 p μ i m ( η i ) , m ( 0 ) = 0 , I 2 γ 2 , ψ k m ( 1 ) = j = 1 q 0 1 D u j , v j , ψ k , H ( s ) d s + j = 1 q ξ j ( ζ j ) + j = 1 q θ j ( ζ j )
is given by
( ω ) = I a 1 , ψ k π 1 ( ω ) + ( ψ ( ω ) ψ ( 0 ) ) γ 1 k 1 Θ Γ k ( γ 1 ) [ A 2 ( j = 1 q 0 1 I a 1 u j , ψ k π 1 ( s ) d s + j = 1 q ξ j I a 1 , ψ k π 1 ( ζ j ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k π 1 ( ζ j ) I 2 γ 2 + a 2 , ψ k π 2 ( 1 ) ) + B 2 ( i = 1 p 0 1 I a 2 r i , ψ k π 2 ( s ) d s + i = 1 p λ i I a 2 , ψ k π 2 ( η i ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k π 2 ( η i ) I 2 γ 1 + a 1 , ψ k π 1 ( 1 ) ) ] ,
and
m ( ω ) = I a 2 , ψ k π 2 ( ω ) + ( ψ ( ω ) ψ ( 0 ) ) γ 2 k 1 Θ Γ k ( γ 2 ) [ A 1 ( j = 1 q 0 1 I a 1 u j , ψ k π 1 ( s ) d s + j = 1 q ξ j I a 1 , ψ k π 1 ( ζ j ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k π 1 ( ζ j ) I 2 γ 2 + a 2 , ψ k π 2 ( 1 ) ) + B 1 ( i = 1 p 0 1 I a 2 r i , ψ k π 2 ( s ) d s + i = 1 p λ i I a 2 , ψ k π 2 ( η i ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k π 2 ( η i ) I 2 γ 1 + a 1 , ψ k π 1 ( 1 ) ) ] ,
where
A 1 = ( ψ ( 1 ) ψ ( 0 ) ) 2 k 1 Γ k ( 2 ) , A 2 = i = 1 p 0 1 ( ψ ( s ) ψ ( 0 ) ) γ 2 r i k 1 Γ k ( γ 2 r i ) d s + i = 1 p λ i ( ψ ( η i ) ψ ( 0 ) ) γ 2 k 1 Γ k ( γ 2 ) + i = 1 p μ i γ 2 k 1 ψ ( η i ) ( ψ ( η i ) ψ ( 0 ) ) γ 2 k 2 Γ k ( γ 2 ) , B 1 = j = 1 q 0 1 ( ψ ( s ) ψ ( 0 ) ) γ 1 u j k 1 Γ k ( γ 1 u j ) d s + j = 1 q ξ j ( ψ ( ζ j ) ψ ( 0 ) ) γ 1 k 1 Γ k ( γ 1 ) + j = 1 q θ j γ 1 k 1 ψ ( ζ j ) ( ψ ( ζ j ) ψ ( 0 ) ) γ 1 k 2 Γ k ( γ 1 ) , B 2 = ( ψ ( 1 ) ψ ( 0 ) ) 2 k 1 Γ k ( 2 ) ,
with
Θ = A 1 B 2 A 2 B 1 .
Proof. 
Assume that ( , m ) is a solution of the system (7). Operating I a 1 , ψ k and I a 2 , ψ k on both sides of the equations in (7), and applying Lemmas 1 and 2, we get
( ω ) = I a 1 ; ψ k π 1 ( ω ) + c 0 ( ψ ( ω ) ψ ( 0 ) ) γ 1 k 1 Γ k ( γ 1 ) + c 1 ( ψ ( ω ) φ ( 0 ) ) γ 1 k 2 Γ k ( γ 1 1 ) ,
and
m ( ω ) = I a 2 ; ψ k π 2 ( ω ) + d 0 ( ψ ( ω ) ψ ( 0 ) ) γ 2 k 1 Γ k ( γ 2 ) + d 1 ( ψ ( ω ) ψ ( 0 ) ) γ 2 k 2 Γ k ( γ 2 1 ) ,
where
c 0 = k ψ ( ω ) d d t I 2 k γ 1 : ψ k ( ω ) ω = 0 , c 1 = I 2 k γ 1 : ψ k ( ω ) ω = 0 ,
d 0 = k ψ ( ω ) d d t I 2 k γ 2 : ψ k m ( ω ) ω = 0 , d 1 = I 2 k γ 2 : ψ k m ( ω ) ω = 0 .
In view of ( 0 ) = 0 and m ( 0 ) = 0 with (10) and (11), we get c 1 = 0 and d 1 = 0 , since by Remark 1, γ 1 k 2 < 0 and γ 2 k 2 < 0 .
On the other hand, by taking the operators I 2 γ 1 ; ψ k , I 2 γ 2 ; ψ k in (10) and (11), and differentiating (10) and (11), we obtain
I 2 γ 1 ; ψ k ( ω ) = I 2 γ 1 + a 1 ; ψ k π 1 ( ω ) + c 0 ( ψ ( ω ) ψ ( 0 ) ) 2 k 1 Γ k ( 2 ) , I 2 γ 2 ; ψ k m ( ω ) = I 2 γ 2 + a 2 ; ψ k π 2 ( ω ) + c 0 ( ψ ( ω ) ψ ( 0 ) ) 2 k 1 Γ k ( 2 ) , ( ω ) = ψ ( ω ) I a 1 1 ; ψ k π 1 ( ω ) + c 0 γ 1 k 1 ψ ( ω ) ( ψ ( ω ) ψ ( 0 ) ) γ 1 k 2 Γ k ( γ 1 ) , m ( ω ) = ψ ( ω ) I a 2 1 ; ψ k π 2 ( ω ) + d 0 γ 2 k 1 ψ ( ω ) ( ψ ( ω ) ψ ( 0 ) ) γ 2 k 2 Γ k ( γ 2 ) .
Hence, applying the conditions
I 2 γ 1 , ψ k ( 1 ) = i = 1 p 0 1 D r i , s i , ψ k , H m ( s ) d s + i = 1 p λ i m ( η i ) + j = 1 p μ i m ( η i )
and
I 2 γ 2 , ψ k m ( 1 ) = j = 1 q 0 1 D u j , v j , ψ k , H ( s ) d s + j = 1 q ξ j ( ζ j ) + j = 1 q θ j ( ζ j )
in (10) and (11) and using Lemmas 3 and 4, we have
I 2 r i + a 1 , ψ k π 1 ( 1 ) + c 0 ( ψ ( 1 ) ψ ( 0 ) ) 2 k 1 Γ k ( 2 ) = i = 1 p 0 1 I a 2 r i , ψ k π 2 ( s ) d s + d 0 i = 1 p 0 1 ( ψ ( s ) ψ ( 0 ) ) γ 2 r i k 1 Γ k ( γ 2 r i ) + i = 1 p λ i I a 2 , ψ k π 2 ( η i ) + d 0 i = 1 p λ i ( ψ ( η i ) ψ ( 0 ) ) γ 2 k 1 Γ k ( γ 2 ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k π 2 ( η i ) + d 0 i = 1 p μ i γ 2 k 1 ψ ( η i ) ( ψ ( η i ) ψ ( 0 ) ) γ 2 k 2 Γ k ( γ 2 ) ,
and
I 2 u j + a 2 , ψ k π 2 ( 1 ) + d 0 ( ψ ( 1 ) ψ ( 0 ) ) 2 k 1 Γ k ( 2 ) = j = 1 q 0 1 I a 1 u j , ψ k π 2 ( s ) d s + c 0 j = 1 q 0 1 ( ψ ( s ) ψ ( 0 ) ) γ 1 u j k 1 Γ k ( γ 1 u j ) + j = 1 q ξ j I a 1 , ψ k π 1 ( ζ j ) + c 0 j = 1 q ξ j ( ψ ( ζ j ) ψ ( 0 ) ) γ 1 k 1 Γ k ( γ 1 ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k π 1 ( ζ j ) + c 0 j = 1 q θ i γ 1 k 1 ψ ( ζ j ) ( ψ ( ζ j ) ψ ( 0 ) ) γ 1 k 2 Γ k ( γ 1 u j ) .
By (2), (12), and (13), we obtain
A 1 c 0 A 2 d 0 = Q 1 , B 1 c 0 + B 2 d 0 = Q 2 ,
where
Q 1 = i = 1 p 0 1 I a 2 r i , ψ k π 2 ( s ) d s + i = 1 p λ i I a 2 , ψ k π 2 ( η i ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k π 2 ( η i ) I 2 γ 1 + a 1 , ψ k π 1 ( 1 ) , Q 2 = j = 1 q 0 1 I a 1 u j , ψ k π 1 ( s ) d s + j = 1 q ξ j I a 1 , ψ k π 1 ( ζ j ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k π 1 ( ζ j ) I 2 γ 2 + a 2 , ψ k π 2 ( 1 ) .
Bysolving system (14), we obtain
c 0 = 1 Θ A 2 Q 2 + B 2 Q 1 and d 0 = 1 Θ A 1 Q 2 + B 1 Q 1 .
Replacing c 0 , d 0 , c 1 , d 1 in (10) and (11), we obtain the solutions (8) and (9). By using direct computations, we can prove the converse. Thus, the proof is completed. □

3. Existence and Uniqueness Results

Assume that Ƶ = C ( [ 0 , 1 ] , R ) is the Banach space of all continuous functions from [ 0 , 1 ] to R , eqipped with the norm = max { | ( ω ) | , ω [ 0 , 1 ] } . Obviously, the product space ( Ƶ × Ƶ , ( , m ) ) is a Banach space with norm ( , m ) = + m .
In view of Lemma 5, an operator D : Ƶ × Ƶ Ƶ × Ƶ is defined by
D ( , m ) ( ω ) = D 1 ( , m ) ( ω ) D 2 ( , m ) ( ω ) ,
where
D 1 ( , m ) ( ω ) = I a 1 , ψ k Π 1 ( ω , ( ω ) , m ( ω ) ) + ( ψ ( ω ) ψ ( 0 ) ) γ 1 k 1 Θ Γ k ( γ 1 ) [ A 2 ( j = 1 q 0 1 I a 1 u j , ψ k Π 1 ( s , ( s ) , m ( s ) ) d s + j = 1 q ξ j I a 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) I 2 γ 2 + a 2 , ψ k Π 2 ( 1 , ( 1 ) , m ( 1 ) ) ) + B 2 ( i = 1 p 0 1 I a 2 r i , ψ k Π 2 ( s , ( s ) , m ( s ) ) d s + i = 1 p λ i I a 2 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) I 2 γ 1 + a 1 , ψ k Π 1 ( 1 , ( 1 ) , m ( 1 ) ) ) ] , ω [ 0 , 1 ] ,
and
D 2 ( , m ) ( ω ) = I a 2 , ψ k Π 2 ( ω , ( ω ) , m ( ω ) ) + ( ψ ( ω ) ψ ( 0 ) ) γ 2 k 1 Θ Γ k ( γ 2 ) [ A 1 ( j = 1 q 0 1 I a 1 u j , ψ k Π 1 ( s , ( s ) , m ( s ) ) d s + j = 1 q ξ j I a 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) I 2 γ 2 + a 2 , ψ k Π 2 ( 1 , ( 1 ) , m ( 1 ) ) ) + B 1 ( i = 1 p 0 1 I a 2 r i , ψ k Π 2 ( s , ( s ) , m ( s ) ) d s + i = 1 p λ i I a 2 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) I 2 γ 1 + a 1 , ψ k Π 1 ( 1 , ( 1 ) , m ( 1 ) ) ) ] , ω [ 0 , 1 ] .
Now, the following constants are introduced for convenience.
G 1 = ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ) + B 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ] , G 1 * = G 1 ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) , G 2 = ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + i = 1 p | μ i | ψ ( 1 ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ) ] , G 3 = ( ψ ( 1 ) ψ ( 0 ) ) γ 2 k 1 | Θ | Γ k ( γ 2 ) [ A 1 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ) + B 1 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) ] , G 4 = ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 2 k 1 | Θ | Γ k ( γ 2 ) [ A 1 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) + B 1 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + i = 1 p | μ i | ψ ( 1 ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ) ] , G 4 * = G 4 ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) .
In the next theorem, the first result concerning the existence and uniqueness of solutions of the coupled system (5) is proved via Banach’s fixed-point theorem [41].
Theorem 1. 
Assume that:
( H 1 )
There exist constants s i , t i , i = 1 , 2 such that,
| Π 1 ( ω , 1 , 2 ) Π 1 ( ω , m 1 , m 2 ) | s 1 | 1 m 1 | + s 2 | 2 m 2 | , | Π 2 ( ω , 1 , 2 ) Π 2 ( ω , m 1 , m 2 ) | t 1 | 1 m 1 | + t 2 | 2 m 2 | ,
for ω [ 0 , 1 ] and i , m i R , i = 1 , 2 .
Then, the ( k , ψ ) -Hilfer fractional nonlocal coupled system (5) has on [ 0 , 1 ] a unique solution, provided that
( G 1 + G 3 ) ( s 1 + s 2 ) + ( G 2 + G 4 ) ( t 1 + t 2 ) < 1 ,
where G i , i = 1 , 2 , 3 , 4 are given in (18).
Proof. 
We will give the proof by considering the following two steps:
(i)
D ( B x ) B x , in which B x = { ( , m ) Ƶ × Ƶ : ( , m ) x } with
x ( G 1 + G 3 ) M + ( G 2 + G 4 ) N 1 ( G 1 + G 3 ) ( s 1 + s 2 ) + ( G 2 + G 4 ) ( t 1 + t 2 ) ,
M = sup ω [ 0 , 1 ] Π 1 ( ω , 0 , 0 ) < ,   N = sup ω [ 0 , 1 ] Π 2 ( ω , 0 , 0 ) < .
(ii)
D is a contraction.
To verify ( i ) , let ( , m ) B x and ω [ 0 , 1 ] . Then, we obtain
| D 1 ( , m ) ( ω ) | I a 1 , ψ k ( | Π 1 ( ω , ( ω ) , m ( ω ) ) Π 1 ( ω , 0 , 0 ) | + | Π 1 ( ω , 0 , 0 ) | ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( j = 1 q 0 1 I a 1 u j , ψ k | Π 1 ( s , ( s ) , m ( s ) ) Π 1 ( s , 0 , 0 ) | + | Π 1 ( s , 0 , 0 ) | ) d s + j = 1 q | ξ j | I a 1 , ψ k ( | Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) Π 1 ( ζ j , 0 , 0 ) | + | Π 1 ( ζ j , 0 , 0 ) | ) + j = 1 q | θ j | | ψ ( 1 ) | I a 1 1 , ψ k ( | Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) Π 1 ( ζ j , 0 , 0 ) | + | Π 1 ( ζ j , 0 , 0 ) | ) + I 2 γ 2 + a 2 , ψ k ( | Π 2 ( 1 , ( 1 ) , m ( 1 ) ) Π 2 ( 1 , 0 , 0 ) | + | Π 1 ( 1 , 0 , 0 ) | ) ) + B 2 ( i = 1 p 0 1 I 2 r i , ψ k ( | Π 2 ( s , ( s ) , m ( s ) ) Π 2 ( s , 0 , 0 ) | + | Π 2 ( s , 0 , 0 ) | ) d s + i = 1 p | λ i | I a 2 , ψ k ( | Π 2 ( η i , ( η i ) , m ( η i ) ) Π 2 ( η i , 0 , 0 ) | + | Π 2 ( η i , 0 , 0 ) | ) + i = 1 p | μ i | ψ ( 1 ) I a 2 1 , ψ k ( | Π 2 ( η i , ( η i ) , m ( η i ) ) Π 2 ( η i , 0 , 0 ) | + | Π 2 ( η i , 0 , 0 ) | ) + I 2 γ 1 + a 1 , ψ k ( | Π 1 ( 1 , ( 1 ) , m ( 1 ) ) Π 1 ( 1 , 0 , 0 ) | + | Π 1 ( 1 , 0 , 0 ) | ) ) ] ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) ( s 1 + s 2 m + M ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ γ 1 ) × [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) ( s 1 + s 2 m + M ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) ( s 1 + s 2 m + M ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ( s 1 + s 2 m + M ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) ( t 1 + t 2 m + N ) ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) ( t 1 + t 2 m + N ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) ( t 1 + t 2 m + N ) + i = 1 p | μ i | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ( t 1 + t 2 m + N ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ( s 1 + s 2 m + M ) ) ] ( s 1 + s 2 m + M ) { ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) × [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ) + B 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ] + ( t 1 + t 2 m + N ) { ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + i = 1 p | μ i | ψ ( 1 ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ) ] } = ( s 1 + s 2 m + M ) G 1 + ( t 1 + t 2 m + N ) G 2 = ( s 1 G 1 + t 1 G 2 ) + ( s 2 G 1 + t 2 G 2 ) m + G 1 M + G 2 N ( s 1 G 1 + t 1 G 2 + s 2 G 1 + t 2 G 2 ) x + G 1 M 1 + G 2 N .
Analogously, we have
| D 2 ( , m ) ( ω ) | ( s 1 G 3 + t 1 G 4 + s 2 G 3 + t 2 G 4 ) x + G 3 M + G 4 N .
Consequently, we obtain
D ( , m ) = D 1 ( , m ) + D 2 ( , m ) ( G 1 + G 3 ) ( s 1 + s 2 ) + ( G 2 + G 4 ) ( t 1 + t 2 ) x + ( G 1 + G 3 ) M + ( G 2 + G 4 ) N x .
Hence, we obtain D ( B x ) B x .
Next, we prove (ii). For ( , m ) B x and ω [ 0 , 1 ] , we have
| D 1 ( 2 , m 2 ) ( ω ) D 1 ( 1 , m 1 ) ( ω ) | I a 1 , ψ k | Π 1 ( ω , 2 ( ω ) , m 2 ( ω ) ) Π 1 ( ω , 1 ( ω ) , m 1 ( ω ) ) | + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( j = 1 q 0 1 I a 1 u j , ψ k | Π 1 ( s , 2 ( s ) , m 2 ( s ) ) Π 1 ( s , 1 ( s ) , m 1 ( s ) ) | ) d s + j = 1 q | ξ j | I a 1 , ψ k ( | Π 1 ( ζ j , 2 ( ζ j ) , m 2 ( ζ j ) ) Π 1 ( ζ j , 1 ( ζ j ) , m 1 ( ζ j ) ) | ) + j = 1 q | θ j | | ψ ( 1 ) | I a 1 1 , ψ k ( | Π 1 ( ζ j , 2 ( ζ j ) , m 2 ( ζ j ) ) Π 1 ( ζ j , 1 ( ζ j ) , m 1 ( ζ j ) ) | ) + I 2 γ 2 + a 2 , ψ k ( | Π 2 ( 1 , 2 ( 1 ) , m 2 ( 1 ) ) Π 2 ( 1 , 1 ( 1 ) , m 1 ( 1 ) ) | ) ) + B 2 ( i = 1 p 0 1 I 2 r i , ψ k ( | Π 2 ( s , 2 ( s ) , m 2 ( s ) ) Π 2 ( s , 1 ( s ) , m 1 ( s ) ) | ) d s + i = 1 p | λ i | I a 2 , ψ k ( | Π 2 ( η i , 2 ( η i ) , m 2 ( η i ) ) Π 2 ( η i , 1 ( η i ) , m 1 ( η i ) ) | ) + i = 1 p | μ i | ψ ( 1 ) I a 2 1 , ψ k ( | Π 2 ( η i , 2 ( η i ) , m 2 ( η i ) ) Π 2 ( η i , 1 ( η i ) , m 1 ( η i ) ) | ) + I 2 γ 1 + a 1 , ψ k ( | Π 1 ( 1 , 2 ( 1 ) , m 2 ( 1 ) ) Π 1 ( 1 , 1 ( 1 ) , m 1 ( 1 ) ) | ) ) ] ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) ( s 1 2 1 + s 2 m 2 m 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ γ 1 ) × [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) ( s 1 2 1 + s 2 m 2 m 1 ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) ( s 1 2 1 + s 2 m 2 m 1 ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ( s 1 2 1 + s 2 m 2 m 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) ( t 1 2 1 + t 2 m 2 m 1 ) ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) ( t 1 2 1 + t 2 m 2 m 1 ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) ( t 1 2 1 + t 2 m 2 m 1 ) + i = 1 p | μ i | × | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ( t 1 2 1 + t 2 m 2 m 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ( s 1 2 1 + s 2 m 2 m 1 ) ) = ( s 1 2 1 + s 2 m 2 m 1 ) G 1 + ( t 1 2 1 + t 2 m 2 m 1 ) G 2 = ( s 1 G 1 + t 1 G 2 ) 2 1 + ( s 2 G 1 + t 2 G 2 ) m 2 m 1 .
Thus, we have
D 1 ( 2 , m 2 ) D 1 ( 1 , m 1 ) ( s 1 G 1 + t 1 G 2 + s 2 G 1 + t 2 G 2 ) ( 2 1 + m 2 m 1 ) .
Analogously, we have
D 2 ( 2 , m 2 ) D 2 ( 1 , m 1 ) ( s 1 G 3 + t 1 G 4 + s 2 G 3 + t 2 G 4 ) ( 2 1 + m 2 m 1 ) .
Consequently, by (20) and (21), we conclude that
D ( 2 , m 2 ) ( ω ) D ( 1 , m 1 ) ( ω ) G 1 + G 3 ) ( s 1 + s 2 ) + ( G 2 + G 4 ) ( t 1 + t 2 ) ( 2 1 + m 2 m 1 ) .
Thus, by (19), the contraction property of the operator D is obtained, and the Banach’s contraction mapping principle implies that system (5) has on [ 0 , 1 ] a unique solution, which completes the proof. □
Now, via Leray–Schauder alternative [42], the first existence result is proved.
Theorem 2. 
Let Π 1 , Π 2 : [ 0 , 1 ] × R 2 R be continuous functions. Assume that
( H 2 )
There exist ϕ i , ϵ i 0 for i = 1 , 2 and ϕ 0 , ϵ 0 > 0 such that
| Π 1 ( ω , 1 , 2 | ϕ 0 + ϕ 1 | 1 | + ϕ 2 | 2 | , | Π 1 ( ω , 1 , 2 ) | ϵ 0 + ϵ 1 | 1 | + ϵ 2 | 2 | ,
for all ω [ 0 , 1 ] and 1 , 2 R .
If
( G 1 + G 3 ) ϕ 1 + ( G 2 + G 4 ) ϵ 1 < 1 , ( G 1 + G 3 ) ϕ 2 + ( G 2 + G 4 ) ϵ 2 < 1 ,
where G i , for i = 1 , 2 , 3 , 4 , is given by (18), then the the system (5) has on [ 0 , 1 ] at least one solution.
Proof. 
By the continuity of the function Π 1 and Π 2 , we conclude that the operator D is continuous. Now, it is proven that D ( B x ) is uniformly bounded, where
B x = { ( , m ) Ƶ × Ƶ ; ( , m ) x } .
From ( H 2 ) , for all ( , m ) B x , we have
| Π 1 ( ω , ( ω ) , m ( ω ) | ϕ 0 + ϕ 1 | ( ω ) | + ϕ 2 | m ( ω ) | ϕ 0 + ϕ 1 + ϕ 2 m ϕ 0 + ( ϕ 1 + ϕ 2 ) ( + m ) ϕ 0 + ( ϕ 1 + ϕ 2 ) x : = P 1 ,
and analogously,
| Π 2 ( ω , ( ω ) , m ( ω ) ) | ϵ 0 + ϵ 1 + ϵ 2 m ϵ 0 + ( ϵ 1 + ϵ 2 ) x : = P 2 .
Hence, for all ( , m ) B x , we have
| D 1 ( , m ) ( ω ) | I a 1 , ψ k ( | Π 1 ( ω , ( ω ) , m ( ω ) ) | ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( j = 1 q 0 1 I a 1 u j , ψ k | Π 1 ( s , ( s ) , m ( s ) ) | ) d s + j = 1 q | ξ j | I a 1 , ψ k ( | Π 1 ( γ j , ( ζ j ) , m ( ζ j ) ) | ) + j = 1 q | θ j | | ψ ( 1 ) | I a 1 1 , ψ k ( | Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) | ) + I 2 γ 2 + a 2 , ψ k ( | Π 2 ( 1 , ( 1 ) , m ( 1 ) ) | ) ) + B 2 ( i = 1 p 0 1 I 2 r i , ψ k ( | Π 2 ( s , ( s ) , m ( s ) ) | ) d s + i = 1 p | λ i | I a 2 , ψ k ( | Π 2 ( η i , ( η i ) , m ( η i ) ) | ) + i = 1 p | μ i | ψ ( 1 ) I a 2 1 , ψ k ( | Π 2 ( η i , ( η i ) , m ( η i ) ) | ) + I 2 γ 1 + a 1 , ψ k ( | Π 1 ( 1 , ( 1 ) , m ( 1 ) ) | ) ) ] ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) P 1 + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) P 1 + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) P 1 + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) P 1 + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) P 2 ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) P 2 + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) P 2 + i = 1 p | μ i | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) P 2 + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) P 1 ) ] P 1 { ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ) + ϵ 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ] } + P 2 { ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + i = 1 p | μ i | ψ ( 1 ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ) ] } ,
which yields
D 1 ( , m ) P 1 G 1 + P 2 G 2 .
Likewise, one can get
D 2 ( , m ) P 1 G 3 + P 2 G 4 .
Hence, we get
D ( , m ) = D 2 ( , m ) + D 2 ( , m ) ( G 1 + G 3 ) P 1 + ( G 2 + G 3 ) P 2 ,
and, hence, the operator D is uniformly bounded.
Now, it is indicated that the operator D is equicontinuous. Let ω 1 , ω 2 [ 0 , 1 ] , with ω 1 < ω 2 . Thus, we have
| D 1 ( ( ω 2 ) , m ( ω 2 ) ) D 1 ( ( ω 1 ) , m ( ω 1 ) ) | | 1 Γ k ( a 1 ) 0 ω 1 [ ψ ( s ) ( ψ ( ω 2 ) ψ ( s ) ) a 1 k 1 ( ψ ( ω 1 ) ψ ( s ) ) a 1 k 1 ] d s + ω 1 ω 2 ψ ( s ) ( ψ ( ω 2 ) ψ ( s ) ) a 1 k 1 d s | + ( ψ ( ω 2 ) ψ ( s ) ) γ 1 k 1 ( ψ ( ω 1 ) ψ ( s ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) { P 1 [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ] + P 2 [ ϕ 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + i = 1 p | μ i | ψ ( 1 ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( ϕ 2 1 + k ) ) ] } P 1 Γ k ( a 1 + k ) [ 2 ( ψ ( ω 2 ) ψ ( ω 1 ) ) a 1 k + | ( ψ ( ω 2 ) ψ ( 0 ) ) a 1 k ( ψ ( ω 1 ) ψ ( 0 ) ) a 1 k | ] + ( ψ ( ω 2 ) ψ ( s ) ) γ 1 k 1 ( ψ ( ω 1 ) ψ ( s ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) { P 1 [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ] + P 2 [ ϕ 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + i = 1 p | μ i | ψ ( 1 ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ) ] } ,
which tends to zero as ω 2 ω 1 0 and is independent of ( , m ) . Thus, D 1 ( , m ) is equicontinuous. Similarly, the equicontinuous property of the operator D 2 ( , m ) is obtained. Hence, the operator D ( , m ) is equicontinuous, and by the Arzelá–Ascoli theorem, it is completely continuous.
Finally, the boundedness property of the set
Ξ = ( , m ) Ƶ × Ƶ ; ( , m ) = λ D ( , m ) , 0 λ < 1
is shown. Let ( , m ) Ξ . Thus, ( , m ) = λ D ( , m ) , and for all ω [ 0 , 1 ] , we have
( ω ) = λ D 1 ( , m ) ( ω ) , m ( ω ) = λ D 2 ( , m ) ( ω ) .
Thus,
| ( ω ) | ( ϕ 0 + ϕ 1 | ( ω ) | + ϕ 2 | m ( ω ) | ) { ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) × [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ) + B 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ] } + ( ϵ 0 + ϵ 1 | ( ω ) | + ϵ 2 | m ( ω ) | ) { ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ 1 ) [ A 2 ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) + i = 1 p | μ i | ψ ( 1 ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ) ] } .
Thus, we have
( ϕ 0 + ϕ 1 + ϕ 2 m ) G 1 + ( ϵ 0 + ϵ 1 + ϵ 2 m ) G 2 .
Similarly, we have
m ( ϕ 0 + ϕ 1 + ϕ 2 m ) G 3 + ( ϵ 0 + ϵ 1 + ϵ 2 m ) G 4 .
Hence,
+ m ( G 1 + G 3 ) ϕ 0 + ( G 2 + G 4 ) ϵ 0 + ( ( G 1 + G 3 ) ϕ 1 + ( G 2 + G 4 ) ϵ 1 ) + ( ( G 1 + G 3 ) ϕ 2 + ( G 2 + G 4 ) ϵ 2 ) m .
Therefore,
( , m ) ( G 1 + G 3 ) ϕ 0 + ( G 2 + G 4 ) ϵ 0 M 0 ,
in which M 0 is defined by
M 0 = min 1 [ G 1 + G 3 ) ϕ 1 + ( G 2 + G 4 ) ϵ 1 ] , 1 [ ( G 1 + G 3 ) ϕ 2 + ( G 2 + G 4 ) ϵ 2 ] .
Thus, Ξ is bounded, and by applying Leray–Schauder alternative [42], the system (5) has at least one solution on [ 0 , 1 ] . □
In the following, our final existence result is presented via Krasnosel’skiĭ’s fixed-point theorem [43].
Theorem 3. 
Let Π 1 , Π 2 : [ 0 , 1 ] × R 2 R be two continuous functions satisfying ( H 1 ) . Moreover, assume that
( H 3 )
There exist β 1 , β 2 C ( [ 0 , 1 ] , R ) such that
| Π 1 ( ω , , m ) | β 1 ( ω ) , | Π 2 ( ω , , m ) | β 2 ( ω ) ,
for each ω [ 0 , 1 ] and , m R .
Then, the system (5) has at least one solution on [ 0 , 1 ] , provided that
( G 1 * + G 3 ) ( s 1 + s 2 ) + ( G 2 + G 4 * ) ( t 1 + t 2 ) < 1 ,
where G i , i = 2 , 3 and G i * , i = 1 , 4 are given in (18).
Proof. 
We divide the operator D into four operators D 1 , 1 , D 1 , 2 , D 2 , 1 , D 2 , 2 as follows:
D 1 , 1 ( , m ) ( ω ) = I a 1 , ψ k Π 1 ( ω , ( ω ) , m ( ω ) ) , ω [ 0 , 1 ] ,
D 1 , 2 ( , m ) ( ω ) = ( ψ ( ω ) ψ ( 0 ) ) γ 1 k 1 Θ Γ k ( γ 1 ) [ A 2 ( j = 1 q 0 1 I a 1 u j , ψ k Π 1 ( s , ( s ) , m ( s ) ) d s + j = 1 q ξ j I a 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) I 2 γ 2 + a 2 , ψ k Π 2 ( 1 , ( 1 ) , m ( 1 ) ) ) + B 2 ( i = 1 p 0 1 I a 2 r i , ψ k Π 2 ( s , ( s ) , m ( s ) ) d s + i = 1 p λ i I a 2 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) I 2 γ 1 + a 1 , ψ k Π 1 ( 1 , ( 1 ) , m ( 1 ) ) ) ] , ω [ 0 , 1 ] ,
D 2 , 1 ( , m ) ( ω ) = I a 2 , ψ k Π 2 ( ω , ( ω ) , m ( ω ) ) , ω [ 0 , 1 ] ,
D 2 , 2 ( , m ) ( ω ) = ( ψ ( ω ) ψ ( 0 ) ) γ 2 k 1 Θ Γ k ( γ 2 ) [ A 1 ( j = 1 q 0 1 I a 1 u j , ψ k Π 1 ( s , ( s ) , m ( s ) ) d s + j = 1 q ξ j I a 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) + j = 1 q θ j ψ ( ζ j ) I a 1 1 , ψ k Π 1 ( ζ j , ( ζ j ) , m ( ζ j ) ) I 2 γ 2 + a 2 , ψ k Π 2 ( 1 , ( 1 ) , m ( 1 ) ) ) + B 1 ( i = 1 p 0 1 I a 2 r i , ψ k Π 2 ( s , ( s ) , m ( s ) ) d s + i = 1 p λ i I a 2 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) + i = 1 p μ i ψ ( η i ) I a 2 1 , ψ k Π 2 ( η i , ( η i ) , m ( η i ) ) I 2 γ 1 + a 1 , ψ k Π 1 ( 1 , ( 1 ) , m ( 1 ) ) ) ] , ω [ 0 , 1 ] .
Obviously, D 1 = D 1 , 1 + D 1 , 2 and D 2 = D 2 , 1 + D 2 , 2 . Let B δ = { ( , m ) Ƶ × Ƶ ; ( , m ) δ } with δ ( G 1 + G 3 ) β 1 + ( G 2 + G 4 ) β 2 . As in Theorem 2, we obtain
| D 1 , 1 ( 1 , m 1 ) ( ω ) + D 1 , 2 ( 2 , m 2 ) ( ω ) | G 1 β 1 + G 2 β 2 .
Analogously, we have
| D 2 , 1 ( 2 , m 2 ) ( ω ) + D 2 , 2 ( 2 , m 2 ) ( ω ) | G 3 β 1 + G 4 β 2 .
Thus, we have
| D 1 ( 1 , m 1 ) + D 2 ( 2 , m 2 ) | ( G 1 + G 3 ) β 1 + ( G 2 + G 4 ) β 2 < δ ,
which shows that D 1 ( 1 , m 1 ) + D 2 ( 2 , m 2 ) B δ .
Now, it is proven that the operator ( D 1 , 2 , D 2 , 2 ) is a contraction. Let ( 1 , m 1 ) , ( 2 , m 2 ) B δ . Then, similar to the proof of Theorem 1, we obtain
| D 1 , 2 ( 2 , m 2 ) ( ω ) D 1 , 2 ( 1 , m 1 ) ( ω ) | ( ψ ( 1 ) ψ ( 0 ) ) γ 1 k 1 | Θ | Γ k ( γ γ 1 ) [ A 2 ( j = 1 q ( ψ ( 1 ) ψ ( 0 ) ) a 1 u j k Γ k ( a 1 u j + k ) ( s 1 2 1 + s 2 m 2 m 1 ) + j = 1 q | ξ j | ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) ( s 1 2 1 + s 2 m 2 m 1 ) + j = 1 q | θ j | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 1 1 k Γ k ( a 1 1 + k ) ( s 1 2 1 + s 2 m 2 m 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 2 + a 2 k Γ k ( 2 γ 2 + a 2 + k ) ( t 1 2 1 + t 2 m 2 m 1 ) ) + B 2 ( i = 1 p ( ψ ( 1 ) ψ ( 0 ) ) a 2 r i k Γ k ( a 2 r i + k ) ( t 1 2 1 + t 2 m 2 m 1 ) + i = 1 p | λ i | ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) ( t 1 2 1 + t 2 m 2 m 1 ) + i = 1 p | μ i | | ψ ( 1 ) | ( ψ ( 1 ) ψ ( 0 ) ) a 2 1 k Γ k ( a 2 1 + k ) ( t 1 2 1 + t 2 m 2 m 1 ) + ( ψ ( 1 ) ψ ( 0 ) ) 2 γ 1 + a 1 k Γ k ( 2 γ 1 + a 1 + k ) ( s 1 2 1 + s 2 m 2 m 1 ) ] = ( s 1 2 1 + s 2 m 2 m 1 ) G 1 * + G 2 ( t 1 2 1 + t 2 m 2 m 1 ) = ( s 1 G 1 * + t 1 G 2 ) 2 1 + ( s 2 G 1 * + t 2 G 2 ) m 2 m 1 ,
and similarly,
| D 2 , 2 ( 2 , m 2 ) ( ω ) D 2 , 2 ( 1 , m 1 ) ( ω ) | ( s 1 G 3 + t 1 G 4 * ) 2 1 + ( s 2 G 3 + t 2 G 4 * ) m 2 m 1 .
From(23) and (24), we obtain
( D 1 , 2 , D 2 , 2 ) ( 1 , m 1 ) ( D 1 , 2 , D 2 , 2 ) ( 2 , m 2 ) ( G 1 * + G 3 ) ( s 1 + s 2 ) + ( G 2 + G 4 * ) ( t 1 + t 2 ) ( 2 1 + m 2 m 1 ) ,
which shows that ( D 1 , 2 , D 2 , 2 ) is a contraction by (22).
By continuity of the functions Π 1 and Π 2 , we conclude that the operator ( D 1 , 1 , D 2 , 1 ) is also continuous. On the other hand, since
D 1 , 1 ( , m ) ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) β 1 ,
and
D 2 , 1 ( , m ) ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) β 2 ,
we conclude that
( D 1 , 1 , D 2 , 1 ) ( , m ) ( ψ ( 1 ) ψ ( 0 ) ) a 1 k Γ k ( a 1 + k ) β 1 + ( ψ ( 1 ) ψ ( 0 ) ) a 2 k Γ k ( a 2 + k ) β 2 ,
which shows that the set ( D 1 , 1 , D 2 , 1 ) B δ is uniformly bounded. Next, we prove that the set ( D 1 , 1 , D 2 , 1 ) B δ is equicontinuous. For all ( , m ) R × R and ω [ 0 , 1 ] , we have
| D 1 , 1 ( , m ) ( ω 2 ) D 1 , 1 ( , m ) ( ω 1 ) | | 1 Γ k ( a 1 ) 0 ω 1 ψ ( s ) ( ψ ( ω 2 ) ψ ( s ) ) a 1 k 1 ( ψ ( ω 1 ) ψ ( s ) ) a 1 k 1 ] Π 1 ( s , ( s ) , m ( s ) ) d s + ω 1 ω 2 ψ ( s ) ( ψ ( ω 2 ) ψ ( s ) ) a 1 k 1 Π 1 ( s , ( s ) , m ( s ) ) d s | β 1 Γ k ( a 1 + k ) [ 2 ( ψ ( ω 2 ) ψ ( ω 1 ) ) a 1 k + | ( ψ ( ω 2 ) ψ ( 0 ) ) a 1 k ( ψ ( ω 1 ) ψ ( 0 ) ) a 1 k | ] .
The right hand of the above inequality tends to zero as ω 1 ω 2 , independently of ( , m ) B δ . Similarly, we can indicate that | D 2 , 1 ( , m ) ( ω 2 ) D 2 , 1 ( , m ) ( ω 1 ) | 0 as ω 1 ω 2 independently of ( , m ) B δ . Hence, | ( D 1 , 1 , D 2 , 1 ) ( , m ) ( ω 2 ) ( D 1 , 1 , D 2 , 1 ) ( , m ) ( ω 1 ) | 0 as ω 1 ω 2 . Consequently, the operator ( D 1 , 1 , D 2 , 1 ) is equicontinuous, and the Arzelá–Ascoli theorem implies that the operator ( D 1 , 1 , D 2 , 1 ) is compact on B δ .
Consequently, by Krasnosel’skiĭ’s fixed-point theorem, the nonlocal fractional coupled system (5) has at least one solution on [ 0 , 1 ] . The proof is finished. □

4. Examples

In this section, by considering the following coupled fractional nonlocal system involving ( k , ψ ) -Hilfer derivatives and ( k , ψ ) -Riemann–Liouville integral operators, we show some numerical examples by varying nonlinear functions in the first two equations as
D 15 8 , 9 20 , ω + 1 17 16 , H ( ω ) = Π 1 ( ω , ( ω ) , m ( ω ) ) , ω [ 0 , 1 ] , D 7 4 , 7 20 , ω + 1 17 16 , H m ( ω ) = Π 2 ( ω , ( ω ) , m ( ω ) ) , ω [ 0 , 1 ] , ( 0 ) = 0 , m ( 0 ) = 0 , I 1 80 , ω + 1 17 16 ( 1 ) = 0 1 D 13 8 , 3 10 , ω + 1 17 16 , H m ( s ) d s + 0 1 D 3 2 , 1 4 , ω + 1 17 16 , H m ( s ) d s + 1 13 m 2 9 + 2 17 m 7 9 + 3 19 m 2 9 + 4 23 m 7 9 , I 19 160 , ω + 1 17 16 m ( 1 ) = 0 1 D 11 8 , 1 5 , ω + 1 17 16 , H ( s ) d s + 0 1 D 5 4 , 3 20 , ω + 1 17 16 , H ( s ) d s + 0 1 D 9 8 , 1 10 , ω + 1 17 16 , H m ( s ) d s + 5 29 1 9 + 6 31 5 9 + 7 37 8 9 + 8 41 1 9 + 9 43 5 9 + 10 47 8 9 .
Now, we choose k = 17 / 16 , a 1 = 15 / 8 , a 2 = 7 / 4 , b 1 = 9 / 20 , b 2 = 7 / 20 , ψ ( ω ) = ω + 1 , γ 1 = 159 / 80 , γ 2 = 301 / 160 , p = 2 , q = 3 , r 1 = 13 / 8 , r 2 = 3 / 2 , s 1 = 3 / 10 , s 2 = 1 / 4 , λ 1 = 1 / 13 , λ 2 = 2 / 17 , μ 1 = 3 / 19 , μ 2 = 4 / 23 , η 1 = 2 / 9 , η 2 = 7 / 9 , u 1 = 11 / 8 , u 2 = 5 / 4 , u 3 = 9 / 8 , v 1 = 1 / 5 , v 2 = 3 / 20 , v 3 = 1 / 10 , ξ 1 = 5 / 29 , ξ 2 = 6 / 31 , ξ 3 = 7 / 37 , θ 1 = 8 / 41 , θ 2 = 9 / 43 , θ 3 = 10 / 47 , ζ 1 = 1 / 9 , ζ 2 = 5 / 9 , ζ 3 = 8 / 9 . From the relation Γ k ( x ) = k x k 1 Γ x k , we can find that Γ k ( 2 ) 1.008364771 , Γ k ( γ 1 ) 1.003624884 , Γ k ( γ 2 ) 0.9680918124 , Γ k ( γ 2 r 1 ) 3.596657165 , Γ k ( γ 2 r 2 ) 2.386550829 , Γ k ( γ 1 u 1 ) 1.506571034 , Γ k ( γ 1 u 2 ) 1.283446586 , Γ k ( γ 1 u 3 ) 1.138205485 , Γ k ( a 1 + k ) 1.811742648 , Γ k ( a 2 + k ) 1.637420075 , Γ k ( a 1 1 + k ) 0.9858518843 , Γ k ( a 2 1 + k ) 0.9495440171 , Γ k ( a 1 u 1 + k ) 0.9112678992 , Γ k ( a 1 u 2 + k ) 0.9246374757 , Γ k ( a 1 u 3 + k ) 0.9495440171 , Γ k ( a 2 r 1 + k ) 0.9512325926 , Γ k ( a 2 r 2 + k ) 0.9226252531 , Γ k ( 2 γ 1 + a 1 + k ) 1.830779875 , Γ k ( 2 γ 2 + a 2 + k ) 1.802339039 . From these details, we can compute that A 1 = B 2 0.4556580880 , A 2 4.130828938 , B 1 4.705900135 , | Θ | 19.23164417 , G 1 0.3589435401 , G 1 * 0.2424191099 , G 2 0.03495243265 , G 3 0.4163895731 , G 4 0.04520950990 , and G 4 * 0.2733731807 .
( i )
If the given nonlinear functions are expressed as
Π 1 ( ω , , m ) = 1 2 ( ω + 2 ) 2 + 2 | | 1 + | | + 3 2 ω + 5 sin m + 1 4 , Π 2 ( ω , , m ) = 2 4 ω + 3 tan 1 | | + 1 ω + 4 2 m 2 + 3 | m | 1 + | m | + 1 5 ,
then, we can check that the Lipschitz properties hold, as
Π 1 ( ω , 1 , m 1 ) Π 1 ( ω , 2 , m 2 ) 1 2 | 1 2 | + 3 5 | m 1 m 2 |
and
Π 2 ( ω , 1 , m 1 ) Π 1 ( ω , 2 , m 2 ) 2 3 | 1 2 | + 3 4 | m 1 m 2 | ,
with Lipschitz constants s 1 = 1 / 2 , s 2 = 3 / 5 , t 1 = 2 / 3 , and t 2 = 3 / 4 . Therefore, the functions Π 1 and Π 2 satisfy condition ( H 1 ) in Theorem 1. In addition, we can find that
( G 1 + G 3 ) ( s 1 + s 2 ) + ( G 2 + G 4 ) ( t 1 + t 2 ) 0.9664291764 < 1 ,
which means that the inequality in (19) is fulfilled. Hence, the system (25), with functions Π 1 , Π 2 given by (26), has a unique solution on [ 0 , 1 ] .
( i i )
Now, let the functions Π 1 and Π 2 be presented as
Π 1 ( ω , , m ) = 1 11 ( ω + 1 ) + 13 22 ( ω + 1 ) 2024 1 + | | 2023 e m 2 + 3 11 ( ω + 3 ) m cos 16 , Π 2 ( ω , , m ) = 1 13 + 5 ( ω + 2 ) 13 | | 2021 1 + 2020 sin 8 m + 8 ( ω + 3 ) 13 π m 2 1 + | m | tan 1 4 .
Observe that these nonlinear functions in (27) do not satisfy the Lipschitz condition. However, we can find the bounds as
| Π 1 ( ω , , m ) | 1 11 + 13 11 | | + 12 11 | m | and | Π 2 ( ω , , m ) | 1 13 + 15 13 | | + 16 13 | m | .
Then, by setting ϕ 0 = 1 / 11 , ϕ 1 = 13 / 11 , ϕ 2 = 12 / 11 , ϵ 0 = 1 / 13 , ϵ 1 = 15 / 13 , and ϵ 2 = 16 / 13 , we can find that
( G 1 + G 3 ) ϕ 1 + ( G 2 + G 4 ) ϵ 1 0.9984146601 < 1
and
( G 1 + G 3 ) ϕ 2 + ( G 2 + G 4 ) ϵ 2 0.9963920897 < 1 .
Then, for problem (25), with functions Π 1 , Π 2 given by (26), all assumptions of Theorem 2 are satisfied. Consequently, the coupled fractional nonlocal system (25)–(27) has at least one solution on [ 0 , 1 ] .
( i i i )
Let Π 1 and Π 2 be given nonlinear functions defined by
Π 1 ( ω , , m ) = f ( ω ) + | | p + | | + | m | p + | m | , Π 2 ( ω , , m ) = g ( ω ) + | | p + | | + | m | p + | m | ,
where f, g are arbitrary functions and p > 0 is a constant.
We have
| Π 1 ( ω , , m ) | | f ( ω ) | + 2 : = β 1 ( ω ) and | Π 1 ( ω , , m ) | | g ( ω ) | + 2 : = β 1 ( ω ) ,
which means that the condition ( H 3 ) in Theorem 3 is fulfilled. Moreover, the condition ( H 1 ) is satisfied with s 1 = s 2 = t 1 = t 2 = 1 / p . Then, if p > 1.191908466 , the inequality (22) holds. This implies that system (25), with functions Π 1 , Π 2 given by (28), has at least one solution in [ 0 , 1 ] . In addition, if p > 1.710990111 , the inequality in (19) is true, and we can say that the nonlocal boundary value problem of system (25), with functions Π 1 , Π 2 given by (28), has a unique solution in the interval [ 0 , 1 ] .

5. Conclusions

In this paper, we establish existence and uniqueness results for a coupled system of ( k , ψ ) -Hilfer fractional differential equations, involving, in boundary conditions, ( k , ψ ) -Hilfer fractional derivatives and ( k , ψ ) -Riemann–Liouville fractional integrals. Standard fixed-point theorems, such as Banach contraction mapping principle, Leray–Schaude alternative, and Krasnosel’skiĭ’s fixed-point theorem, are applied to derive our main results. Numerical examples are constructed to illustrate the obtained theoretical results. Our results are new and contribute significantly to enriching the existing results on ( k , ψ ) -Hilfer coupled systems in the literature.
It is noteworthy that a common characteristic of boundary value problems and coupled systems of ( k , ψ ) -Hilfer fractional differential operators of order in ( 1 , 2 ] , is the zero initial condition, which is necessary to obtain a well-defined solution. Thus, we cannot study some classes of Hilfer fractional boundary value problems or coupled systems, including, for example, anti-periodic boundary conditions and separated or non-separated boundary conditions. As a future plan, we will try to overcome this difficulty and study Hilfer fractional boundary value problems or systems subject to boundary conditions with nonzero initial conditions as the above-mentioned boundary conditions.

Author Contributions

Conceptualization, A.S. and S.K.N.; methodology, A.S., S.K.N. and J.T.; validation, A.S., S.K.N. and J.T.; formal analysis, A.S., S.K.N. and J.T.; writing—original draft preparation, A.S., S.K.N. and J.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by National Science, Research and Innovation Fund (NSRF) and King Mongkut’s University of Technology North Bangkok with Contract no. KMUTNB-FF-66-11.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Diethelm, K. The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: New York, NY, USA, 2010. [Google Scholar]
  2. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of the Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  3. Lakshmikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Scientific Publishers: Cambridge, UK, 2009. [Google Scholar]
  4. Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
  5. Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
  6. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
  7. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
  8. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
  9. Ahmad, B.; Ntouyas, S.K. Nonlocal Nonlinear Fractional-Order Boundary Value Problems; World Scientific: Singapore, 2021. [Google Scholar]
  10. Mubeen, S.; Habibullah, G.M. k–fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
  11. Dorrego, G.A. An alternative definition for the k-Riemann–Liouville fractional derivative. Appl. Math. Sci. 2015, 9, 481–491. [Google Scholar] [CrossRef]
  12. Mittal, E.; Joshi, S. Note on k-generalized fractional derivative. Discrete Contin. Dyn. Syst. 2020, 13, 797–804. [Google Scholar]
  13. Magar, S.K.; Dole, P.V.; Ghadle, K.P. Pranhakar and Hilfer-Prabhakar fractional derivatives in the setting of ψ-fractional calculus and its applications. Krak. J. Math. 2024, 48, 515–533. [Google Scholar]
  14. Agarwal, P.; Tariboon, J.; Ntouyas, S.K. Some generalized Riemann–Liouville k-fractional integral inequalities. J. Ineq. Appl. 2016, 2016, 122. [Google Scholar] [CrossRef]
  15. Farid, G.; Javed, A.; Rehman, A.U. On Hadamard inequalities for n-times differentiable functions which are relative convex via Caputo k-fractional derivatives. Nonlinear Anal. Forum 2017, 22, 17–28. [Google Scholar]
  16. Azam, M.K.; Farid, G.; Rehman, M.A. Study of generalized type k-fractional derivatives. Adv. Differ. Equ. 2017, 2017, 249. [Google Scholar] [CrossRef]
  17. Romero, L.G.; Luque, L.L.; Dorrego, G.A.; Cerutti, R.A. On the k-Riemann–Liouville fractional derivative. Int. J. Contemp. Math. Sci. 2013, 8, 41–51. [Google Scholar] [CrossRef]
  18. Kwun, Y.C.; Farid, G.; Nazeer, W.; Ullah, S.; Kang, S.M. Generalized Riemann–Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 2018, 6, 64946–64953. [Google Scholar] [CrossRef]
  19. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
  20. Vanterler da, C. Sousa, J.; Capelas de Oliveira, E. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  21. Soong, T.T. Random Differential Equations in Science and Engineering; Academic Press: New York, NY, USA, 1973. [Google Scholar]
  22. Kavitha, K.; Vijayakumar, V.; Udhayakumar, R.; Nisar, K.S. Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 2021, 44, 1438–1455. [Google Scholar] [CrossRef]
  23. Subashini, R.; Jothimani, K.; Nisar, K.S.; Ravichandran, C. New results on nonlocal functional integro-differential equations via Hilfer fractional derivative. Alex. Eng. J. 2020, 59, 2891–2899. [Google Scholar] [CrossRef]
  24. Danfeng, L.; Quanxin, Z.; Zhiguo, L. A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients. Appl. Math. Lett. 2021, 122, 107549. [Google Scholar]
  25. Ding, K.; Quanxin, Z. Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications. Nonlinear Dyn. 2020, 100, 2595–2608. [Google Scholar] [CrossRef]
  26. Ahmed, H.M.; Quanxin, Z. The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps. Appl. Math. Lett. 2021, 112, 106755. [Google Scholar] [CrossRef]
  27. Ntouyas, S.K. A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions. Foundations 2021, 1, 63–98. [Google Scholar] [CrossRef]
  28. Kucche, K.D.; Mali, A.D. On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos Solitons Fractals 2021, 152, 111335. [Google Scholar] [CrossRef]
  29. Salima, A.; Lazreg, J.L.; Benchohra, M. A novel study on tempered (k,ψ)-Hilfer fractional differential operators. Res. Sq. 2023. [Google Scholar] [CrossRef]
  30. Kharade, J.P.; Kucche, K.D. On the (k,ψ)-Hilfer nonlinear impulsive fractional differential equations. Math. Methods Appl. Sci. 2023, 46, 16282–16304. [Google Scholar] [CrossRef]
  31. Tariboon, J.; Samadi, A.; Ntouyas, S.K. Multi-point boundary value problems for (k,ϕ)-Hilfer fractional differential equations and inclusions. Axioms 2022, 11, 110. [Google Scholar] [CrossRef]
  32. Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
  33. Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
  34. Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Academic Press: London, UK, 2017. [Google Scholar]
  35. Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. Investigation of a nonlinear coupled (k,ψ)-Hilfer fractional differential system with coupled (k,ψ)-Riemann–Liouville fractional integral boundary conditions. Foundations 2022, 2, 918–933. [Google Scholar] [CrossRef]
  36. Kamsrisuk, N.; Ntouyas, S.K.; Ahmad, B.; Samadi, A.; Tariboon, J. Existence results for a coupled system of (k,φ)-Hilfer fractional differential equations with nonlocal integro-multi-point boundary conditions. AIMS Math. 2023, 8, 4079–4097. [Google Scholar] [CrossRef]
  37. Samadi, A.; Ntouyas, S.K.; Ahmad, B.; Tariboon, J. On a coupled differential system involving (k,ψ)-Hilfer derivative and (k,ψ)-Riemann–Liouville integral operators. Axioms 2023, 12, 229. [Google Scholar] [CrossRef]
  38. Samadi, A.; Ntouyas, S.K.; Tariboon, J. Nonlocal coupled system for (k,φ)-Hilfer fractional differential equations. FractalFract 2022, 6, 234. [Google Scholar] [CrossRef]
  39. Haddouchi, F.; Samei, M.E.; Rezapour, S. Study of a sequential ψ-Hilfer fractional integro-differential equations with nonlocal BCs. J. Pseudo-Differ. Oper. Appl. 2023, 14, 61. [Google Scholar] [CrossRef]
  40. Diaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 2, 179–192. [Google Scholar]
  41. Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
  42. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
  43. Krasnosel’skiĭ, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Samadi, A.; Ntouyas, S.K.; Tariboon, J. Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal Fract. 2024, 8, 211. https://doi.org/10.3390/fractalfract8040211

AMA Style

Samadi A, Ntouyas SK, Tariboon J. Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators. Fractal and Fractional. 2024; 8(4):211. https://doi.org/10.3390/fractalfract8040211

Chicago/Turabian Style

Samadi, Ayub, Sotiris K. Ntouyas, and Jessada Tariboon. 2024. "Study on a Nonlocal Fractional Coupled System Involving (k,ψ)-Hilfer Derivatives and (k,ψ)-Riemann–Liouville Integral Operators" Fractal and Fractional 8, no. 4: 211. https://doi.org/10.3390/fractalfract8040211

Article Metrics

Back to TopTop