Where Do Fires Burn More Intensely? Modeling and Mapping Maximum MODIS Fire Radiative Power from Aboveground Biomass by Fuel Type in Mexico
Abstract
:1. Introduction
1.1. Fire Occurrence and Intensity Prediction
1.2. Remote Sensing of Fire Intensity and Severity
1.2.1. Relating Fire Severity to Vegetation Productivity
1.2.2. Fire Intensity from Fire Radiative Power
1.2.3. Relating Fire Radiative Power to Vegetation Productivity
1.3. Study Goals
1.4. Study Hypotheses: Varying Constraints of Fire Intensity
2. Materials and Methods
2.1. Study Area: Fuels and Forest Regions
2.2. Total Aboveground Carbon Density Data (AGCD)
2.3. Active Fires
2.4. FRP Normalization and Kernel Density of Normalized FRP
2.5. Modeling the Relationship Between AGCD and KD FRPN
2.6. Mapping Maximum Expected Fire Intensity
3. Results
3.1. Fuel-Specific Relationships Between KD FRPN and AGCD
3.2. Mapping Maximum Predicted Fire Intensity
4. Discussion
4.1. Variations in Fire Intensity Between Fuel Types and Regions
4.2. Variations in Fire Intensity Within Fuel Types
4.2.1. Fire Intensity Within Semiarid Forests, Shrublands and Pasture
4.2.2. Fire Intensity Within Pine and Oak Forests
4.2.3. Fire Intensity Within Tropical Forests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ager, A.A.; Vaillant, N.M.; Finney, M.A. A comparison of landscape fuel treatment strategies to mitigate wildland fire risk in the urban interface and preserve old forest structure. For. Ecol. Manag. 2010, 259, 1556–1570. [Google Scholar] [CrossRef]
- Plana, E.; Serra, M.; Smeenk, A.; Regos, A.; Berchtold, C.; Huertas, M.; Fuentes, L.; Trasobares, A.; Vinders, J.N.; Colaço, C.; et al. Framing Coherence Across EU Policies Towards Integrated Wildfire Risk Management and Nature-Based Solutions. Fire 2024, 7, 415. [Google Scholar] [CrossRef]
- Pais, S.; Aquilué, N.; Honrado, J.P.; Fernandes, P.M.; Regos, A. Optimizing Wildfire Prevention through the Integration of Prescribed Burning into ‘Fire-Smart’ Land-Use Policies. Fire 2023, 6, 457. [Google Scholar] [CrossRef]
- Calkin, D.C.; Finney, M.A.; Ager, A.A.; Thompson, M.P.; Gebert, K.M. Progress towards and barriers to implementation of a risk framework for US federal wildland fire policy and decision making. For. Policy Econ. 2011, 13, 378–389. [Google Scholar] [CrossRef]
- Curt, T.; Fréjaville, T.; Lahaye, S. Modeling the spatial patterns of ignition causes and fire regime features in south France: Implications for fire prevention policy. Int. J. Wildland Fire 2016, 25, 785–796. [Google Scholar] [CrossRef]
- Silva, F.R.; Molina Martínez, J.R.; González-Cabán, A. A Methodology for Determining Operational Priorities for Prevention and Suppression of Wildland Fires. Int. J. Wildland Fire 2014, 24, 544–554. [Google Scholar] [CrossRef]
- Silva, F.R.; O’Connor, C.D.; Thompson, M.P.; Martinez, J.R.M.; Calkin, D.E. Modelling suppression difficulty: Current and future applications. Int. J. Wildland Fire 2020, 29, 752. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Chas-Amil, M.L.; Aquilué, N.; Sil, Â.; Brotons, L.; Regos, A.; Touza, J. Incorporating fire-smartness into agricultural policies reduces suppression costs and ecosystem services damages from wildfires. J. Environ. Manag. 2023, 337, 117707. [Google Scholar] [CrossRef]
- Finney, M.A. The challenge of quantitative risk analysis for wildland fire. For. Ecol. Manag. 2005, 211, 97–108. [Google Scholar] [CrossRef]
- Thompson, M.P.; Calkin, D.E. Uncertainty and risk in wildland fire management: A review. J. Environ. Manag. 2011, 92, 1895–1909. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.M.C.; San Miguel-Ayanz, J.; Lourenco, L. Exploring the spatial patterns of fire density in Southern Europe using geographically weighted regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Ávila-Flores, D.; Pompa-García, M.; Antonio-Nemiga, X.; Rodríguez-Trejo, D.A.; Vargas-Pérez, E.; Santillan-Perez, J. Driving factors for forest fire occurrence in Durango State of Mexico: A geospatial perspective. Chin. Geogr. Sci. 2010, 20, 491–497. [Google Scholar] [CrossRef]
- Rodríguez, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A comprehensive spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 255, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Keane, R.E.; Agee, J.K.; Fulé, P. Ecological effects of large fires on US landscapes: Benefit or catastrophe? Int. J. Wildland Fire 2008, 17, 696–712. [Google Scholar] [CrossRef]
- Hurteau, M.; North, M. Fuel treatment effects on tree-based forest carbon storage and emissions under modeled wildfire scenarios. Front. Ecol. Environ. 2009, 7, 409–414. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Brooks, M.L. Short- and long-term effects of fire on carbon in US dry temperate forest systems. Bioscience 2011, 61, 139–146. [Google Scholar] [CrossRef]
- Archibald, S.; Roy, D.P.; Van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef]
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Flores-Medina, F.; López-Serrano, P.M.; Corral-Rivas, J.J.; Carrillo-Parra, A.; Pulgarín-Gámiz, M.A.; Alvarado-Celestino, E.; González-Cabán, A.; et al. Modeling and mapping forest fire occurrence from aboveground carbon density in Mexico. Forests 2019, 10, 402. [Google Scholar] [CrossRef]
- Monjarás-Vega, N.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.; Pompa-García, M.; Rodríguez-Trejo, D.; Carrillo-Parra, A.; González-Cabán, A.; et al. Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico. Sci. Total Environ. 2020, 718, 137313. [Google Scholar] [CrossRef]
- Kahiu, M.N.; Hanan, N.P. Fire in subSaharan Africa: The fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 2018, 27, 946–957. [Google Scholar] [CrossRef]
- Jiménez-Ruano, A.; Jolly, W.M.; Freeborn, P.H.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Rodrigues, M. Spatial Predictions of Human and Natural-Caused Wildfire Likelihood across Montana (USA). Forests 2022, 13, 1200. [Google Scholar] [CrossRef]
- Toledo-Jaime, C.; Díaz-Avalos, C.; Chaudhuri, S.; Serra, L.; Juan, P. Understanding Wildfire Occurrence and Size in Jalisco, Mexico: A Spatio-Temporal Analysis. Mexico: A Spatio-Temporal Analysis. For. Ecol. Mgt. 2024, 573, 122349. [Google Scholar] [CrossRef]
- Pausas, J.G.; Ribeiro, E. The global fire–productivity relationship. Glob. Ecol. Biogeogr. 2013, 22, 728–736. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef]
- Camp, P.E.; Krawchuk, M.A. Spatially varying constraints of human-caused fire occurrence in British Columbia, Canada. Int. J. Wildland Fire 2017, 26, 219–229. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Botelho, H.S.; Rego, F.C.; Loureiro, C. Empirical modelling of surface fire behaviour in maritime pine stands. Int. J. Wildland Fire 2009, 18, 698–710. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE—Fire Area Simulator—Model Development and Evaluation; Research Paper RMRS–RP–4; Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2004; 47p.
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; Report no. General Technical Report RMRS-GTR-153; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005.
- Miller, C.; Ager, A. A review of recent advances in risk analysis for wildfire management. Int. J. Wildland Fire 2013, 22, 1–14. [Google Scholar] [CrossRef]
- Botequim, B.; Fernandes, P.; Borges, J.; González-Ferreiro, E.; Guerra, J. Improving silvicultural practices for Mediterranean forests through fire behaviour modelling using LiDAR-derived canopy fuel characteristics. Int. J. Wildland Fire 2019, 28, 823–839. [Google Scholar] [CrossRef]
- Rincón, T.; Alonso, L.; Picos, J.; Molina-Terrén, D.M.; Armesto, J. A Systematic Approach to Map and Evaluate the Wildfire Behavior at a Territorial Scale in the Northwestern Iberian Peninsula. Fire 2024, 7, 249. [Google Scholar] [CrossRef]
- Bachmann, A.; Allgöwer, B. Uncertainty propagation in wildland fire behaviour modeling. Int. J. Geogr. Inf. Sci. 2002, 16, 115–127. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E. Assessing crown fire potential in coniferous forests of western North America: A critique of current approaches and recent simulation studies. Int. J. Wildland Fire 2010, 19, 377–398. [Google Scholar] [CrossRef]
- Jones, S.D.; Garvey, M.F.; Hunter, G.J. Where’s the fire? Quantifying uncertainty in a wildfire threat model. Int. J. Wildland Fire 2004, 13, 17–25. [Google Scholar] [CrossRef]
- Cardil, A.; Monedero, S.; Ramírez, J.; Silva, C.A. Assessing and reinitializing wildland fire simulations through satellite active fire data. J. Environ. Manag. 2019, 231, 996–1003. [Google Scholar] [CrossRef]
- Cardil, A.; Monedero, S.; Silva, C.A.; Ramirez, J. Adjusting the rate of spread of fire simulations in real-time. Ecol. Model. 2019, 395, 39–44. [Google Scholar] [CrossRef]
- Keane, R.E.; Burgan, R.; van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical setting. Int. J. Wildland Fire 2001, 10, 301–319. [Google Scholar] [CrossRef]
- Rollins, M.G.; Keane, R.E.; Parsons, R.A. Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modeling. Ecol. Appl. 2004, 14, 75–95. [Google Scholar] [CrossRef]
- Arellano-Pérez, S.; Castedo-Dorado, F.; López-Sánchez, C.A.; González-Ferreiro, E.; Yang, Z.; Díaz-Varela, R.A.; Álvarez-González, J.G.; Vega, J.A.; Ruiz-González, A.D. Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown Fire Hazard. Remote Sens. 2018, 10, 1645. [Google Scholar] [CrossRef]
- Flores-Medina, F.; Vega-Nieva, D.J.; Monjarás-Vega, N.; Briones-Herrera, C.I.; Corral-Rivas, J.J.; Calleros, E.; López-Serrano, P.M.; Alvarado, E.; González-Cabán, A.; Pérez-Salicrup, D.; et al. Mapping fuel loads and fire behavior from Sentinel in Durango, NW Mexico. In Proceedings of the 6th International Fire Behavior and Fuels Conference, Albuquerque, NM, USA, 29 April–3 May 2019; Available online: https://www.researchgate.net/profile/Favian-Flores-Medina/publication/333745210_Mapping_fuel_loads_and_fire_behavior_from_Sentinel_in_Durango/links/5d01b63ba6fdccd130969bf1/Mapping-fuel-loads-and-fire-behavior-from-Sentinel-in-Durango.pdf (accessed on 30 November 2024).
- Alonso-Rego, C.; Arellano-Pérez, S.; Guerra-Hernández, J.; Molina-Valero, J.A.; Martínez-Calvo, A.; Pérez-Cruzado, C.; Castedo-Dorado, F.; González-Ferreiro, E.; Álvarez-González, J.G.; Ruiz-González, A.D. Estimating Stand and Fire-Related Surface and Canopy Fuel Variables in Pine Stands Using Low-Density Airborne and Single-Scan Terrestrial Laser Scanning Data. Remote Sens. 2021, 13, 5170. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Gómez-Vázquez, I.; Fernandes, P.M.; Crecente-Campo, F. Shrub fuel characteristics estimated from overstory variables in NW Spain pine stands. For. Ecol. Manag. 2012, 275, 130–141. [Google Scholar] [CrossRef]
- Castedo-Dorado, F.; Ruiz-González, A.D.; Hidalgo, J.A.V.; Arellano-Pérez, S.; Álvarez-González, J.G. Use of national forest inventory data to develop stand density driven models for understorey shrubs and overstorey fuel variables and associated temporal dynamics in commercial plantations. For. Ecol. Manag. 2024, 553, 121597. [Google Scholar] [CrossRef]
- Sá, A.C.L.; Pereira, J.M.C.; Charlton, M.E.; Mota, B.; Barbosa, P.M.; Fotheringham, A.S. The pyrogeography of sub-Saharan Africa: A study of the spatial non-stationarity of fire-environment relationships using GWR. J. Geogr. Syst. 2011, 13, 227–248. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, S.; Sharples, J.J. Modelling spatial patterns of wildfire occurrence in South-Eastern Australia. Geomat. Nat. Hazards Risk 2016, 7, 1800–1815. [Google Scholar] [CrossRef]
- Haas, O.; Prentice, I.C.; Harrison, S.P. Global environmental controls on wildfire burnt area, size, and intensity. Environ. Res. Lett. 2022, 17, 065004. [Google Scholar] [CrossRef]
- Parks, S.A.; Dobrowski, S.Z.; Panunto, M.H. What drives low-severity fire in the southwestern USA? For. Sci. 2018, 9, 165. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Panunto, M.H.; Jolly, W.M.; Dobrowski, S.Z.; Dillon, G.K. High-severity fire: Evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 2018, 13, 044037. [Google Scholar] [CrossRef]
- Johnston, J.M.; Wooster, M.J.; Paugam, R.; Wang, X.; Lynham, T.J.; Johnston, L.M. Direct estimation of Byram’s fire intensity from infrared remote sensing imagery. Int. J. Wildland Fire 2017, 26, 668–684. [Google Scholar] [CrossRef]
- Ellicott, E.; Vermote, E. The science and application of satellite-based fire radiative energy. In Remote Sensing of Biomass—Principles and Applications; Thenkabail, P.S., Ed.; InTech: London, UK, 2012; pp. 178–192. [Google Scholar]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.P.; Freeborn, P.H.; Boschetti, L.; San-Miguel-Ayanz, J. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Voss, M.A.; Loehman, R.A.; Robinson, N.P. Mean composite fire severity metrics computed with Google Earth Engine offer improved accuracy and expanded mapping potential. Remote Sens. 2018, 10, 879. [Google Scholar] [CrossRef]
- Moya, D.; Madrigal, J.; Fontúrbel, T.; Marino, E.; Hernando, C.; Guijarro, M.; de las Heras, J. Fire severity assessments in both the laboratory and the field. Fire Eff. Soil Prop. 2019, 241, 241–266. [Google Scholar]
- Fernández-García, V.; Santamarta, M.; Fernández-Manso, A.; Quintano, C.; Marcos, E.; Calvo, L. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sens. Environ. 2018, 206, 205–217. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Townshend, J.R.G. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 m: First results of the MODIS vegetation continuous fields algorithm. Earth Interact. 2003, 7, 1–15. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, M.M. A national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef]
- Fernández-Alonso, J.M.; Vega, J.A.; Jiménez, E.; Ruiz-González, A.D.; Álvarez-González, J.G. Spatially modeling wildland fire severity in pine forests of Galicia, Spain. Eur. J. For. Res. 2017, 136, 105–121. [Google Scholar] [CrossRef]
- Fernández-García, V.; Beltrán-Marcos, D.; Fernández-Guisuraga, J.M.; Marcos, E.; Calvo, L. Predicting potential wildfire severity across Southern Europe with global data sources. Sci. Total Environ. 2022, 829, 154729. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Suárez-Seoane, S.; Fernandes, P.M.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Calvo, L. Pre-fire aboveground biomass, estimated from LiDAR, spectral, and field inventory data, as a major driver of burn severity in maritime pine (Pinus pinaster) ecosystems. For. Ecosyst. 2022, 9, 100022. [Google Scholar] [CrossRef]
- Schroeder, W.; Csiszar, I.; Giglio, L.; Schmidt, C.C. On the use of fire radiative power, area, and temperature estimates to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian Amazon. J. Geophys. Res. Atmos. 2010, 115, D21. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhang, Y.H. Boreal forest fires burn less intensely in Russia than in North America. Geophys. Res. Lett. 2004, 31, L20505. [Google Scholar] [CrossRef]
- Dwomoh, F.K.; Wimberly, M.C. Fire regimes and their drivers in the Upper Guinean Region of West Africa. Remote Sens. 2017, 9, 1117. [Google Scholar] [CrossRef]
- Eckmann, T.C.; Still, C.J.; Roberts, D.A.; Michaelsen, J.C. Variations in subpixel fire properties with season and land cover in Southern Africa. Earth Interact. 2010, 14, 1–29. [Google Scholar] [CrossRef]
- Viedma, O.; Quesada, J.; Torres, I.; De Santis, A.; Moreno, J.M. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 2015, 18, 237–250. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Fernandes, P.M. Using pre-fire high point cloud density LiDAR data to predict fire severity in Central Portugal. Remote Sens. 2023, 15, 768. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Bobryk, C.W.; Liang, Y. Scale effects of vegetation and topography on burn severity under prevailing fire weather conditions in boreal forest landscapes of Northeastern China. Scand. J. For. Res. 2014, 29, 60–70. [Google Scholar] [CrossRef]
- Wu, Z.; He, H.S.; Liang, Y.; Cai, L.; Lewis, B.J. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery. Environ. Manag. 2013, 52, 821–836. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Taboada, A.; Fernández-Manso, A.; Quintano, C.; Fernández-García, V.; Calvo, L. Environmental drivers of fire severity in extreme fire events that affect Mediterranean pine forest ecosystems. For. Ecol. Manag. 2018, 433, 24–32. [Google Scholar] [CrossRef]
- Dillon, G.; Morgan, P.; Holden, Z. Mapping the potential for high-severity wildfire in the western United States. Fire Manag. Today 2011, 71, 25–28. [Google Scholar]
- Parks, S.A.; Parisien, M.A.; Miller, C.; Dobrowski, S.Z. Fire activity and severity in the western US vary along proxy gradients representing fuel amount and fuel moisture. PLoS ONE 2014, 9, e99699. [Google Scholar] [CrossRef]
- Beltrán-Marcos, D.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Azevedo, J.C.; Calvo, L. Fire regime attributes shape pre-fire vegetation characteristics controlling extreme fire behavior under different bioregions in Spain. Fire Ecol. 2024, 20, 47. [Google Scholar] [CrossRef]
- Viedma, O.; Chico, F.; Fernández, J.J.; Madrigal, C.; Safford, H.D.; Moreno, J.M. Disentangling the role of prefire vegetation vs. burning conditions on fire severity in a large forest fire in SE Spain. Remote Sens. Environ. 2020, 247, 111891. [Google Scholar] [CrossRef]
- Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. Challenges of assessing fire and burn severity using field measures, remote sensing, and modelling. Int. J. Wildland Fire 2014, 23, 1045–1060. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Fernández-Manso, A.; Quintano, C.; Fernández-García, V.; Cerrillo, A.; Marqués, G.; Cascallana, G.; Calvo, L. FIREMAP: Cloud-based software to automate the estimation of wildfire-induced ecological impacts and recovery processes using remote sensing techniques. Ecol. Inform. 2024, 81, 102591. [Google Scholar] [CrossRef]
- Silva-Cardoza, A.I.; Vega-Nieva, D.J.; Briseño-Reyes, J.; Briones-Herrera, C.I.; López-Serrano, P.M.; Corral-Rivas, J.J.; Parks, S.A.; Holsinger, L.M. Evaluating a New Relative Phenological Correction and the Effect of Sentinel-Based Earth Engine Compositing Approaches to Map Fire Severity and Burned Area. Remote Sens. 2022, 14, 3122. [Google Scholar] [CrossRef]
- Llorens, R.; Sobrino, J.A.; Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A. A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102243. [Google Scholar] [CrossRef]
- Fernández, C.; Fernández-Alonso, J.M.; Vega, J.A.; Fontúrbel, T.; Llorens, R.; Sobrino, J.A. Exploring the use of spectral indices to assess alterations in soil properties in pine stands affected by crown fire in Spain. Fire Ecol. 2021, 17, 2. [Google Scholar] [CrossRef]
- Dillon, G.K.; Panunto, M.H.; Davis, B.; Morgan, P.; Birch, D.S.; Jolly, W.M. Development of a Severe Fire Potential Map for the Contiguous United States; General Technical Report RMRS GTR-415; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2020; 107p. Available online: https://www.fs.usda.gov/rm/pubs_series/rmrs/gtr/rmrs_gtr415.pdf (accessed on 30 November 2024).
- Li, F.; Zhang, X.; Roy, D.P.; Kondragunta, S. Estimation of biomass-burning emissions by fusing the fire radiative power retrievals from polar-orbiting and geostationary satellites across the conterminous United States. Atmos. Environ. 2019, 211, 274–287. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.; Freeborn, P.H.; Xu, W. Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory. Remote Sens. Environ. 2011, 115, 2047–2061. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Perry, G.L.; Drake, N.; Rebelo, L.M.; Dipotso, F. Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. J. Geophys. Res. Atmos. 2005, 110, D21. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Xu, W.; He, J. Fire activity and fuel consumption dynamics in sub-Saharan Africa. Remote Sens. 2018, 10, 1591. [Google Scholar] [CrossRef]
- Ruecker, G.; Leimbach, D.; Tiemann, J. Estimation of Byram’s Fire Intensity and Rate of Spread from Spaceborne Remote Sensing Data in a Savanna Landscape. Fire 2021, 4, 65. [Google Scholar] [CrossRef]
- Chatzopoulos-Vouzoglanis, K.; Reinke, K.J.; Soto-Berelov, M.; Jones, S.D. One year of near-continuous fire monitoring on a continental scale: Comparing fire radiative power from polar-orbiting and geostationary observations. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103214. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. Atmos. 2005, 110, D24. [Google Scholar] [CrossRef]
- Smith, A.M.; Wooster, M.J. Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations. Int. J. Wildland Fire 2005, 14, 249–254. [Google Scholar] [CrossRef]
- Jolly, W.M.; Freeborn, P.H. Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin. Int. J. Wildland Fire 2017, 26, 574–586. [Google Scholar] [CrossRef]
- Heward, H.; Smith, A.M.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. Int. J. Wildland Fire 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Henry, M.C.; Maingi, J.K.; McCarty, J. Fire on the water towers: Mapping burn scars on Mount Kenya using satellite data to reconstruct recent fire history. Remote Sens. 2019, 11, 104. [Google Scholar] [CrossRef]
- Chatzopoulos-Vouzoglanis, K.; Reinke, K.J.; Soto-Berelov, M.; Jones, S.D. Are fire intensity and burn severity associated? Advancing our understanding of FRP and NBR metrics from Himawari-8/9 and Sentinel-2. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103673. [Google Scholar] [CrossRef]
- Sparks, A.M.; Kolden, C.A.; Smith, A.M.; Boschetti, L.; Johnson, D.M.; Cochrane, M.A. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences 2018, 15, 1173–2028. [Google Scholar] [CrossRef]
- Sparks, A.M.; Smith, A.M.; Talhelm, A.F.; Kolden, C.A.; Yedinak, K.M.; Johnson, D.M. Impacts of fire radiative flux on mature Pinus ponderosa growth and vulnerability to secondary mortality agents. Int. J. Wildland Fire 2017, 26, 2032–2034. [Google Scholar] [CrossRef]
- Wooster, M.J. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophys. Res. Lett. 2002, 29, 23-1–23-4. [Google Scholar] [CrossRef]
- Ichoku, C.; Kaufman, Y.J. A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2636–2649. [Google Scholar] [CrossRef]
- Ichoku, C.; Giglio, L.; Wooster, M.J.; Remer, L.A. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens. Environ. 2008, 112, 2950–2962. [Google Scholar] [CrossRef]
- Ichoku, C.; Ellison, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys. 2014, 14, 6643–6667. [Google Scholar] [CrossRef]
- Mota, B.; Wooster, M.J. A new top-down approach for directly estimating biomass burning emissions and fuel consumption rates and totals from geostationary satellite fire radiative power (FRP). Remote Sens. Environ. 2018, 206, 45–62. [Google Scholar] [CrossRef]
- Ellicott, E.; Vermote, E.; Giglio, L.; Roberts, G. Estimating biomass consumed from fire using MODIS FRE. Geophys. Res. Lett. 2009, 36, L13401. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Sofiev, M.; Vankevich, R.; Lotjonen, M.; Prank, M.; Petukhov, V.; Ermakova, T.; Koskinen, J.; Kukkonen, J. An operational system for the assimilation of the 2013 satellite information on wild-land fires for the needs of air quality modelling and 2014 forecasting. Atmos. Chem. Phys. 2009, 9, 6833–6847. [Google Scholar] [CrossRef]
- Zhang, X.S.; Kondragunta, S.; Ram, J.; Schmidt, C.; Huang, H.C. Near-real-time global biomass burning emissions product from geostationary satellite constellation. J. Geophys. Res. Atmos. 2012, 117, 2176. [Google Scholar] [CrossRef]
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Monjarás-Vega, N.A.; Briseño-Reyes, J.; López-Serrano, P.M.; Corral-Rivas, J.J.; Alvarado-Celestino, E.; Arellano-Pérez, S.; Álvarez-González, J.G.; Ruiz-González, A.D.; et al. Near Real-Time Automated Early Mapping of the Perimeter of Large Forest Fires from the Aggregation of VIIRS and MODIS Active Fires in Mexico. Remote Sens. 2020, 12, 2061. [Google Scholar] [CrossRef]
- Briones-Herrera, C.I.; Vega-Nieva, D.J.; Briseño-Reyes, J.; Monjarás-Vega, N.A.; López-Serrano, P.M.; Corral-Rivas, J.J.; Alvarado, E.; Arellano-Pérez, S.; Jardel Peláez, E.J.; Pérez Salicrup, D.R.; et al. Fuel-Specific Aggregation of Active Fire Detections for Rapid Mapping of Forest Fire Perimeters in Mexico. Forests 2022, 13, 124. [Google Scholar] [CrossRef]
- Parks, S.A. Mapping day-of-burning with coarse resolution satellite fire-detection data. Int. J. Wildland Fire 2014, 23, 215–223. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Sedano, F.; Hook, S.J.; Randerson, J.T.; Jin Yufang, J.; Brendan, R.M. Mapping the daily progression of large wildland fires using MODIS active fire data. Int. J. Wildland Fire 2014, 23, 655–667. [Google Scholar] [CrossRef]
- Oliveira, S.L.; Maier, S.W.; Pereira, J.M.; Russell-Smith, J. Seasonal differences in fire activity and intensity in tropical savannas of northern Australia using satellite measurements of fire radiative power. Int. J. Wildland Fire 2015, 24, 249–260. [Google Scholar] [CrossRef]
- Kganyago, M.; Shikwambana, L. Assessment of the characteristics of recent major wildfires in the USA, Australia and Brazil in 2018–2019 using multi-source satellite products. Remote Sens. 2020, 12, 1803. [Google Scholar] [CrossRef]
- Mupfiga, U.N.; Mutanga, O.; Dube, T.; Kowe, P. Spatial clustering of vegetation fire intensity using MODIS satellite data. Atmosphere 2022, 13, 1972. [Google Scholar] [CrossRef]
- García, M.; Pettinari, M.L.; Chuvieco, E.; Salas, J.; Mouillot, F.; Chen, W.; Aguado, I. Characterizing Global Fire Regimes from Satellite-Derived Products. Forests 2022, 13, 699. [Google Scholar] [CrossRef]
- Li, Y.; Janssen, T.A.; Chen, R.; He, B.; Veraverbeke, S. Trends and drivers of Arctic-boreal fire intensity between 2003 and 2022. Sci. Total Environ. 2024, 926, 172020. [Google Scholar] [CrossRef]
- Jardel, P.E.; Quintero, G.S.; Jiménez, L.A.; Graf, P.D.; Rodríguez, G.J. Generación de Modelos de Comportamiento del Fuego para los Tipos de Combustibles Forestales de México Informe del Proyecto: “Caracterización y Clasificación de Combustibles para Generar y Validar Modelos de Combustibles Forestales para México” CONAFOR-CONACyT 2014-CO2-251694. 2018. Available online: https://forestales.ujed.mx/incendios2/php/publicaciones_documentos/8_2_Jardel%20et%20al%2017a-ETAPA%20III%20Producto%204.1%20Modelos%20de%20combustibles.pdf (accessed on 30 November 2024).
- INEGI (Instituto Nacional de Estadística y Geografía-México). Guía Para la Interpretación de Cartografía: Uso del suelo y Vegetación. escala 1, 250, 000: Serie V; Instituto Nacional de Estadística y Geografía: Ciudad de México, México, 2011. [Google Scholar]
- Fu, Y.; Li, R.; Wang, X.; Bergeron, Y.; Valeria, O.; Chavardès, R.D.; Wang, Y.; Hu, J. Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products. Remote Sens. 2020, 12, 2870. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Briseño-Reyes, J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Corral-Rivas, J.J.; Montiel-Antuna, E.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; et al. Developing Models to Predict the Number of Fire Hotspots from an Accumulated Fuel Dryness Index by Vegetation Type and Region in Mexico. Forests 2018, 9, 190. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Briseño-Reyes, J.; Corral-Rivas, J.J.; Cruz-López, M.I.; Cuahutle, M.; Ressl, R.; Alvarado-Celestino, E. Temporal patterns of fire density by vegetation type and region in Mexico and its temporal relationships with a monthly satellite fuel greenness index. Fire Ecol. 2019, 15, 28. [Google Scholar] [CrossRef]
- Maharani, M.; Saputro, D.R.S. Generalized cross validation (GCV) in smoothing spline nonparametric regression models. J. Phys. Conf. Ser. 2021, 1808, 012053. [Google Scholar] [CrossRef]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosci. 2006, 111, G2. [Google Scholar] [CrossRef]
- Laurent, P.; Mouillot, F.; Moreno, M.V.; Yue, C.; Ciais, P. Varying relationships between fire radiative power and fire size at a global scale. Biogeosciences 2019, 16, 275–288. [Google Scholar] [CrossRef]
- Cruz-López, M.I.; Manzo-Delgado, L.D.L.; Aguirre-Gómez, R.; Chuvieco, E.; Equihua-Benítez, J.A. Spatial distribution of forest fire emissions: A case study in three Mexican ecoregions. Remote Sens. 2019, 11, 1185. [Google Scholar] [CrossRef]
- Corona-Núñez, R.O.; Li, F.; Campo, J.E. Fires represent an important source of carbon emissions in Mexico. Glob. Biogeochem. Cycles 2020, 34, e2020GB006815. [Google Scholar] [CrossRef]
- Neger, C.; León-Cruz, J.F.; Galicia Sarmiento, L.; Manzo-Delgado, L.D.L. Dinámica espaciotemporal, causas y efectos de los megaincendios forestales en México. Madera Bosques 2022, 28, 2. [Google Scholar] [CrossRef]
- Barrett, K.; Kasischke, E.S. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: Implications for fire severity conditions. Remote Sens. Environ. 2013, 130, 171–181. [Google Scholar] [CrossRef]
- Luo, R.; Hui, D.; Miao, N.; Liang, C.; Wells, N. Global relationship of fire occurrence and fire intensity: A test of intermediate fire occurrence-intensity hypothesis. J. Geophys. Res. Biogeosci. 2017, 122, 1123–1136. [Google Scholar] [CrossRef]
- Manzo-Delgado, L.; Sánchez-Colón, S.; Álvarez, R. Assessment of seasonal forest fire risk using NOAA-AVHRR: A case study in central Mexico. Int. J. Remote Sens. 2009, 30, 4991–5013. [Google Scholar] [CrossRef]
- Rodríguez-Trejo, D.A. Fire regimes, fire ecology and fire management in Mexico. Ambio 2008, 37, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Jardel, E.J.; Alvarado, E.; Morfín-Ríos, J.E.; Castillo-Navarro, F.; Flores-Garnica, J.G. Regímenes de incendios en ecosistemas forestales de México. In Impacto Ambiental de Incendios Forestales; Flores Garnica, J.G., Ed.; Mundi-Prensa, INIFAP y Colegio de Postgraduados: Mexico City, Mexico, 2009; p. 73Z100. [Google Scholar]
- Kauffman, J.B.; Steele, M.D.; Cummings, D.L.; Jaramillo, V.J. Biomass dynamics associated with deforestation, fire, and conversion to cattle pasture in a Mexican tropical dry forest. For. Ecol. Manag. 2003, 176, 1–12. [Google Scholar] [CrossRef]
- Myers, R.L.; Rodríguez-Trejo, D.A. Fire in tropical pine ecosystems. In Tropical Fire Ecology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 557–605. [Google Scholar] [CrossRef]
- Hartung, M.; Carreño-Rocabado, G.; Peña-Claros, M.; van der Sande, M.T. Tropical dry forest resilience to fire depends on fire frequency and climate. Front. For. Glob. Change 2021, 4, 755104. [Google Scholar] [CrossRef]
- Armenteras, D.; González, T.M.; Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 2013, 159, 73–79. [Google Scholar] [CrossRef]
- Silva Junior, C.H.; Aragão, L.E.; Fonseca, M.G.; Almeida, C.T.; Vedovato, L.B.; Anderson, L.O. Deforestation-induced fragmentation increases forest fire occurrence in central Brazilian Amazonia. Forests 2018, 9, 305. [Google Scholar] [CrossRef]
- O’Donnell, A.J.; Boer, M.M.; McCaw, W.L.; Grierson, P.F. Vegetation and landscape connectivity control wildfire intervals in unmanaged semi-arid shrublands and woodlands in Australia. J. Biogeogr. 2011, 38, 112–124. [Google Scholar] [CrossRef]
- Baeza, J.; Santana, V.M.; Pausas, J.G.; Vallejo, R. Successional trends in standing dead biomass in Mediterranean Basin species. Sci. J. Veg. Sci. 2011, 22, 467–474. [Google Scholar] [CrossRef]
- McColl-Gausden, S.C.; Bennett, L.T.; Duff, T.J.; Cawson, J.G.; Penman, T.D. Climatic and edaphic gradients predict variation in wildland fuel hazard in south-eastern Australia. Ecography 2020, 43, 443–455. [Google Scholar] [CrossRef]
- Peláez, E.J.J.; Gradilla, S.D.Q.; Jiménez, A.J.L.; Alvarado, E.; Salicrup, D.P.; Gómez, J.M.R.; Ríos, J.E.M.; Fuentes, J.M.M.; Navarro, F.C.; Pérez, D.G.; et al. Catálogo de Camas de Combustibles Forestales para México y Potencial de Incendios Asociado. Informe del Proyecto: “Caracterización y Clasificación de Combustibles para Generar y Validar Modelos de Combustibles Forestales para México” CONAFOR-CONACyT 2014-CO2-251694. 2018. Available online: https://forestales.ujed.mx/incendios2/php/publicaciones_documentos/8_1_Jardel%20et%20al%2017a-CATALOGO%20COMBFORMEX_2018.pdf (accessed on 30 November 2024).
- Jardel, P.E.; Gradilla, S.; Jiménez, A.; Pérez, J.; Gómez, J.; Salicrup, D. Guía Técnica Divulgativa para el Uso de Modelos de Comportamiento del Fuego para los Tipos de Combustibles Forestales de México. Informe del Proyecto: “Caracterización y Clasificación de Combustibles para Generar y Validar Modelos de Combustibles Forestales para México” CONAFOR-CONACyT 2014-CO2-251694. 2018. Available online: https://forestales.ujed.mx/incendios2/php/publicaciones_documentos/8_3_Jardel%20et%20al%2017a-ETAPA%20III%20Producto%204.3%20GU%C3%8DA%20MODELOS%20COMB.pdf (accessed on 30 November 2024).
- Pausas, J.G.; Bradstock, R.A. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Glob. Ecol. Biogeogr. 2007, 16, 330–340. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Keeley, J.E.; Fotheringham, C.J.; Morais, M. Reexamining fire suppression impacts on brushland fire regimes. Science 1999, 284, 1829–1832. [Google Scholar] [CrossRef] [PubMed]
- Keeley, J.E.; Pfaff, A.H.; Safford, H.D. Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands. Int. J. Wildland Fire 2005, 14, 255–265. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. Chaparral landscape conversion in southern California. In Valuing Chaparral; Underwood, E.C., Safford, H.D., Molinari, N.A., Keeley, J.E., Eds.; Springer International Publishing: Basel, Switzerland, 2018; pp. 311–334. [Google Scholar]
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Leys, B.A.; Marlon, J.R.; Umbanhowar, C.; Vannière, B. Global fire history of grassland biomes. Ecol. Evol. 2018, 8, 8831–8852. [Google Scholar] [CrossRef]
- Curt, T.; Frejaville, T. Wildfire policy in Mediterranean France: How far is it efficient and sustainable? Risk Anal. 2018, 38, 472–488. [Google Scholar] [CrossRef]
- Santiago-Pérez, A.L.; Jardel-Peláez, E.J.; Cuevas-Guzmán, R.; Huerta-Martínez, F.M. Vegetación de bordes en un bosque mesófilo de montaña del occidente de México. Bol. Soc. Bot. Méx. 2009, 85, 31–49. [Google Scholar] [CrossRef]
- Botequim, B.; Garcia-Gonzalo, J.; Marques, S.; Ricardo, A.; Borges, J.G.; Tomé, M.; Oliveira, M.M. Developing wildfire risk probability models for Eucalyptus globulus stands in Portugal. iForest-Biogeosci. For. 2013, 6, 217–228. [Google Scholar] [CrossRef]
- Fernandes, P.M. Combining forest structure data and fuel modelling to classify fire hazard in Portugal. Ann. For. Sci. 2009, 66, 1–9. [Google Scholar] [CrossRef]
- Andrews, P.L. Modeling wind Adjustment Factor and Midflame Wind Speed for Rothermel’s Surface Fire Spread Model; General Technical Report RMRS-GTR-266; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2012; p. 39.
- Massman, W.J.; Forthofer, J.M.; Finney, M.A. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior. Can. J. For. Res. 2017, 47, 594–603. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Álvarez, A.; Retana, J. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests. PLoS ONE 2014, 9, e85127. [Google Scholar] [CrossRef]
- Cortés-Montaño, C.; Fulé, P.Z.; Falk, D.A.; Villanueva-Díaz, J.; Yocom, L.L. Linking old-growth forest composition, structure, fire history, climate and land-use in the mountains of northern México. Ecosphere 2012, 3, 106. [Google Scholar] [CrossRef]
- Keeley, J.E.; Zedler, P.H. Evolution of life histories in Pinus. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 219–250. [Google Scholar]
- Rodríguez-Trejo, D.A.; Pulido-Luna, J.A.; Martínez-Muñoz, P.; Martínez-Lara, P.J.; Monjarás-Vega, N.A. Análisis comparativo de quemas prescritas aplicadas a encinares tropicales. Agrociencia 2018, 52, 783–801. [Google Scholar]
- Cochrane, M.A.; Schulze, M.D. Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica 1999, 31, 2–16. [Google Scholar] [CrossRef]
- Hasnat, G.T.; Hossain, M.K. Global overview of tropical dry forests. In Handbook of Research on the Conservation and Restoration of Tropical Dry Forests; IGI Global: Hershey, PA, USA, 2019; pp. 1–23. [Google Scholar]
- Juárez-Orozco, S.M.; Siebe, C.; Fernández y Fernández, D. Causes and effects of forest fires in tropical rainforests: A bibliometric approach. Trop. Conserv. Sci. 2017, 10, 1940082917737207. [Google Scholar] [CrossRef]
- Devisscher, T.; Anderson, L.O.; Aragão, L.E.; Galván, L.; Malhi, Y. Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE 2016, 11, e0161323. [Google Scholar] [CrossRef]
- Manzo-Delgado, L.L.; López-García, J. Análisis espacial y temporal de áreas quemadas en 1998, 2003 y 2015 en la Reserva de la Biosfera Montes Azules, Chiapas, México. Bosque 2020, 41, 11–24. [Google Scholar] [CrossRef]
- Aragoneses, E.; García, M.; Ruiz-Benito, P.; Chuvieco, E. Mapping forest canopy fuel parameters at European scale using spaceborne LiDAR and satellite data. Remote Sens. Environ. 2024, 303, 114005. [Google Scholar] [CrossRef]
Remote Sensing Data Utilized | |
---|---|
Sensor | MODIS (Moderate-Resolution Imaging Spectroradiometer) |
Satellite | Terra: November 2000–present Aqua: July 2002–present |
Resolution | 1000 m |
Fire intensity data | Active fires’ FRP values (Fire Radiative Power, MW) |
Analyzed period | 2011–2020 |
File format | Shapefile |
Source of the file | https://firms.modaps.eosdis.nasa.gov/ (accessed on 20 January 2025) |
Fuel Region | R2adj | GCV | Max. KD FRPN |
---|---|---|---|
PF_SC2 | 0.46 | 80.497 | 242.70 |
PF_C2 | 0.52 | 113.1 | 390.00 |
PF_NW | 0.68 | 66.56 | 513.91 |
PF_WC2 | 0.53 | 37.627 | 272.49 |
PF_SC1 | 0.50 | 685.08 | 804.27 |
CHAP_NBJ | 0.74 | 963.1 | 1289.19 |
OF_SC1+SC2 | 0.60 | 19.22 | 291.57 |
OF_WC1 | 0.45 | 66.33 | 418.19 |
OF_NW | 0.80 | 7.55 | 248.00 |
OF_WC2 | 0.20 | 963.23 | 348.36 |
OF_C2 | 0.65 | 47.79 | 418.65 |
POF_WC1 | 0.84 | 51.63 | 598.58 |
POF_C1 | 0.68 | 37.747 | 306.00 |
POF_SE1 | 0.61 | 308.45 | 612.00 |
POF_NE1 | 0.52 | 431.79 | 664.80 |
DTF_NE1 | 0.41 | 123.68 | 240.90 |
DTF_SC2 | 0.44 | 176.79 | 482.35 |
DTF_WC1 | 0.20 | 150.09 | 251.95 |
DTF_C2 | 0.58 | 314.54 | 842.00 |
DTF_WC2 | 0.83 | 369.77 | 1023.00 |
DTF_SE1 | 0.37 | 115.53 | 446.00 |
DTF_NBJ | 0.58 | 1525 | 630.00 |
DTF_WE_NC | 0.81 | 54.763 | 271.64 |
DTF_SE2 | 0.26 | 997.63 | 1306.88 |
DTF_NW | 0.75 | 18.87 | 204.00 |
WTF_SE1 | 0.58 | 202.67 | 473.39 |
WTF_SE2 | 0.32 | 368.22 | 549.74 |
SAF_WC1 | 0.56 | 366.11 | 579.22 |
SAF_C2 | 0.26 | 197.14 | 250.00 |
SAF_C1 | 0.35 | 102.57 | 184.00 |
SAF_WE_NC | 0.50 | 52.56 | 198.00 |
SAF_NW4 | 0.65 | 16.70 | 317.08 |
SAF_NE2 | 0.45 | 128.94 | 323.13 |
SAF_NW2 | 0.61 | 28.41 | 209.08 |
SAF_NW3 | 0.64 | 22.06 | 360.03 |
SAF_NC | 0.84 | 239.21 | 645.41 |
PAS_SC1 | 0.50 | 1449.2 | 769.05 |
PAS_SC2 | 0.80 | 155.72 | 499.22 |
PAS_C2 | 0.54 | 432 | 664.62 |
PAS_C1 | 0.27 | 66.784 | 150.13 |
PAS_WE_NC | 0.68 | 42.35 | 147.00 |
DSH_C1 | 0.73 | 61.00 | 167.50 |
DSH_NC | 0.97 | 4.48 | 191.00 |
DSH_NBJ | 0.61 | 421.57 | 153.00 |
DSH_NE | 0.13 | 480.91 | 306.35 |
WET_SE1+2 | 0.22 | 79.82 | 475.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinoco-Orozco, D.A.; Vega-Nieva, D.J.; Briseño-Reyes, J.; Dominguez-Amaya, M.E.; Silva-Cardoza, A.I.; Briones-Herrera, C.I.; Álvarez-González, J.G.; Corral Rivas, J.J.; López-Serrano, P.M.; Jardel-Pelaez, E.J.; et al. Where Do Fires Burn More Intensely? Modeling and Mapping Maximum MODIS Fire Radiative Power from Aboveground Biomass by Fuel Type in Mexico. Fire 2025, 8, 54. https://doi.org/10.3390/fire8020054
Tinoco-Orozco DA, Vega-Nieva DJ, Briseño-Reyes J, Dominguez-Amaya ME, Silva-Cardoza AI, Briones-Herrera CI, Álvarez-González JG, Corral Rivas JJ, López-Serrano PM, Jardel-Pelaez EJ, et al. Where Do Fires Burn More Intensely? Modeling and Mapping Maximum MODIS Fire Radiative Power from Aboveground Biomass by Fuel Type in Mexico. Fire. 2025; 8(2):54. https://doi.org/10.3390/fire8020054
Chicago/Turabian StyleTinoco-Orozco, Diana Aime, Daniel José Vega-Nieva, Jaime Briseño-Reyes, Mesías Edwin Dominguez-Amaya, Adrián Israel Silva-Cardoza, Carlos Ivan Briones-Herrera, Juan Gabriel Álvarez-González, José Javier Corral Rivas, Pablito Marcelo López-Serrano, Enrique J. Jardel-Pelaez, and et al. 2025. "Where Do Fires Burn More Intensely? Modeling and Mapping Maximum MODIS Fire Radiative Power from Aboveground Biomass by Fuel Type in Mexico" Fire 8, no. 2: 54. https://doi.org/10.3390/fire8020054
APA StyleTinoco-Orozco, D. A., Vega-Nieva, D. J., Briseño-Reyes, J., Dominguez-Amaya, M. E., Silva-Cardoza, A. I., Briones-Herrera, C. I., Álvarez-González, J. G., Corral Rivas, J. J., López-Serrano, P. M., Jardel-Pelaez, E. J., Perez-Salicrup, D., & Ruiz-González, A. D. (2025). Where Do Fires Burn More Intensely? Modeling and Mapping Maximum MODIS Fire Radiative Power from Aboveground Biomass by Fuel Type in Mexico. Fire, 8(2), 54. https://doi.org/10.3390/fire8020054