Investigation of Pressure Vacuum Impregnation Using Inorganic, Organic, and Natural Fire Retardants on Beech Wood (Fagus sylvatica) and Its Impact on Fire Resistance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Pressure Vacuum Impregnation
2.3. Chemical Analysis and Microscopy
2.3.1. Analysis of the Chemical Components
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.3. Differential Scanning Calorimetry (DSC)
2.3.4. Scanning Electron Microscopy (SEM)
2.4. Fire Resistance Characteristics
2.4.1. Heat of Combustion
2.4.2. Limiting Oxygen Index (LOI)
3. Results and Discussion
3.1. Analysis of the Chemical Components
3.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.3. Differential Scanning Calorimetry (DSC)
3.4. Scanning Electron Microscopy (SEM)
3.5. Heat of Combustion
3.6. Limiting Oxygen Index (LOI)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Švajlenka, J.; Pošiváková, T. Innovation potential of wood constructions in the context of sustainability and efficiency of the construction industry. J. Clean. Prod. 2023, 411, 137209. [Google Scholar] [CrossRef]
- Santi, S.; Pierobon, F.; Corradini, G.; Cavalli, R.; Zanetti, M. Massive wood material for sustainable building design: The Massiv-Holz-Mauer Wall System. J. Wood Sci. 2016, 62, 416–428. [Google Scholar] [CrossRef]
- Nevins, M.T.; D’Amato, A.W.; Foster, J.R. Future forest composition under a changing climate and adaptive forest management in southeastern Vermont, USA. For. Ecol. Manag. 2021, 479, 118527. [Google Scholar] [CrossRef]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Bulušek, D.; Šimůnek, V.; Hájek, V.; Králíček, I. Mixed vs. monospecific mountain forests in response to climate change: Structural and Growth Perspectives of Norway Spruce and European Beech. For. Ecol. Manag. 2021, 488, 119019. [Google Scholar] [CrossRef]
- Jandl, R.; Spathelf, P.; Bolte, A.; Prescott, C.E. Forest adaptation to climate change-is non-management an option? Ann. For. Sci. 2019, 76, 48. [Google Scholar] [CrossRef]
- Reinprecht, L. Wood Deterior. Prot. Maintenance; Wiley-Blackwell: Hoboken, NJ, USA, 2016; p. 384. [Google Scholar]
- Ayanleye, S.; Udele, K.; Nasir, V.; Zhang, X.; Militz, H. Durability and protection of mass timber structures: A review. J. Build. Eng. 2022, 46, 103731. [Google Scholar] [CrossRef]
- Augustina, S.; Dwianto, W.; Wahyudi, I.; Syafii, W.; Gérardin, P.; Marbun, S.D. Wood impregnation in relation to its mechanisms and properties enhancement. BioResources 2023, 18, 4332–4372. [Google Scholar] [CrossRef]
- Tarmian, A.; Tajrishi, I.Z.; Oladi, R.; Efhamisisi, D. Treatability of wood for pressure treatment processes: A Literature Review. Eur. J. Wood Wood Prod. 2020, 78, 635–660. [Google Scholar] [CrossRef]
- Yin, J.; Song, K.; Lu, Y.; Zhao, G.; Yin, Y. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Sci. Technol. 2015, 49, 987–1001. [Google Scholar] [CrossRef]
- Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation; CRC Press: Boca Raton, FL, USA, 2021; p. 442. [Google Scholar]
- Wagenführ, R. Holzatlas; Fachbuchverlag: Leipzig, Germany, 2007; p. 816. [Google Scholar]
- Tondi, G.; Thévenon, M.F.; Mies, B.; Standfest, G.; Petutschnigg, A.; Wieland, S. Impregnation of Scots pine and beech with tannin solutions: Effect of Viscosity and Wood Anatomy in Wood Infiltration. Wood Sci. Technol. 2013, 47, 615–626. [Google Scholar] [CrossRef]
- Mitrenga, P.; Vandlíčková, M.; Konárik, M. Experimental investigation of fire-technical characteristics of selected flame retardants for the protection of wooden structures. Coatings 2025, 15, 196. [Google Scholar] [CrossRef]
- Wen, M.Y.; Kang, C.W.; Park, H.J. Impregnation and mechanical properties of three softwoods treated with a new fire retardant chemical. J. Wood Sci. 2014, 60, 367–375. [Google Scholar] [CrossRef]
- Wang, K.; Meng, D.; Wang, S.; Sun, J.; Li, H.; Gu, X.; Zhang, S. Impregnation of phytic acid into the delignified wood to realize excellent flame retardant. Ind. Crops Prod. 2022, 176, 114364. [Google Scholar] [CrossRef]
- Marney, D.C.O.; Russell, L.J. Combined fire retardant and wood preservative treatments for outdoor wood applications—A Review of the Literature. Fire Technol. 2008, 44, 1–14. [Google Scholar] [CrossRef]
- Liang, Y.; Jian, H.; Deng, C.; Xu, J.; Liu, Y.; Park, H.; Wen, M.; Sun, Y. Research and application of biomass-based wood flame retardants: A Review. Polymers 2023, 15, 950. [Google Scholar] [CrossRef]
- Blanchet, P.; Pepin, S. Trends in chemical wood surface improvements and modifications: A Review of the Last Five Years. Coatings 2021, 11, 1514. [Google Scholar] [CrossRef]
- Huang, Y.; Zheng, Z.; Chen, C.; Guo, C.; Wang, X.; Zhou, Q.; Tu, D. Effective strategy for fabricating surface impregnated and unilaterally densified wood with furfuryl alcohol/flame retardants for enhanced mechanical performance and flame retardancy. Eur. J. Wood Wood Prod. 2024, 82, 731–745. [Google Scholar] [CrossRef]
- Liu, J.; Kong, X.; Wang, C.; Yang, X. Permeability of wood impregnated with polyethylene wax emulsion in vacuum. Polymers 2023, 281, 126123. [Google Scholar] [CrossRef]
- Brahmia, F.Z.; Zsolt, K.; Horváth, P.G.; Alpár, T.L. Comparative study on fire retardancy of various wood species treated with PEG 400, phosphorus, and boron compounds for use in cement-bonded wood-based products. Surf. Interfaces 2020, 21, 100736. [Google Scholar] [CrossRef]
- Stevens, R.; Es, D.S.; Bezemer, R.; Kranenbarg, A. The structure–activity relationship of fire retardant phosphorus compounds in wood. Polym. Degrad. Stab. 2006, 91, 832–841. [Google Scholar] [CrossRef]
- Yi, X.; Cao, S.; Hao, X.; Wang, Z.; Huang, Y.; Li, L.; Guo, C. Dimensionally stable, flame-retardant, and leach-resistant furfurylated wood prepared by incorporating ammonium polyphosphate and nano-silica. Polym. Adv. Technol. 2023, 34, 2501–2514. [Google Scholar] [CrossRef]
- Hazlewood, F.J.; Rhodes, E.; Ubbelohde, A.R. Melting mechanisms and melt properties of alkali acetates. Trans. Faraday Soc. 1966, 62, 3101–3113. [Google Scholar] [CrossRef]
- Hosseinashrafi, S.K.; Hosseinihashemi, S.K.; Gorji, P.; Akhtari, M. Environment-friendly waterborne fire retardants for protection of wood and bark against fire flames. BioResources 2023, 18, 7681–7699. [Google Scholar] [CrossRef]
- Leong, W.I.; Lo, O.L.I.; Cheng, F.T.; Cheong, W.M.; Seak, L.C.U. Using recombinant adhesive proteins as durable and green flame-retardant coatings. Synth. Syst. Biotechnol. 2021, 6, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, V.S.; Reddy, D.M.; Mutra, R.R.; Sanjeev, A.; Dhilipkumar, T.; Naveen, J. Thermal degradation and fire retardant behaviour of natural fibre reinforced polymeric composites—A Comprehensive Review. J. Mater. Res. Technol. 2024, 30, 4053–4063. [Google Scholar] [CrossRef]
- Hájková, K.; Šedivka, P.; Holeček, T.; Berčák, R.; Sahula, L. The Effect of Chemical Modification by Synthetic and Natural Fire-Retardants on Burning and Chemical Characteristics of Structural Fir (Abies alba L.) Wood. Fire 2025, 8, 116. [Google Scholar] [CrossRef]
- Suardana, N.P.G.; Ku, M.S.; Lim, J.K. Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Mater. Des. 2011, 32, 1990–1999. [Google Scholar] [CrossRef]
- Gaan, S.; Sun, G. Effect of phosphorus flame retardants on thermo-oxidative decomposition of cotton. Polym. Degrad. Stab. 2007, 92, 968–974. [Google Scholar] [CrossRef]
- Terzi, E.; Kartal, S.N.; White, R.; Shinoda, K.; Imamura, Y. Fire performance and decay resistance of solid wood and plywood treated with quaternary ammonia compounds and common fire retardants. Eur. J. Wood Prod. 2011, 69, 41–51. [Google Scholar] [CrossRef]
- Tappi T 211 om-02; Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. Tappi Test Methods: Atlanta, GA, USA, 2007.
- Tappi T 280 wd-06; Acetone Extractives of Wood and Pulp. Tappi Test Methods: Atlanta, GA, USA, 2015.
- Tappi T 13 wd-74; Lignin in Wood. Tappi Test Methods: Atlanta, GA, USA, 2015.
- Seifert, K. Uber ein neues Verfahren zur Schnellbestimmung Der Rein-Cellulose. Das Pap. 1956, 10, 301–306. [Google Scholar]
- Wise, L.E.; Murphy, M.; D’Addieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946, 122, 35–43. [Google Scholar]
- ASTM D5865/D5865M-19; Standard Test Method for Gross Calorific Value of Coal and Coke. American Society for Testing and Materials: Philadelphia, PA, USA, 2019.
- ISO 4589-2; Plastics—Determination of burning Behaviour—Oxygen Index Method. International Organization for Standardization: London, UK, 2017.
- Li, X.; Yue, K.; Tang, Z.; Lv, C.; Li, Q.; Wu, P.; Zhang, Z. Improvement in fire resistance of glulam beams containing modified laminae by thermal treatment, inorganic impregnation and compression in the fire-side tension zone. Constr. Build. Mater. 2024, 416, 135138. [Google Scholar] [CrossRef]
- Kačík, F.; Šmíra, P.; Kačíková, D.; Veľková, V.; Nasswettrová, A.; Vacek, V. Chemical alterations of pine wood saccharides during heat sterilisation. Carbohydr. Polym. 2015, 117, 681–686. [Google Scholar] [CrossRef]
- Domingos, I.; Ayata, U.; Ferreira, J.; Cruz-Lopes, L.; Sen, A.; Sahin, S.; Esteves, B. Calorific Power Improvement of Wood by Heat Treatment and Its Relation to Chemical Composition. Energies 2020, 13, 5322. [Google Scholar] [CrossRef]
- Rhén, C. Chemical Composition and Gross Calorific Value of the Above-Ground Biomass Components of Young Picea Abies. Scandnavian J. For. Res. 2004, 19, 72–81. [Google Scholar] [CrossRef]
- Bonfatti, J.E.A.; de Barros, J.M.R.; Silva, G.F.; Lengowski, E.C. A Comparative Analysis of Tannin and Commercial Fire Retardants in Wood Fire Protection. Forests 2024, 15, 951. [Google Scholar] [CrossRef]
- Čermák, P.; Baar, J.; Dömény, J.; Výbohová, E.; Rousek, R.; Pařil, P.; Oberle, A.; Čabalová, I.; Hess, D.; Vodák, M.; et al. Wood-water interactions of thermally modified, acetylated and melamine formaldehyde resin impregnated beech wood. Holzforschung 2022, 76, 437–450. [Google Scholar] [CrossRef]
- Yuan, J.M.; Feng, Y.R.; He, L.P. Effect of thermal treatment on properties of ramie fibers. Polym. Degrad. Stab. 2016, 133, 303–311. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.Y.; Nie, S.P.; Xie, M.Y. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, Challenge and Perspective. Food Chem. 2021, 12, 100–168. [Google Scholar] [CrossRef]
- Feng, X.; Chen, J.; Yu, S.; Wu, Z.; Huang, Q. Mild hydrothermal modification of beech wood (Zelkova schneideriana Hand-Mzt): Its Physical, Structural, and Mechanical Properties. Eur. J. Wood Prod. 2022, 80, 933–945. [Google Scholar] [CrossRef]
- Grzybek, J.; Paschová, Z.; Meffert, P.; Petutschnigg, A.; Schnabel, T. Impregnation of Norway spruce with low melting-point binary fatty acid as a phase-change material. Wood Mater. Sci. Eng. 2023, 18, 1755–1764. [Google Scholar] [CrossRef]
- Du, W.; Fei, H.; He, Q.; Wang, L.; Pan, Y.; Liu, J. Preparation and properties of capric acid–stearic acid-based ternary phase change materials. RSC Adv. 2021, 11, 24938–24948. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Xu, X.; Jiang, P.; Chen, Z.; Jia, H.; Yu, W.; Wang, L. Preparation of wood scrimber with low hygroscopicity and high flame retardancy through impregnation of silicon-boron inorganic salt. Constr. Build. Mater. 2025, 467, 140384. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Zhang, M.; Chen, M.; Li, D.; Min, F.; Chen, M.; Zhang, S.; Ren, Z.; Yan, Y. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochem. 2006, 41, 1883–1886. [Google Scholar] [CrossRef]
- Pappa, A.A.; Tzamtzis, N.E.; Statheropoulos, M.K.; Parissakis, G.K. Thermal analysis of Pinus halepensis pine needles and their main components in the presence of (NH4)2HPO4 and (NH4)2SO4. Thermochim. Acta 1995, 261, 165–173. [Google Scholar] [CrossRef]
- Beram, A. Enhancing Surface Characteristics and Combustion Behavior of Black Poplar Wood through Varied Impregnation Techniques. Appl. Sci. 2023, 13, 11482. [Google Scholar] [CrossRef]
- Tan, H. Crushed Mussel Shell Powder and Optional Borax in Surface Char Layers to Protect Four Wood Species Against Fire. BioResources 2022, 17, 5319–5334. [Google Scholar] [CrossRef]
Application of Retardants | Retention, % |
---|---|
Impregnation 5% DAP | 1.21 (0.09) |
Impregnation 15% DAP | 2.29 (0.23) |
Impregnation 5% PAc | 2.09 (0.17) |
Impregnation 15% PAc | 2.72 (0.11) |
Impregnation 5% AG | 2.32 (0.11) |
Wood Sample/Chemical Components | Ash, % | Extractives, % | Cellulose, % | Lignin, % | Hemicelluloses, % |
---|---|---|---|---|---|
Reference | 0.52 (0.01) | 1.21 (0.03) | 33.81 (1.36) | 21.17 (0.17) | 31.19 (0.47) |
Impregnation 5% DAP | 0.90 (0.03) | 1.51 (0.04) | 33.96 (1.07) | 21.23 (0.70) | 31.03 (2.28) |
Impregnation 15% DAP | 1.26 (0.04) | 1.65 (0.43) | 33.89 (0.70) | 21.91 (0.91) | 31.11 (0.34) |
Impregnation 5% PAc | 2.95 (0.08) | 2.41 (0.10) | 33.56 (1.25) | 20.15 (1.68) | 31.44 (1.71) |
Impregnation 15% PAc | 4.88 (0.15) | 8.54 (0.38) | 33.61 (0.72) | 21.15 (0.29) | 31.39 (1.54) |
Impregnation 5% AG | 0.72 (0.03) | 0.84 (0.02) | 37.87 (1.13) | 20.60 (1.68) | 37.13 (0.83) |
5% DAP | 15% DAP | 5% PAc | 15% PAc | 5% AG | Reference |
---|---|---|---|---|---|
23.65 (0.76) | 27.84 (0.38) | 24.43 (0.20) | 28.73 (0.15) | 22.55 (0.76) | 20.98 (0.13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holeček, T.; Šedivka, P.; Sahula, L.; Berčák, R.; Zeidler, A.; Hájková, K. Investigation of Pressure Vacuum Impregnation Using Inorganic, Organic, and Natural Fire Retardants on Beech Wood (Fagus sylvatica) and Its Impact on Fire Resistance. Fire 2025, 8, 318. https://doi.org/10.3390/fire8080318
Holeček T, Šedivka P, Sahula L, Berčák R, Zeidler A, Hájková K. Investigation of Pressure Vacuum Impregnation Using Inorganic, Organic, and Natural Fire Retardants on Beech Wood (Fagus sylvatica) and Its Impact on Fire Resistance. Fire. 2025; 8(8):318. https://doi.org/10.3390/fire8080318
Chicago/Turabian StyleHoleček, Tomáš, Přemysl Šedivka, Lukáš Sahula, Roman Berčák, Aleš Zeidler, and Kateřina Hájková. 2025. "Investigation of Pressure Vacuum Impregnation Using Inorganic, Organic, and Natural Fire Retardants on Beech Wood (Fagus sylvatica) and Its Impact on Fire Resistance" Fire 8, no. 8: 318. https://doi.org/10.3390/fire8080318
APA StyleHoleček, T., Šedivka, P., Sahula, L., Berčák, R., Zeidler, A., & Hájková, K. (2025). Investigation of Pressure Vacuum Impregnation Using Inorganic, Organic, and Natural Fire Retardants on Beech Wood (Fagus sylvatica) and Its Impact on Fire Resistance. Fire, 8(8), 318. https://doi.org/10.3390/fire8080318