Next Issue
Volume 8, September
Previous Issue
Volume 8, July
 
 

Fire, Volume 8, Issue 8 (August 2025) – 50 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 5832 KiB  
Article
Landsat Time Series Analysis with BFAST for Detecting Degradation of Thyme Shrublands by Fire on Lemnos Island
by Georgios K. Vasios, Eleftheria Alexoudaki, Aggeliki Kaloveloni and Andreas Y. Troumbis
Fire 2025, 8(8), 335; https://doi.org/10.3390/fire8080335 - 21 Aug 2025
Viewed by 427
Abstract
Landsat time series data, which have become freely available in recent years, are commonly used to detect changes in land cover and monitor ecosystem disturbances. Thyme habitats are areas under protection due to their high ecological value. However, human activity leading to land [...] Read more.
Landsat time series data, which have become freely available in recent years, are commonly used to detect changes in land cover and monitor ecosystem disturbances. Thyme habitats are areas under protection due to their high ecological value. However, human activity leading to land use competition, mainly from overgrazing, poses an increased threat to these habitats. The impact of these disturbances is underreported, and their detection remains essential for thyme conservation. The island of Lemnos was chosen as the study area, because of the significant areas of thyme habitats, which are currently under pressure due to rural abandonment, desertification, overgrazing, and systematic fires in recent decades. A long-term Landsat time series was generated, and the Normalized Difference Vegetation Index (NDVI) was calculated. The change detection algorithm (BFAST) was used to detect and characterize significant changes (breakpoints) within the time series and compare them to local fire events. The analysis showed that Lemnos thyme habitats have been significantly reduced in size due to fires and their conversion to new grazing areas for livestock production. Measures should be taken to conserve thyme habitats with the participation of local stakeholders, including livestock farmers and beekeepers. Satellite monitoring techniques are important tools that could facilitate this conservation process. Full article
Show Figures

Figure 1

22 pages, 10063 KiB  
Review
Flame-Retardant Polyurea Coatings: Mechanisms, Strategies, and Multifunctional Enhancements
by Danni Pan, Dehui Jia, Yao Yuan, Ying Pan, Wei Wang and Lulu Xu
Fire 2025, 8(8), 334; https://doi.org/10.3390/fire8080334 - 21 Aug 2025
Viewed by 241
Abstract
The imperative for high-performance protective materials has catalyzed the rapid evolution of polyurea (PUA) coatings, widely recognized for their mechanical robustness, chemical resistance, and rapid-curing properties. However, their inherent flammability and harmful combustion byproducts pose significant challenges for safe use in applications where [...] Read more.
The imperative for high-performance protective materials has catalyzed the rapid evolution of polyurea (PUA) coatings, widely recognized for their mechanical robustness, chemical resistance, and rapid-curing properties. However, their inherent flammability and harmful combustion byproducts pose significant challenges for safe use in applications where fire safety is a critical concern. In response, significant efforts focus on improving the fire resistance of PUA materials through chemical modifications and the use of functional additives. The review highlights progress in developing flame-retardant approaches for PUA coatings, placing particular emphasis on the underlying combustion mechanisms and the combined action of condensed-phase, gas-phase, and interrupted heat feedback pathways. Particular emphasis is placed on phosphorus-based, intumescent, and nano-enabled flame retardants, as well as hybrid systems incorporating two-dimensional nanomaterials and metal–organic frameworks, with a focus on exploring their synergistic effects in enhancing thermal stability, reducing smoke production, and maintaining mechanical integrity. By evaluating current strategies and recent progress, this work identifies key challenges and outlines future directions for the development of high-performance and fire-safe PUA coatings. These insights aim to guide the design of next-generation protective materials that meet the growing demand for safety and sustainability in advanced engineering applications. Full article
(This article belongs to the Special Issue Fire, Polymers, and Retardants: Innovations in Fire Safety)
Show Figures

Figure 1

21 pages, 5608 KiB  
Article
Wildfires and Climate Change as Key Drivers of Forest Carbon Flux Variations in Africa over the Past Two Decades
by Lianglin Zhang and Zhenke Zhang
Fire 2025, 8(8), 333; https://doi.org/10.3390/fire8080333 - 20 Aug 2025
Viewed by 232
Abstract
Forests play a vital role in the global carbon cycle; however, the carbon sink capacity of African forests is increasingly threatened by wildfires, rising temperatures, and ecological degradation. This study analyzes the spatiotemporal dynamics of forest carbon fluxes across Africa from 2001 to [...] Read more.
Forests play a vital role in the global carbon cycle; however, the carbon sink capacity of African forests is increasingly threatened by wildfires, rising temperatures, and ecological degradation. This study analyzes the spatiotemporal dynamics of forest carbon fluxes across Africa from 2001 to 2023, based on multi-source remote sensing and climate datasets. The results show that wildfires have significantly disrupted Africa’s carbon balance over the past two decades. From 2001 to 2023, fire activity was most intense in the woodland–savanna transition zones of Central and Southern Africa. In countries such as the Democratic Republic of the Congo, Angola, Mozambique, and Zambia, each recorded burned areas exceeding 500,000 km2, along with high recurrence rates (e.g., up to 0.7584 fires per year in South Sudan). These fire-affected regions often exhibited high ecological sensitivity and carbon density, which led to pronounced disturbances in carbon fluxes. Nevertheless, the Democratic Republic of the Congo maintained an average annual net carbon sink of 74.2 MtC, indicating a high potential for ecological recovery. In contrast, Liberia and Eswatini exhibited net carbon emissions in fire-affected areas, suggesting weaker ecosystem resilience. These findings underscore the urgent need to incorporate wildfire disturbances into forest carbon management and climate mitigation strategies. In addition, climate variables such as temperature and soil moisture also influence carbon fluxes, although their effects display substantial spatial heterogeneity. On average, a 1 °C increase in temperature leads to an additional 0.347 (±1.243) Mt CO2 in emissions, while a 1% increase in soil moisture enhances CO2 removal by 1.417 (±8.789) Mt. However, compared to wildfires, the impacts of these climate drivers are slower and more spatially variable. Full article
Show Figures

Figure 1

22 pages, 1202 KiB  
Article
Identifying Critical Fire Risk Transmission Paths in Subway Stations: A PSR–DEMATEL–ISM Approach
by Rongshui Qin, Xiangxiang Zhang, Chenchen Shi, Qian Zhao, Tao Yu, Junfeng Xiao and Xiangyang Liu
Fire 2025, 8(8), 332; https://doi.org/10.3390/fire8080332 - 19 Aug 2025
Viewed by 250
Abstract
To enhance the understanding and management of fire risks in subway stations, this study aims to identify critical fire risk transmission paths using an integrated PSR–DEMATEL–ISM approach. A comprehensive evaluation framework is first constructed based on the Pressure–State–Response (PSR) model, systematically categorizing 22 [...] Read more.
To enhance the understanding and management of fire risks in subway stations, this study aims to identify critical fire risk transmission paths using an integrated PSR–DEMATEL–ISM approach. A comprehensive evaluation framework is first constructed based on the Pressure–State–Response (PSR) model, systematically categorizing 22 influencing factors into three dimensions: pressure, state, and response. The Decision-Making Trial and Evaluation Laboratory (DEMATEL) method is then employed to analyze the causal relationships and centrality among these factors, distinguishing between cause and effect groups. Subsequently, Interpretive Structural Modeling (ISM) is applied to organize the factors into a multi-level hierarchical structure, enabling the identification of risk propagation pathways. The analysis reveals five high-centrality and high-causality factors: fire safety education and training, completeness of fire management rules and regulations, fire smoke detection and firefighting capability, operational status of monitoring equipment, and effectiveness of emergency response plans. Based on these key drivers, six major transmission paths are derived, reflecting the internal logic of fire risk evolution in subway environments. Among them, chains originating from Fire Safety Education and Training (S6), Architectural Fire Protection Design (S7), and Completeness of Fire Management Rules and Regulations (S16) exhibit the most significant influence on system-wide safety performance. This study provides theoretical support and practical guidance for proactive fire prevention and emergency planning in urban rail transit systems, offering a structured and data-driven approach to identifying vulnerabilities and improving system resilience. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

26 pages, 12953 KiB  
Article
The Impact of Fire Emission Inputs on Smoke Plume Dispersion Modeling Results
by Sam D. Faulstich, Klara Kjome Fischer, Matthew J. Strickland and Heather A. Holmes
Fire 2025, 8(8), 331; https://doi.org/10.3390/fire8080331 - 18 Aug 2025
Viewed by 252
Abstract
Fire smoke significantly affects human health and air quality. The HYSPLIT dispersion model estimates the area impacted by smoke downwind, but the results are sensitive to input data. This study investigates the impact of different fire emission inputs on dispersion modeling results, focusing [...] Read more.
Fire smoke significantly affects human health and air quality. The HYSPLIT dispersion model estimates the area impacted by smoke downwind, but the results are sensitive to input data. This study investigates the impact of different fire emission inputs on dispersion modeling results, focusing on three versions of the Wildland Fire Emissions Inventory System (WFEIS) used to initialize HYSPLIT. The three input datasets include MODIS (FEI_BASE), a combination of MODIS and MTBS (FEI_COMBO), and a version incorporating a cloud cover regression (FEI_COMBO+CC). Dispersion modeling results are compared across the western U.S. for 2013, 2016, and 2018, showing a variation of up to 200% in results depending on the emissions input. Model results are evaluated with ground-based PM2.5 data and visible satellite imagery. The cloud cover regression improves the identification of fire days missed by FEI_BASE potentially impacting health effect studies. Correlations between modeled PM2.5 and EPA data improve with FEI_COMBO+CC, particularly in 2013 and 2016, making it a stronger candidate for use in research on health effects. Despite some variability in RMSE, the higher correlation observed with FEI_COMBO+CC supports its use as a more accurate representation of fire-related PM2.5 transport. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Regional Prediction of Fire Characteristics Using Machine Learning in Australia
by Zina Abohaia, Abeer Elkhouly, May El Barachi and Obada Al-Khatib
Fire 2025, 8(8), 330; https://doi.org/10.3390/fire8080330 - 16 Aug 2025
Viewed by 407
Abstract
Wildfires are increasing in frequency and severity, with Australia’s 2019–2020 Black Summer burning over 18 million hectares. Accurate prediction of wildfire behavior is essential for effective risk assessment and emergency response. This study presents a machine learning framework for predicting wildfire dynamics across [...] Read more.
Wildfires are increasing in frequency and severity, with Australia’s 2019–2020 Black Summer burning over 18 million hectares. Accurate prediction of wildfire behavior is essential for effective risk assessment and emergency response. This study presents a machine learning framework for predicting wildfire dynamics across Australia’s seven regions using the IBM wildfire dataset. Various Machine Learning (ML) models were evaluated to forecast three key indicators: Fire Area (km2), Fire Brightness Temperature (K), and Fire Radiative Power (MW). Lasso Regression consistently outperformed the other models, achieving an average RMSE of 0.04201 and R2 of 0.29355. Performance varied across regions, with stronger results in areas like New South Wales and Queensland, likely influenced by differences in topography, microclimate, and vegetation. However, limitations include the exclusion of ignition sources such as lightning and human activity, which are critical for capturing the environment accurately and improving predictive accuracy. Future work will integrate these factors alongside more detailed weather and vegetation data. Practical implementation may face challenges related to real-time data availability, system integration, and response coordination, but this approach offers promising potential for operational wildfire decision support. Full article
(This article belongs to the Special Issue Intelligent Forest Fire Prediction and Detection)
Show Figures

Graphical abstract

21 pages, 7623 KiB  
Article
Research on Fire Evacuation in University Libraries Based on the Fuzzy Ant Colony Optimization Algorithm
by Ming Lei, Mengke Huang, Dandan Wang, Wei Zhang, Sixiang Cheng and Wenhui Dong
Fire 2025, 8(8), 329; https://doi.org/10.3390/fire8080329 - 15 Aug 2025
Viewed by 443
Abstract
To study the impact of the psychological and behavioral characteristics of people, fire environment, and evacuation routes on fire evacuation efficiency, this study focuses on a university library as the research subject. A fuzzy logic algorithm is employed to analyze how psychological and [...] Read more.
To study the impact of the psychological and behavioral characteristics of people, fire environment, and evacuation routes on fire evacuation efficiency, this study focuses on a university library as the research subject. A fuzzy logic algorithm is employed to analyze how psychological and behavioral traits influence initial evacuation speed during a fire. Also, fire data simulated using PyroSim software is integrated, with gas temperature, CO concentration, and visibility quantified through empirical formulas to adjust the reduction factor of evacuation speed, examining the effects of fire-generated products on evacuation performance. By incorporating fire environment factors into the heuristic function and refining pheromone update rules through iterative strategies, the ant colony algorithm is enhanced to achieve path planning. Results show that the psychological–environmental-route correction method improves evacuation efficiency by 16.2% compared to traditional methods without correction. This demonstrates that the proposed correction method can improve the efficiency of building fire evacuation and provides theoretical support and technical solutions for future library fire safety management. Full article
Show Figures

Figure 1

22 pages, 8522 KiB  
Article
Effect of Bend Spacing Configuration on the Vented Explosion Characteristics of Premixed Methane/Hydrogen in Pipelines with a Large Length-to-Diameter Ratio
by Yulin Yang, Jianfeng Gao, Bin Hao, Yanan Han, Xiaojun Shao, Yang Wu, Xiao Wu and Meng Li
Fire 2025, 8(8), 328; https://doi.org/10.3390/fire8080328 - 15 Aug 2025
Viewed by 426
Abstract
Mixing hydrogen into natural gas pipelines for transportation is an effective solution to the imbalance between the supply and demand of hydrogen energy. Studying the influence of bent pipes in hydrogen-mixed natural gas explosion accidents can enhance the safety of hydrogen energy storage [...] Read more.
Mixing hydrogen into natural gas pipelines for transportation is an effective solution to the imbalance between the supply and demand of hydrogen energy. Studying the influence of bent pipes in hydrogen-mixed natural gas explosion accidents can enhance the safety of hydrogen energy storage and transportation. Through experiments and LES, the influence of pipe spacing configuration on the vented explosion of this mixed gas in pipes with a large length-to-diameter ratio was analyzed. The maximum explosion pressure (Pmax) of the straight pipe is 21.7 kPa and the maximum pressure rise rate ((dp/dt)max) is 1.8 MPa/s. After adding the double elbow, Pmax increased to 65.2 kPa and (dp/dt)max increased to 3.7 MPa/s. By increasing the distance (D1) from bent pipe-1 to the ignition source, the flame shape changes from “finger-shaped” to “concave-shaped” to “wrinkled-shaped.” When D1 is at its minimum, the explosion reaction is the most intense. However, as D1 increases, each characteristic parameter decreases linearly and the flame propagation speed significantly reduces, the flame area decays more severely, and the flame acceleration effect is also suppressed. When the distance between the two bent pipes (D2) was gradually increased, the flame transformed from “finger-shaped” to “tongue-shaped” to “wrinkled-shaped”. The flame area curve exhibited a unique evolutionary process of “hitting bottom” to “rebounding” to “large-scale flame backflow”. This paper explores the development process of various characteristic parameters, which is of great reference value for preventing explosions in hydrogen-blended natural gas pipelines in underground pipe galleries. Full article
Show Figures

Figure 1

13 pages, 2834 KiB  
Article
Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing
by Wenqi Song, Qing He, Qingyu Tan and Guorui Zhu
Fire 2025, 8(8), 327; https://doi.org/10.3390/fire8080327 - 15 Aug 2025
Viewed by 448
Abstract
This study proposes an equivalent furniture fire model based on standard combustible assembly and verifies its feasibility as a substitute for real furniture through full-scale experiments and numerical simulations. Experiments show that the peak heat release rate and total heat release of the [...] Read more.
This study proposes an equivalent furniture fire model based on standard combustible assembly and verifies its feasibility as a substitute for real furniture through full-scale experiments and numerical simulations. Experiments show that the peak heat release rate and total heat release of the standard combustible assembly are highly consistent with those of the single-seat sofa. The numerical model has been verified by experimental data. The dynamic characteristics of the heat release rate (HRR) curve are consistent with the temperature evolution process, confirming its reliability for the numerical model. The research on optimizing fire extinguishing parameters is carried out based on this numerical simulation. The results show that the response time of the horizontal sprinkler is 22 s shorter than that of the vertical sprinkler, and the fire extinguishing efficiency is improved. Reducing the sprinkler height to 3 m can accelerate activation and reduce CO2 release. A flow rate of 91.4 L/min can effectively control the fire, but when it exceeds 150 L/min, the fire extinguishing efficiency is significantly reduced. The low response time index sprinkler starts up 88 s faster than the standard type, significantly enhancing the initial fire suppression capability. This scheme provides a safe, economical, and repeatable standardized combustible assembly for fire training and offers theoretical support for the parameter design of intelligent fire extinguishing systems. Full article
(This article belongs to the Special Issue Advances in Industrial Fire and Urban Fire Research: 2nd Edition)
Show Figures

Figure 1

19 pages, 4982 KiB  
Article
Effect of Nozzle Height on the Combustion Dynamics of Jet Fires in Rotating Flow Fields
by Qiang Zhang, Jinjiang Wang, Laibin Zhang, Pengchao Chen, Xiaole Qin, Kuibin Zhou, Yufeng Yang and Jiancheng Shi
Fire 2025, 8(8), 326; https://doi.org/10.3390/fire8080326 - 15 Aug 2025
Viewed by 449
Abstract
In this paper, the effect of nozzle height on the combustion dynamics of jet fires in rotating flow fields (JFRFFs) is systematically investigated through experimental and numerical simulations. As the nozzle height increases, the JFRFF flame state transitions from stable rotation (SR) to [...] Read more.
In this paper, the effect of nozzle height on the combustion dynamics of jet fires in rotating flow fields (JFRFFs) is systematically investigated through experimental and numerical simulations. As the nozzle height increases, the JFRFF flame state transitions from stable rotation (SR) to unstable rotation (USR), and eventually to non-rotation (NR), indicating a weakening interaction between the vortex flow and the jet flame. The radial distribution of tangential velocity gradually deviates from the Burgers vortex model as the nozzle height increases, providing a criterion for distinguishing different flame states. Both vortex intensity and flame length are found to decrease with increasing nozzle height, whereas the maximum flame diameter increases. The relative position of the maximum flame diameter to the whole flame length firstly increases and then decreases to match that of the free jet fires, as the flame evolves from SR to USR and NR. In addition, the air entrainment near the nozzle exit decreases with increasing nozzle height, as evidenced by the gradual rise in lift-off height. These findings establish a theoretical basis for the fire performance design of flares in pipeline retrofitting and process industries. Full article
Show Figures

Figure 1

19 pages, 2928 KiB  
Article
Strengthening Finnish Wildfire Preparedness and Response Through Lessons from Sweden’s 2018 Fires
by Pekka Tiainen, Zoltán Török, Horațiu-Ioan Ștefănie, Ágoston Restás and Alexandru Ozunu
Fire 2025, 8(8), 325; https://doi.org/10.3390/fire8080325 - 14 Aug 2025
Viewed by 498
Abstract
In recent years, devastating wildfires have occurred in less fire-prone areas, and an increase in boreal region wildfires is expected in the future. Using a qualitative comparative approach based on a literature review and policy document analysis, this study aims to examine the [...] Read more.
In recent years, devastating wildfires have occurred in less fire-prone areas, and an increase in boreal region wildfires is expected in the future. Using a qualitative comparative approach based on a literature review and policy document analysis, this study aims to examine the wildfire management systems and practices in Sweden and Finland, focusing on the remarkably different outcomes of the 2018 wildfire season. Despite experiencing similar climatic conditions, in Sweden a total of approximately 25,000 hectares of forest burned, compared to the 1200 hectares in Finland. The analysis examines thematic areas from general disaster management and wildfire-specific elements. The main differences in the organizational structures between the two countries are identified. Ecological aspects of boreal forests, fire suppression effectiveness, and response times are compared, and current and emerging technologies for fire detection and suppression, such as unmanned aerial vehicles, are presented. The role of volunteer fire brigades and their sustainability in rural areas, together with the effectiveness of host nation support arrangements and international cooperation mechanisms, are discussed. Based on this comparison of identified best practices and lessons learned, the authors provide recommendations for improving wildfire resilience both in Finland and Sweden, as well as in other boreal region countries. Full article
Show Figures

Figure 1

18 pages, 983 KiB  
Article
Analytics and Trends over Time of Wildfires in Protected Areas in Greece and Other Mediterranean Countries
by Aristides Moustakas
Fire 2025, 8(8), 324; https://doi.org/10.3390/fire8080324 - 14 Aug 2025
Viewed by 864
Abstract
Wildfires are becoming more frequent and widespread, posing a threat to European ecosystems. Recent findings quantified a large fraction of Europe’s burnt areas within Natura 2000 protected area sites. This study analyzed total wildfire events and burnt areas in Greece. The frequency of [...] Read more.
Wildfires are becoming more frequent and widespread, posing a threat to European ecosystems. Recent findings quantified a large fraction of Europe’s burnt areas within Natura 2000 protected area sites. This study analyzed total wildfire events and burnt areas in Greece. The frequency of protected area burn percentages per fire event and their trend over time were quantified. The mean protected area percentage of burn per fire event across other Mediterranean countries was compared. Results indicated an increase in the total number of wildfire events over time, while total burnt area was highest in recent years but generally varied. Forest-type vegetation burn exhibits no trend over time with the exception being that the transitional vegetation percentage of burn per wildfire is increasing, while agricultural land is decreasing. The protected area percentage of burn per wildfire is not related with total area burn. The majority of the high percentage protected area burns derive mainly from small or medium total area burn wildfires. More than a third of wildfires burned exclusively (100%) Natura protected area surfaces. Protected area percent per burn is increasing over time. This increase is not related to the increased total burnt area. Protected area percent per burn is considerably higher in Greece in comparison to Italy, Spain, and Portugal. Protected area percent per burn is increasing over time in Greece and with a slower slope in Portugal, while it has no monotonic trend in Italy and Spain. Reserves face increasing burn frequency, necessitating effective management strategies to conserve them. Climate change exacerbates total wildfires or surface area burned but cannot entirely explain the steep increase in protected area percent per burn. While a legislative framework preventing arson exists, management measures need to further improve the efficacy and clarity of legislation. High-power electricity networks and wind and solar energy facilities are often causes of wildfires and should receive low priority or not be licensed in Natura areas. Full article
Show Figures

Figure 1

11 pages, 2092 KiB  
Article
Regeneration and Herbivory Across Multiple Forest Types Within a Megafire Burn Scar
by Devri A. Tanner, Kordan Kildew, Noelle Zenger, Benjamin W. Abbott, Neil Hansen, Richard A. Gill and Samuel B. St. Clair
Fire 2025, 8(8), 323; https://doi.org/10.3390/fire8080323 - 14 Aug 2025
Viewed by 368
Abstract
Human activities are increasing the occurrence of megafires that alter ecological dynamics in forest ecosystems. The objective of this study was to understand the impacts of a 610 km2 megafire on patterns of tree regeneration and herbivory across three forest types (aspen/fir, [...] Read more.
Human activities are increasing the occurrence of megafires that alter ecological dynamics in forest ecosystems. The objective of this study was to understand the impacts of a 610 km2 megafire on patterns of tree regeneration and herbivory across three forest types (aspen/fir, oak/maple, and pinyon/juniper). Seventeen transect pairs in adjacent burned/unburned forest stands (6 aspen/fir, 5 oak/maple, and 6 pinyon/juniper) were measured. Sapling density, meristem removal, and height were measured across the transect network over a three-year period from 2019 to 2021. Tree species able to resprout from surviving roots (oak and aspen) generally responded positively to fire while species that typically regenerate by seeding showed little post-fire regeneration. Browse pressure was concentrated on deciduous tree species and was greater in burned areas but the effect diminished over the three-year study period. Meristem removal by herbivores was below the critical threshold, resulting in vertical growth over time. Our results indicate that forest regeneration within the megafire scar was generally positive and experienced sustainable levels of ungulate browsing that were likely to result in forest recruitment success. Full article
Show Figures

Figure 1

13 pages, 1201 KiB  
Article
Post-Fire Succession in an Old-Growth Coast Redwood (Sequoia sempervirens) Forest
by Mojgan Mahdizadeh and Will Russell
Fire 2025, 8(8), 322; https://doi.org/10.3390/fire8080322 - 14 Aug 2025
Viewed by 436
Abstract
In 2020, a high-intensity wildfire burned over 35,000 ha in the Santa Cruz Mountains of California, including over 1700 ha of old-growth coast redwood forest. This event created a unique opportunity to evaluate post-fire succession. We compared vegetation recovery in high versus low/moderate [...] Read more.
In 2020, a high-intensity wildfire burned over 35,000 ha in the Santa Cruz Mountains of California, including over 1700 ha of old-growth coast redwood forest. This event created a unique opportunity to evaluate post-fire succession. We compared vegetation recovery in high versus low/moderate severity burned areas using data collected one year and four years following the fire. Random plot sampling was conducted at Big Basin Redwoods State Park to assess the regeneration of trees, shrubs, and herbaceous species. Descriptive and inferential statistical analyses were used to assess recovery over time and across burn severities. Results indicate significant increases in shrub cover and richness over time, with a positive association between shrub recruitment and high-severity fire. Notably, the fire-adapted species blue blossom (Ceanothus thyrsiflorus Eschsch.), which was not recorded one year following the fire, dominated the shrub layer after four years, particularly in higher severity areas. Herbaceous species also exhibited an increase in cover and richness over time, though a substantial portion of that increase was based on non-native species recruitment. Analysis did not indicate a significant relationship between fire severity and herbaceous species recovery, however. The regeneration of tree species occurred both through seedling recruitment and basal sprouting. The recruitment of basal sprouts was prolific following the fire, particularly for coast redwood. The number of basal sprouts declined significantly during the time frame of this study, as the sprouts became larger and began to self-thin. Seedling abundance, on the other hand, exhibited an approximately 30-fold increase. Seedling recruitment was primarily driven by coast redwood (Sequoia sempervirens [Lamb. ex D.Don] Endl) and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) and was positively correlated with low/moderate fire severity. These findings underscore the complex interactions shaping post-fire forest dynamics and highlight the importance of understanding such patterns to inform management strategies that support the resiliency of coast redwood forests in an era of increasing wildfires. Full article
Show Figures

Figure 1

7 pages, 1359 KiB  
Article
Using Count Regression to Investigate Millennial-Scale Vegetation and Fire Response from Multiple Sites Across the Northern Rocky Mountains, USA
by Jennifer Watt, Brian F. Codding, Jordin Hartley, Carlie Murphy and Andrea Brunelle
Fire 2025, 8(8), 321; https://doi.org/10.3390/fire8080321 - 14 Aug 2025
Viewed by 427
Abstract
The Northern Rocky Mountains, USA contain a vast forested landscape, managed primarily by the federal government. This region contains some of the highest elevations forests and most iconic endangered and threatened species in the contiguous United States. The influence of human impacts and [...] Read more.
The Northern Rocky Mountains, USA contain a vast forested landscape, managed primarily by the federal government. This region contains some of the highest elevations forests and most iconic endangered and threatened species in the contiguous United States. The influence of human impacts and climate change are evident on the landscape today, with larger and more frequent fires impacting vegetation composition and recovery. This project uses paleoecological data from six lake sediment cores to investigate what drives fire across this region over the Holocene. Count regression was used to predict charcoal influx as a function of Pinus pollen accumulation rates (PAR) and percent. The results show that fire activity increases significantly with Pinus pollen, and that baseline fire activity varies significantly across sites, largely following an elevation gradient. The results of this analysis illustrate a novel way to use paleoecological data to provide valuable information to federal agencies as they prepare for future management of these ecologically valuable areas. Full article
Show Figures

Figure 1

18 pages, 4237 KiB  
Article
A Method for Mapping and Associating Burned Areas with Agricultural Practices Within the Brazilian Cerrado
by Pâmela Inês de Souza Castro Abreu, George Deroco Martins, Gabriel Henrique de Almeida Pereira, Rodrigo Bezerra de Araujo Gallis, Jorge Luis Silva Brito, Carlos Alberto Matias de Abreu Júnior, Laura Cristina Moura Xavier and João Vitor Meza Bravo
Fire 2025, 8(8), 320; https://doi.org/10.3390/fire8080320 - 13 Aug 2025
Viewed by 514
Abstract
Fire occurs naturally and anthropogenically in the Cerrado biome, influenced by hydrology, climate, topography, and land use. Mapping burned areas is essential for understanding the causes of fire and improving prevention and regulation. However, fire scars are often confused with bare soil in [...] Read more.
Fire occurs naturally and anthropogenically in the Cerrado biome, influenced by hydrology, climate, topography, and land use. Mapping burned areas is essential for understanding the causes of fire and improving prevention and regulation. However, fire scars are often confused with bare soil in agricultural regions. This study presents a method for mapping burned areas using spectral indices and artificial neural networks (ANN). We evaluated the accuracy of these techniques and identified the best input variables for scar detection. Using Sentinel-2 images from 2018 to 2021 during dry periods, we applied NDVI, SAVI, NBR, and CSI indices. The study included two stages: first, finding optimal classification configurations for fire scars, and second, mapping land use and cover with fire scars and crops. Results showed that using all Sentinel-2 bands and the four indices post-fire achieved over 93.7% accuracy and a kappa index of 0.92. Fire scars were mainly located in areas with temporary crops like soybean, sugarcane, rice, and cotton. This low-cost method allows for effective monitoring of fire scars, underscoring the need to regulate agricultural practices in the Cerrado, where burning poses environmental and health risks. Full article
Show Figures

Figure 1

19 pages, 257 KiB  
Article
A Cross-Sectional Assessment of the Individual- and Fire Department-Level Factors Affecting Volunteer Firefighter Cardiorespiratory Fitness
by Nimit N. Shah, Sara A. Jahnke, Brittany S. Hollerbach, Derrick L. Edwards, Jason Roy, Olivia A. Wackowski, Alberto J. Caban-Martinez, Taylor M. Black, Kaleigh Hinton, Brian S. Kubiel, Cristine D. Delnevo and Judith M. Graber
Fire 2025, 8(8), 319; https://doi.org/10.3390/fire8080319 - 11 Aug 2025
Viewed by 542
Abstract
Volunteer firefighters often have lower cardiorespiratory fitness (CRF) and less access to health monitoring and fitness programs than career firefighters, yet few studies explore how individual and departmental factors influence their CRF. This study assessed associations between CRF and both firefighter-level (e.g., years [...] Read more.
Volunteer firefighters often have lower cardiorespiratory fitness (CRF) and less access to health monitoring and fitness programs than career firefighters, yet few studies explore how individual and departmental factors influence their CRF. This study assessed associations between CRF and both firefighter-level (e.g., years of service, firefighting calls, and firefighter rank) and department-level (e.g., department characteristics and fitness infrastructure) factors among volunteer firefighters. Surveys were administered to United States volunteer firefighters and departments, capturing CRF and related characteristics. CRF was analyzed as both a continuous and categorical variable (≤8, >8–<10, 10–<12, ≥12 METs) using bivariate analyses and mixed effects linear and logistic regression. Among 569 incumbent volunteer firefighters from 41 departments, 79.9% did not meet the recommended 12 METs threshold. Only 56.8% of departments provided routine physical exams; 35.1% had a wellness coordinator or committee; and 40.5% offered fitness resources. More years of service were associated with lower CRF and reduced odds of meeting the 12 METs benchmark, while more frequent training and responding to more calls were associated with better CRF. These findings highlight individual and structural challenges for CRF in volunteer fire service, underscoring the need for targeted fitness support to protect firefighter health and community safety. Full article
13 pages, 7049 KiB  
Article
Investigation of Pressure Vacuum Impregnation Using Inorganic, Organic, and Natural Fire Retardants on Beech Wood (Fagus sylvatica) and Its Impact on Fire Resistance
by Tomáš Holeček, Přemysl Šedivka, Lukáš Sahula, Roman Berčák, Aleš Zeidler and Kateřina Hájková
Fire 2025, 8(8), 318; https://doi.org/10.3390/fire8080318 - 11 Aug 2025
Viewed by 598
Abstract
This article investigates the effects of pressure vacuum impregnation using inorganic, organic, and natural flame retardants on enhancing the fire resistance and chemical composition of structural beech wood (Fagus sylvatica). The study examines fire resistance characteristics such as the limiting oxidation [...] Read more.
This article investigates the effects of pressure vacuum impregnation using inorganic, organic, and natural flame retardants on enhancing the fire resistance and chemical composition of structural beech wood (Fagus sylvatica). The study examines fire resistance characteristics such as the limiting oxidation number and heat of combustion, which indicate the effectiveness of the flame retardants used. Chemical changes in the beech wood were characterized through various analyses, including changes in chemical composition, FTIR spectra, DSC thermograms, and SEM images. The relationships between combustion characteristics and chemical changes were assessed using multiple methods. The results demonstrate that using 5% potassium acetate achieved a lower heat of combustion compared to 15% sodium phosphate, and it was significantly lower than the heat of combustion observed with 5% arabinogalactan or the reference sample of beech wood. However, neither potassium acetate nor diammonium phosphate significantly affected the macromolecular structures of the wood when compared to the reference sample. Low concentrations of flame retardants reduce environmental release and environmental impact while increasing fire resistance, which could be used for structural solutions made of hardwoods. Full article
Show Figures

Figure 1

21 pages, 9894 KiB  
Article
Full-Scale Experimental Investigation on the Thermal Control of a Water Mist System in a Road Tunnel Under Single-Source and Double-Source Fire Scenarios
by Deyuan Kan and Shouzhong Feng
Fire 2025, 8(8), 317; https://doi.org/10.3390/fire8080317 - 11 Aug 2025
Viewed by 480
Abstract
This study investigates the thermal control effect of a water mist fire-extinguishing system in road tunnels under both single-source and double-source fire scenarios. A total of eight full-scale fire tests were executed in a physical tunnel, and the double-source fire scenarios were further [...] Read more.
This study investigates the thermal control effect of a water mist fire-extinguishing system in road tunnels under both single-source and double-source fire scenarios. A total of eight full-scale fire tests were executed in a physical tunnel, and the double-source fire scenarios were further subdivided into two spatial configurations, including fire sources close together and fire sources with a center-to-center distance of 2 m. During the fire tests, the evolution of fire, temporal and spatial temperature distributions of the tunnel ceiling, longitudinal and vertical temperature gradients, and smoke behavior within the tunnel were systematically recorded and interpreted. The results demonstrate that early activation of the water mist system optimizes its physicochemical mechanisms by preventing the transition from the growth phase of fire to a stable phase. In single-source fire scenarios, the water mist directly suppresses the flame and eliminates the high-temperature core, leading to a significant alteration in the vertical temperature gradient. For double-source fire scenarios, the high-temperature region on the ceiling is reduced upon the application of the water mist. However, when the fire sources are positioned in close proximity, they tend to merge into a larger fire source, with the water mist proving insufficient to prevent this fusion. Conversely, when the center-to-center distance between the fire sources is 2 m, the water mist effectively separates the sources, blocking thermal feedback between them and forcing the flames to develop vertically. This, in turn, accelerates the attenuation of the fire and the recovery of the ambient temperature. Additionally, within the effective coverage of the water mist, the longitudinal temperature distribution on the tunnel ceiling still follows an exponential attenuation pattern, with a significantly high rate of temperature decline. Full article
Show Figures

Figure 1

23 pages, 5219 KiB  
Systematic Review
Remote Sensing for Wildfire Mapping: A Comprehensive Review of Advances, Platforms, and Algorithms
by Ruth E. Guiop-Servan, Alexander Cotrina-Sanchez, Jhoivi Puerta-Culqui, Manuel Oliva-Cruz and Elgar Barboza
Fire 2025, 8(8), 316; https://doi.org/10.3390/fire8080316 - 7 Aug 2025
Viewed by 1510
Abstract
The use of remote sensing technologies for mapping forest fires has experienced significant growth in recent decades, driven by advancements in remote sensors, processing platforms, and artificial intelligence algorithms. This study presents a review of 192 scientific articles published between 1990 and 2024, [...] Read more.
The use of remote sensing technologies for mapping forest fires has experienced significant growth in recent decades, driven by advancements in remote sensors, processing platforms, and artificial intelligence algorithms. This study presents a review of 192 scientific articles published between 1990 and 2024, selected using PRISMA criteria from the Scopus database. Trends in the use of active and passive sensors, spectral indices, software, and processing platforms as well as machine learning and deep learning approaches are analyzed. Bibliometric analysis reveals a concentration of publications in Northern Hemisphere countries such as the United States, Spain, and China as well as in Brazil in the Southern Hemisphere, with sustained growth since 2015. Additionally, the publishers, journals, and authors with the highest scientific output are identified. The normalized burn ratio (NBR) and the normalized difference vegetation index (NDVI) were the most frequently used indices in fire mapping, while random forest (RF) and convolutional neural networks (CNN) were prominent among the applied algorithms. Finally, the main technological and methodological limitations as well as emerging opportunities to enhance fire detection, monitoring, and prediction in various regions are discussed. This review provides a foundation for future research in remote sensing applied to fire management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Burned Area Mapping)
Show Figures

Figure 1

23 pages, 5986 KiB  
Article
Research on the Response Regularity of Smoke Fire Detectors Under Typical Interference Conditions in Ancient Buildings
by Yunfei Xia, Lei Lei, Siyuan Zeng, Da Li, Wei Cai, Yupeng Hou, Chen Li and Yujie Yin
Fire 2025, 8(8), 315; https://doi.org/10.3390/fire8080315 - 7 Aug 2025
Viewed by 484
Abstract
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental [...] Read more.
Point-type smoke fire detectors have become one of the most commonly used technical means in the fire detection systems of ancient buildings. However, in practical applications, their performance is easily affected by special environmental interference factors. Therefore, in this study, a full-scale experimental scene of an ancient building with a typical flush gable roof structure was taken as the research object, and the differential influence laws of three typical interference sources, namely wind speed, water vapor, and incense burning, on the response times of point-type smoke detectors were quantified. Moreover, the prediction models of the alarm time of the detectors under the three interference conditions were established. The results indicate the following: (1) Within the range of experimental conditions, there is a quantitative relationship between the detector response delay and the type of interference source: the delay time shows a nonlinear positive correlation with the wind speed/water vapor interference gradient, while it exhibits a threshold unimodal change characteristic with the burning incense interference gradient; (2) under interference conditions, the detector response delay varies depending on the type of fire source: the detector has the best detection stability for smoldering smoke from a smoke cake, while it has the lowest detection sensitivity for smoldering smoke from a cotton rope. Moreover, the influence of wind speed interference is weaker than that of water vapor or smoke from burning incense, and the difference is the greatest in the wood block smoldering condition. (3) Construct a detector alarm time prediction model under three types of interference conditions, where the wind speed, water vapor, and burning incense interference conditions conform to third-order polynomial functions, Sigmoid functions, and fourth-order polynomial functions, respectively. Full article
(This article belongs to the Special Issue Fire Detection and Public Safety, 2nd Edition)
Show Figures

Figure 1

22 pages, 3475 KiB  
Article
Validation of Subway Environmental Simulation (SES) for Longitudinal Ventilation: A Comparison with Memorial Tunnel Experimental Data
by Manuel J. Barros-Daza
Fire 2025, 8(8), 314; https://doi.org/10.3390/fire8080314 - 7 Aug 2025
Viewed by 509
Abstract
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow [...] Read more.
Ventilation in subway and railway tunnels is a critical safety component, especially during fire emergencies, where effective smoke and heat management is essential for successful evacuation and firefighting efforts. The Subway Environmental Simulation (SES, Version 4.1) model is widely used for predicting airflow and thermal conditions during fire events, but its accuracy in real-world applications requires validation. This study compares SES predictions with experimental data from the Memorial Tunnel fire ventilation tests to evaluate its performance in simulating the effects of jet fans on longitudinal ventilation. The analysis focuses on SES’s ability to predict flow rate and temperature distributions. Results showed reasonable agreement between SES-predicted airflows and temperatures. However, SES tended to underpredict temperatures upstream and near the fire source, indicating a limitation in simulating thermal behavior close to the fire. These findings suggest that SES can be a reliable tool for tunnel ventilation design if certain safety margins, based on the error values identified in this study, are considered. Nonetheless, further improvements are necessary to enhance its accuracy, particularly in modeling heat transfer dynamics and the impact of fire-induced temperature changes. Future work should focus on conducting additional full-scale test validations and model refinements to improve SES’s predictive capabilities for fire safety planning. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

24 pages, 3507 KiB  
Article
A Semi-Supervised Wildfire Image Segmentation Network with Multi-Scale Structural Fusion and Pixel-Level Contrastive Consistency
by Yong Sun, Wei Wei, Jia Guo, Haifeng Lin and Yiqing Xu
Fire 2025, 8(8), 313; https://doi.org/10.3390/fire8080313 - 7 Aug 2025
Viewed by 530
Abstract
The increasing frequency and intensity of wildfires pose serious threats to ecosystems, property, and human safety worldwide. Accurate semantic segmentation of wildfire images is essential for real-time fire monitoring, spread prediction, and disaster response. However, existing deep learning methods heavily rely on large [...] Read more.
The increasing frequency and intensity of wildfires pose serious threats to ecosystems, property, and human safety worldwide. Accurate semantic segmentation of wildfire images is essential for real-time fire monitoring, spread prediction, and disaster response. However, existing deep learning methods heavily rely on large volumes of pixel-level annotated data, which are difficult and costly to obtain in real-world wildfire scenarios due to complex environments and urgent time constraints. To address this challenge, we propose a semi-supervised wildfire image segmentation framework that enhances segmentation performance under limited annotation conditions by integrating multi-scale structural information fusion and pixel-level contrastive consistency learning. Specifically, a Lagrange Interpolation Module (LIM) is designed to construct structured interpolation representations between multi-scale feature maps during the decoding stage, enabling effective fusion of spatial details and semantic information, and improving the model’s ability to capture flame boundaries and complex textures. Meanwhile, a Pixel Contrast Consistency (PCC) mechanism is introduced to establish pixel-level semantic constraints between CutMix and Flip augmented views, guiding the model to learn consistent intra-class and discriminative inter-class feature representations, thereby reducing the reliance on large labeled datasets. Extensive experiments on two public wildfire image datasets, Flame and D-Fire, demonstrate that our method consistently outperforms other approaches under various annotation ratios. For example, with only half of the labeled data, our model achieves 5.0% and 6.4% mIoU improvements on the Flame and D-Fire datasets, respectively, compared to the baseline. This work provides technical support for efficient wildfire perception and response in practical applications. Full article
Show Figures

Figure 1

18 pages, 2208 KiB  
Article
Evaluation of Fire Incidence in Spanish Forest Species
by Álvaro Enríquez-de-Salamanca
Fire 2025, 8(8), 312; https://doi.org/10.3390/fire8080312 - 6 Aug 2025
Viewed by 884
Abstract
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, [...] Read more.
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, and recurrence were calculated for each species, and with them, fire incidence indices were obtained. Significant fire incidence was detected in Pinus canariensis, P. pinaster, Eucalyptus globulus, Quercus robur, Betula spp., Castanea sativa, Pinus radiata, and Quercus pyrenaica. Most of the species with the highest fire incidence are not located in the areas with the highest climatic hazard. There is limited correlation between flammability and fire extension, and this is not significant when considering fire incidence. The relationship between fire incidence and conifers is valid in absolute terms, but only partially in relative terms. Similarly, there is no general relationship between relative fire incidence and species with a natural or reforested origin. Some native hardwood species have unexpectedly high incidence, probably due to collateral damage caused by fires in nearby pine and eucalyptus stands. The fire incidence index of forest species is useful for forest management and for protecting species that are suffering severely from fire effects. Full article
Show Figures

Figure 1

22 pages, 5839 KiB  
Article
Fire Safety of Curtain Walling: Evidence-Based Critical Review and New Test Configuration Proposal for EN 1364-4
by Arritokieta Eizaguirre-Iribar, Raya Stoyanova Trifonova, Peter Ens and Xabier Olano-Azkune
Fire 2025, 8(8), 311; https://doi.org/10.3390/fire8080311 - 6 Aug 2025
Viewed by 931
Abstract
This article focuses on the fire safety risks associated with conventional glass–aluminum façades—with a particular focus on stick and unitized curtain walling systems—providing an overview of possible fire spread mechanisms, considering the role of the curtain wall in maintaining compartmentation at the spandrel [...] Read more.
This article focuses on the fire safety risks associated with conventional glass–aluminum façades—with a particular focus on stick and unitized curtain walling systems—providing an overview of possible fire spread mechanisms, considering the role of the curtain wall in maintaining compartmentation at the spandrel zone. First, it analyzes some of the relevant requirements of different European building regulations. Then, it provides a test evidence-based critical analysis of the gaps and loopholes in the relevant fire resistance standard for partial curtain wall configurations (EN 1364-4), where the evaluation of the propagation within the façade system is not necessarily considered in the fire-resistant spandrel zone. Finally, it presents a proposal for addressing these gaps in the form of a theoretical concept for a new test configuration and additional assessment criteria. This is followed by an initial experimental analysis of the concept. The standard testing campaign showed that temperature rise in mullions can exceed 180 °C after 30 min if limiting measures are not considered in the façade design. However, this can be only detected if framing is in the non-exposed area of the sample, being part of the evaluation surface. Meanwhile, differences are detected between the results from standard and new assessment criteria in the new configuration proposed, including a more rapid temperature rise for framing elements (207 K in a second level mullion at minute 90) than for the common non-exposed assessment surface of the sample (172 K at the same time) in cases where cavities are not protected. Accordingly, the proposed configuration successfully detected vertical temperature transfer within mullions, which can remain undetected in standard EN 1364-4 tests, highlighting the potential for fire spread even in EI120-rated assemblies. Full article
Show Figures

Figure 1

17 pages, 5490 KiB  
Technical Note
Double vs. Single Shear in Dowelled Timber Connections Under Fire Conditions, Thermal Analysis
by Elza M. M. Fonseca
Fire 2025, 8(8), 310; https://doi.org/10.3390/fire8080310 - 5 Aug 2025
Viewed by 465
Abstract
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects [...] Read more.
The main aim of this work is to compare double- or single-designed connections with wooden members and internal steel fasteners under fire conditions. Theoretical methods following Eurocodes will be used to assess the load-bearing capacity of the connections and to compare the effects of double and single shear. Several parameters will be examined to determine the load capacity. Furthermore, a numerical thermal analysis using finite element methods will be performed to estimate the temperatures inside the connections and compare them. The results show that the double shear connection in steel-to-timber, with a steel plate of any thickness as the central element and with a higher density of wood material, has better mechanical and fire resistance. Lower temperatures were also observed in this connection type in the wood material and along the length of the dowel. Full article
(This article belongs to the Special Issue Advances in Structural Fire Engineering)
Show Figures

Figure 1

16 pages, 5546 KiB  
Article
Modification of Vegetation Structure and Composition to Reduce Wildfire Risk on a High Voltage Transmission Line
by Tom Lewis, Stephen Martin and Joel James
Fire 2025, 8(8), 309; https://doi.org/10.3390/fire8080309 - 5 Aug 2025
Viewed by 434
Abstract
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of [...] Read more.
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of vegetation to a mulch layer) in 2020 and targeted herbicide treatment of woody vegetation, with the aim of reducing vegetation height by encouraging a native herbaceous groundcover beneath the transmission lines. We measured vegetation structure (cover and height) and composition (species presence in 15 × 2 m plots), at 12 transects, 90 m in length on the transmission line corridor, to determine if management goals were being achieved and to determine how the vegetation and fire hazard (based on the overall fuel hazard assessment method) varied among the treated corridor, the forest edge environment, and the natural forest. The results showed that vegetation structure and composition in the treated zones had been modified to a state where herbaceous plant species were dominant; there was a significantly (p < 0.05) higher native grass cover and cover of herbs, sedges, and ferns in the treated zones, and a lower cover of trees and tall woody plants (>1 m in height) in these areas. For example, mean native grass cover and the cover of herbs and sedges in the treated areas was 10.2 and 2.8 times higher, respectively, than in the natural forest. The changes in the vegetation structure (particularly removal of tall woody vegetation) resulted in a lower overall fuel hazard in the treated zones, relative to the edge zones and natural forest. The overall fuel hazard was classified as ‘high’ in 83% of the transects in the treated areas, but it was classified as ‘extreme’ in 75% of the transects in the adjacent forest zone. Importantly, there were few introduced species recorded. The results suggest that fuel management has been successful in reducing wildfire risk in the transmission corridor. Temporal monitoring is recommended to determine the frequency of ongoing fuel management. Full article
Show Figures

Figure 1

24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Viewed by 525
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

17 pages, 12216 KiB  
Article
Green/Blue Initiatives as a Proposed Intermediate Step to Achieve Nature-Based Solutions for Wildfire Risk Management
by Stella Schroeder and Carolina Ojeda Leal
Fire 2025, 8(8), 307; https://doi.org/10.3390/fire8080307 - 5 Aug 2025
Viewed by 575
Abstract
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To [...] Read more.
Implementing nature-based solutions (NbSs) for wildfire risk management and other hazards has been challenging in emerging economies due to the high costs, the lack of immediate returns on investment, and stringent inclusion criteria set by organizations like the IUCN and domain experts. To address these challenges, this exploratory study proposes a new concept: green/blue initiatives. These initiatives represent intermediate steps, encompassing small-scale, community-driven activities that can evolve into recognized NbSs over time. To explore this concept, experiences related to wildfire prevention in the Biobío region of Chile were analyzed through primary and secondary source reviews. The analysis identified three initiatives qualifying as green/blue initiatives: (1) goat grazing in Santa Juana to reduce fuel loads, (2) a restoration prevention farm model in Florida called Faro de Restauración Mahuidanche and (3) the Conservation Landscape Strategy in Nonguén. They were examined in detail using data collected from site visits and interviews. In contrast to Chile’s prevailing wildfire policies, which focus on costly, large-scale fire suppression efforts, these initiatives emphasize the importance of reframing wildfire as a manageable ecological process. Lastly, the challenges and enabling factors for adopting green/blue initiatives are discussed, highlighting their potential to pave the way for future NbS implementation in central Chile. Full article
(This article belongs to the Special Issue Nature-Based Solutions to Extreme Wildfires)
Show Figures

Figure 1

16 pages, 2212 KiB  
Article
Entity Recognition Method for Fire Safety Standards Based on FT-FLAT
by Zhihao Yu, Chao Liu, Shunxiu Yang, Jiwei Tian, Qunming Hu and Weidong Kang
Fire 2025, 8(8), 306; https://doi.org/10.3390/fire8080306 - 4 Aug 2025
Viewed by 520
Abstract
The continuous advancement of fire protection technologies has necessitated the development of comprehensive safety standards, leading to an increasingly diversified and specialized regulatory landscape. This has made it difficult for fire protection professionals to quickly and accurately locate the required fire safety standard [...] Read more.
The continuous advancement of fire protection technologies has necessitated the development of comprehensive safety standards, leading to an increasingly diversified and specialized regulatory landscape. This has made it difficult for fire protection professionals to quickly and accurately locate the required fire safety standard information. In addition, the lack of effective integration and knowledge organization concerning fire safety standard entities has led to the severe fragmentation of fire safety standard information and the absence of a comprehensive “one map”. To address this challenge, we introduce FT-FLAT, an innovative CNN–Transformer fusion architecture designed specifically for fire safety standard entity extraction. Unlike traditional methods that rely on rules or single-modality deep learning, our approach integrates TextCNN for local feature extraction and combines it with the Flat-Lattice Transformer for global dependency modeling. The key innovations include the following. (1) Relative Position Embedding (RPE) dynamically encodes the positional relationships between spans in fire safety texts, addressing the limitations of absolute positional encoding in hierarchical structures. (2) The Multi-Branch Prediction Head (MBPH) aggregates the outputs of TextCNN and the Transformer using Einstein summation, enhancing the feature learning capabilities and improving the robustness for domain-specific terminology. (3) Experiments conducted on the newly annotated Fire Safety Standard Entity Recognition Dataset (FSSERD) demonstrate state-of-the-art performance (94.24% accuracy, 83.20% precision). This work provides a scalable solution for constructing fire safety knowledge graphs and supports intelligent information retrieval in emergency situations. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop