Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Design
2.2. Arthropod Collection
2.3. Analyses
3. Results
Community
4. Discussion
Individual Study Groups
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Parks, S.A.; Guiterman, C.H.; Margolis, E.Q.; Lonergan, M.; Whitman, E.; Abatzoglou, J.T.; Falk, D.A.; Johnston, J.D.; Daniels, L.D.; Lafon, C.W.; et al. A Fire Deficit Persists Across Diverse North American Forests Despite Recent Increases in Area Burned. Nat. Commun. 2025, 16, 1493. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.J. Like Moths to a Flame: A Review of What We Know About Pyrophilic Insects. For. Ecol. Manag. 2023, 528, 120629. [Google Scholar] [CrossRef]
- Raudabaugh, D.B.; Matheny, P.B.; Hughes, K.W.; Iturriaga, T.; Sargent, M.; Miller, A.N. Where Are They Hiding? Testing the Body Snatchers Hypothesis in Pyrophilous Fungi. Fungal Ecol. 2020, 43, 100870. [Google Scholar] [CrossRef]
- Eales, J.; Haddaway, N.R.; Bernes, C.; Cooke, S.J.; Jonsson, B.G.; Kouki, J.; Petrokofsky, G.; Taylor, J.J. What Is the Effect of Prescribed Burning in Temperate and Boreal Forest on Biodiversity, Beyond Pyrophilous and Saproxylic Species? A Systematic Review. Environ. Evid. 2018, 7, 19. [Google Scholar] [CrossRef]
- Seibold, S.; Gossner, M.M.; Simons, N.K.; Blüthgen, N.; Müller, J.; Ambarlı, D.; Ammer, C.; Bauhus, J.; Fischer, M.; Habel, J.C.; et al. Arthropod Decline in Grasslands and Forests Is Associated with Landscape-Level Drivers. Nature 2019, 574, 671–674. [Google Scholar] [CrossRef]
- Dalton, R.M.; Underwood, N.C.; Inouye, D.W.; Soulé, M.E.; Inouye, B.D. Long-Term Declines in Insect Abundance and Biomass in A Subalpine Habitat. Ecosphere 2023, 14, e4620. [Google Scholar] [CrossRef]
- Wermelinger, B.; Obrist, M.K.; Duelli, P.; Schneider Mathis, D.; Gossner, M.M. Two Decades of Arthropod Biodiversity After Windthrow Show Different Dynamics of Functional Groups. J. Appl. Ecol. 2025, 62, 371–387. [Google Scholar] [CrossRef]
- Plath, E.; Trauth, C.; Gerhards, J.; Griebel, L.; Fischer, K. Dieback of Managed Spruce Stands in Western Germany Promotes Beetle Diversity. J. For. Res. 2024, 35, 48. [Google Scholar] [CrossRef]
- Mason, S.C.; Shirey, V.; Ponisio, L.C.; Gelhaus, J.K. Responses from Bees, Butterflies, and Ground Beetles to Different Fire and Site Characteristics: A Global Meta-Analysis. Biol. Conserv. 2021, 261, 109265. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate Forest Health in an Era of Emerging Megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate Change Increases the Potential for Extreme Wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and Consequences of Eastern Australia’s 2019–20 Season of Mega-Fires. Glob. Change Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef]
- Donato, D.C.; Halofsky, J.S.; Churchill, D.J.; Haugo, R.D.; Alina Cansler, C.; Smith, A.; Harvey, B.J. Does Large Area Burned Mean A Bad Fire Year? Comparing Contemporary Wildfire Years to Historical Fire Regimes Informs the Restoration Task in Fire-Dependent Forests. For. Ecol. Manag. 2023, 546, 121372. [Google Scholar] [CrossRef]
- Johansson, T.; Andersson, J.; Hjältén, J.; Dynesius, M.; Ecke, F. Short-Term Responses of Beetle Assemblages to Wildfire in a Region with More than 100 Years of Fire Suppression. Insect Conserv. Divers. 2011, 4, 142–151. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta’, G.; Jacome Felix Oom, D.; Branco, A.; De Rigo, D.; Suarez-Moreno, M.; Ferrari, D.; et al. (Eds.) Forest Fires in Europe, Middle East and North Africa 2023; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Pérez, J.; Brand, C.; Alonso, A.; Sarasa, A.; Rojo, D.; Correa-Araneda, F.; Boyero, L. Wildfires Alter Stream Ecosystem Functioning Through Effects on Leaf Litter. Fire Ecol. 2024, 20, 36. [Google Scholar] [CrossRef]
- Simpson, I.J.; Akagi, S.K.; Barletta, B.; Blake, N.J.; Choi, Y.; Diskin, G.S.; Fried, A.; Fuelberg, H.E.; Meinardi, S.; Rowland, F.S.; et al. Boreal Forest Fire Emissions in Fresh Canadian Smoke Plumes 1-C 10 Volatile Organic Compounds (Vocs), Co 2, Co, No 2, No, Hcn and Ch 3 Cn: C 1 -C 10 Volatile Organic Compounds (Vocs), Co 2, Co, No 2, No, Hcn and Ch 3 Cn. Atmos. Chem. Phys. 2011, 11, 6445–6463. [Google Scholar] [CrossRef]
- Haukenes, V.L.; Asplund, J.; Nybakken, L.; Rolstad, J.; Storaunet, K.O.; Ohlson, M. Disentangling Drivers of Organic Layer and Charcoal Carbon Stocks in Boreal Pine and Spruce Forests with Different Fire Histories. For. Ecosyst. 2025, 14, 100334. [Google Scholar] [CrossRef]
- Lanta, V.; Adámek, M.; Chlumská, Z.; Pánková, K.; Kopecký, M.; Macek, M.; Růžičková, A.; Busse, A.; Vébrová, D.; Ruka, A.T.; et al. Plant Colonisation, Soil Nutrient Patterns and Microclimate After a Large Forest Fire in Temperate Central Europe. For. Ecol. Manag. 2025, 585, 122643. [Google Scholar] [CrossRef]
- Arrogante-Funes, F.; Aguado, I.; Chuvieco, E. Global Impacts of Fire Regimes on Wildland Bird Diversity. Fire Ecol. 2024, 20, 25. [Google Scholar] [CrossRef]
- McGinn, K.; Zuckerberg, B.; Jones, G.M.; Wood, C.M.; Kahl, S.; Kelly, K.G.; Whitmore, S.A.; Kramer, H.A.; Barry, J.M.; Ng, E.; et al. Frequent, Heterogenous Fire Supports a Forest Owl Assemblage. Ecol. Appl. 2025, 35, e3080. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.M.; Lesser, M.R.; Myers, L.; Mihuc, T.B. Insect Community Response Following Wildfire in an Eastern North American Pine Barrens. Forests 2022, 13, 66. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Persson, T. Recovery of Soil Macrofauna After Wildfires in Boreal Forests. Soil Biol. Biochem. 2013, 57, 182–191. [Google Scholar] [CrossRef]
- Zumr, V.; Remeš, J.; Nakládal, O. Short-Term Response of Ground Beetles (Coleoptera: Carabidae) to Fire in Formerly Managed Coniferous Forest in Central Europe. Fire 2024, 7, 76. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B.; Pausas, J.G. Fire as a Key Driver of Earth’s Biodiversity. Biol. Rev. 2019, 94, 1983–2010. [Google Scholar] [CrossRef]
- Li, T.; Cui, L.; Liu, L.; Chen, Y.; Liu, H.; Song, X.; Xu, Z. Advances in the Study of Global Forest Wildfires. J. Soils Sediments 2023, 23, 2654–2668. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W. Climate-Induced Boreal Forest Change: Predictions Versus Current Observations. Glob. Planet. Change 2007, 56, 274–296. [Google Scholar] [CrossRef]
- Longeard, P.; Santonja, M.; Morandini, F.; Gibernau, M.; Nadarajah, S.; Belliard, P.; Feignier, N.; Massaiu, A.; Andrei-Ruiz, M.-C.; Ferrat, L. Combinative Effects of Thinning and Prescribed Burning on Fuel Reduction and Soil Arthropods: A Case Study in a Mediterranean Pine Forest. Ecol. Evol. 2024, 14, e70141. [Google Scholar] [CrossRef]
- Hiers, J.K.; O’Brien, J.J.; Varner, J.M.; Butler, B.W.; Dickinson, M.; Furman, J.; Gallagher, M.; Godwin, D.; Goodrick, S.L.; Hood, S.M.; et al. Prescribed Fire Science: The Case for a Refined Research Agenda. Fire Ecol. 2020, 16, 11. [Google Scholar] [CrossRef]
- Bell, A.J.; Calladine, K.S.; Wardle, D.A.; Phillips, I.D. Rapid Colonization of the Post-Burn Environment Improves Egg Survival in Pyrophilic Ground Beetles. Ecosphere 2022, 13, e4213. [Google Scholar] [CrossRef]
- Ditomaso, J.M.; Brooks, M.L.; Allen, E.B.; Minnich, R.; Rice, P.M.; Kyser, G.B. Control of Invasive Weeds with Prescribed Burning. Weed Technol. 2006, 20, 535–548. [Google Scholar] [CrossRef]
- Gleim, E.R.; Conner, L.M.; Berghaus, R.D.; Levin, M.L.; Zemtsova, G.E.; Yabsley, M.J.; Brayton, K.A. The Phenology of Ticks and the Effects of Long-Term Prescribed Burning on Tick Population Dynamics in Southwestern Georgia and Northwestern Florida. PLoS ONE 2014, 9, e112174. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.M.; Sadler, R.J.; Wittkuhn, R.S.; McCaw, L.; Grierson, P.F. Long-Term Impacts of Prescribed Burning on Regional Extent and Incidence of Wildfires—Evidence from 50 Years of Active Fire Management in Sw Australian Forests. For. Ecol. Manag. 2009, 259, 132–142. [Google Scholar] [CrossRef]
- Ryan, K. Dynamic Interactions Between Forest Structure and Fire Behavior in Boreal Ecosystems. Silva Fenn. 2002, 36, 548. [Google Scholar] [CrossRef]
- Hjältén, J.; Hägglund, R.; Löfroth, T.; Roberge, J.-M.; Dynesius, M.; Olsson, J. Forest Restoration By Burning and Gap Cutting of Voluntary Set-Asides Yield Distinct Immediate Effects on Saproxylic Beetles. Biodivers. Conserv. 2017, 26, 1623–1640. [Google Scholar] [CrossRef]
- Zumr, V.; Remeš, J.; Nakládal, O. Immediate Response of Carabids to Small-Scale Wildfire Across a Healthy-Edge-Burnt Gradient in Young Managed Coniferous Forest in Central Europe. Fire 2024, 7, 436. [Google Scholar] [CrossRef]
- Stočes, D.; Šipoš, J.; Špoula, J.; Kula, E. Environmental Gradients and Carabid Beetle Diversity: Insights from Wildfire and Intensive Site Preparation in a Central European Forest. Agric. For. Entomol. 2025, in press. [Google Scholar] [CrossRef]
- Samu, F.; Kádár, F.; Ónodi, G.; Kertész, M.; Szirányi, A.; Szita, É.; Fetykó, K.; Neidert, D.; Botos, E.; Altbäcker, V. Differential Ecological Responses of Two Generalist Arthropod Groups, Spiders and Carabid Beetles (Araneae, Carabidae), to the Effects of Wildfire. Community Ecol. 2010, 11, 129–139. [Google Scholar] [CrossRef]
- Milberg, P.; Bergman, K.-O.; Jansson, N.; Norman, H.; Sundin, F.; Westerberg, L.; Johansson, V. Short Spatiotemporal Fire History Explains the Occurrence of Beetles Favoured by Fire. Insects 2024, 15, 775. [Google Scholar] [CrossRef] [PubMed]
- Kouki, J.; Hyvärinen, E.; Lappalainen, H.; Martikainen, P.; Similä, M. Landscape Context Affects the Success of Habitat Restoration: Large-Scale Colonization Patterns of Saproxylic and Fire-Associated Species in Boreal Forests. Divers. Distrib. 2012, 18, 348–355. [Google Scholar] [CrossRef]
- Moretti, M.; Obrist, M.K.; Duelli, P. Arthropod biodiversity after forest fires: Winners and losers in the winter fire regime of the southern Alps. Ecography 2004, 27, 173–186. [Google Scholar] [CrossRef]
- Bogusch, P.; Blažej, L.; Trýzna, M.; Heneberg, P. Forgotten Role of Fires in Central European Forests: Critical Importance of Early Post-Fire Successional Stages for Bees and Wasps (Hymenoptera: Aculeata). Eur. J. For. Res. 2015, 134, 153–166. [Google Scholar] [CrossRef]
- Lazarina, M.; Sgardelis, S.P.; Tscheulin, T.; Devalez, J.; Mizerakis, V.; Kallimanis, A.S.; Papakonstantinou, S.; Kyriazis, T.; Petanidou, T. The Effect of Fire History in Shaping Diversity Patterns of Flower-Visiting Insects in Post-Fire Mediterranean Pine Forests. Biodivers. Conserv. 2017, 26, 115–131. [Google Scholar] [CrossRef]
- Lazarina, M.; Devalez, J.; Neokosmidis, L.; Sgardelis, S.P.; Kallimanis, A.S.; Tscheulin, T.; Tsalkatis, P.; Kourtidou, M.; Mizerakis, V.; Nakas, G.; et al. Moderate Fire Severity Is Best for the Diversity of Most of the Pollinator Guilds in Mediterranean Pine Forests. Ecology 2019, 100, e02615. [Google Scholar] [CrossRef]
- Malmström, A. Life-History Traits Predict Recovery Patterns in Collembola Species After Fire: A 10 Year Study. Appl. Soil Ecol. 2012, 56, 35–42. [Google Scholar] [CrossRef]
- Lisa, C.; Paffetti, D.; Nocentini, S.; Marchi, E.; Bottalico, F.; Fiorentini, S.; Travaglini, D. Impact of Wildfire on the Edaphic Microarthropod Community in a Pinus Pinaster Forest in Central Italy. iForest 2015, 8, 874–883. [Google Scholar] [CrossRef]
- Puig-Gironès, R.; Palmero-Iniesta, M.; Fernandes, P.M.; Oliveras Menor, I.; Ascoli, D.; Kelly, L.T.; Charles-Dominique, T.; Regos, A.; Harrison, S.; Armenteras, D.; et al. The Use of Fire to Preserve Biodiversity Under Novel Fire Regimes. Philos. Trans. R. Soc. B Biol. Sci. 2025, 380, 20230449. [Google Scholar] [CrossRef]
- Beetz, K.; Marrs, C.; Busse, A.; Poděbradská, M.; Kinalczyk, D.; Kranz, J.; Forkel, M. Effects of Bark Beetle Disturbance and Fuel Types on Fire Radiative Power and Burn Severity in the Bohemian-Saxon Switzerland. For. Int. J. For. Res. 2024, 98, 59–70. [Google Scholar] [CrossRef]
- Hohbein, R.R.; Conway, C.J. Pitfall Traps: A Review of Methods for Estimating Arthropod Abundance. Wildl. Soc. Bull. 2018, 42, 597–606. [Google Scholar] [CrossRef]
- Montgomery, G.A.; Belitz, M.W.; Guralnick, R.P.; Tingley, M.W. Standards and Best Practices for Monitoring and Benchmarking Insects. Front. Ecol. Evol. 2021, 8, 579193. [Google Scholar] [CrossRef]
- Knuff, A.K.; Winiger, N.; Klein, A.-M.; Segelbacher, G.; Staab, M.; Kotze, D.J. Optimizing Sampling of Flying Insects Using a Modified Window Trap. Methods Ecol. Evol. 2019, 10, 1820–1825. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 2 May 2025).
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Mächler, M.; Bolker, B.M. Glmmtmb Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.4.7. 2024. Available online: https://github.com/florianhartig/dharma (accessed on 20 July 2025).
- Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means; R Package Version 2024, 1.10.4. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 13 May 2024).
- Graves, S.; Piepho, H.; Selzer, L.; Dorai-Raj, S. multcompView: Visualizations of Paired Comparisons. R package Version 0.1-10. 2024. Available online: https://CRAN.R-project.org/package=multcompView (accessed on 13 May 2025).
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package 2022. R Package Version 2.6-2. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 1 May 2025).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001, 26, 32–46. [Google Scholar]
- Hu, M.; Wang, J.; Lu, L.; Gui, H.; Wan, S. Global Recovery Patterns of Soil Microbes After Fire. Soil Biol. Biochem. 2023, 183, 109057. [Google Scholar] [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S.; et al. The Impact of Even-Aged and Uneven-Aged Forest Management on Regional Biodiversity of Multiple Taxa in European Beech Forests. J. Appl. Ecol. 2018, 55, 267–278. [Google Scholar] [CrossRef]
- Lettenmaier, L.; Seibold, S.; Bässler, C.; Brandl, R.; Gruppe, A.; Müller, J.; Hagge, J. Beetle Diversity Is Higher in Sunny Forests Due to Higher Microclimatic Heterogeneity in Deadwood. Oecologia 2022, 198, 825–834. [Google Scholar] [CrossRef]
- Catfolis, B.; Vanroy, T.; Verheyen, K.; Baeten, L.; Martel, A.; Pasmans, F.; Lens, L.; Strubbe, D. Context-Dependent Effects of Woody Layer Complexity on Arthropod Biomass and Abundance in Deciduous Forests. For. Ecosyst. 2025, 14, 100367. [Google Scholar] [CrossRef]
- Müller, J.; Noss, R.F.; Bussler, H.; Brandl, R. Learning from a “Benign Neglect Strategy” in a National Park: Response of Saproxylic Beetles to Dead Wood Accumulation. Biol. Conserv. 2010, 143, 2559–2569. [Google Scholar] [CrossRef]
- Lehnert, L.W.; Bässler, C.; Brandl, R.; Burton, P.J.; Müller, J. Conservation Value of Forests Attacked by Bark Beetles: Highest Number of Indicator Species Is Found in Early Successional Stages. J. Nat. Conserv. 2013, 21, 97–104. [Google Scholar] [CrossRef]
- Busse, A.; Cizek, L.; Čížková, P.; Drag, L.; Dvorak, V.; Foit, J.; Heurich, M.; Hubený, P.; Kašák, J.; Kittler, F.; et al. Forest Dieback in a Protected Area Triggers the Return of the Primeval Forest Specialist Peltis Grossa (Coleoptera, Trogossitidae). Conserv. Sci. Pract. 2022, 4, e612. [Google Scholar] [CrossRef]
- Nappi, A.; Drapeau, P.; Saint-Germain, M.; Angers, V.A. Effect of Fire Severity on Long-Term Occupancy of Burned Boreal Conifer Forests by Saproxylic Insects and Wood-Foraging Birds. Int. J. Wildland Fire 2010, 19, 500. [Google Scholar] [CrossRef]
- Saint-Germain, M.; Drapeau, P.; Hébert, C. Comparison of Coleoptera Assemblages from a Recently Burned and Unburned Black Spruce Forests of Northeastern North America. Biol. Conserv. 2004, 118, 583–592. [Google Scholar] [CrossRef]
- Perlík, M.; Kraus, D.; Bußler, H.; Neudam, L.; Pietsch, S.; Mergner, U.; Seidel, D.; Sebek, P.; Thorn, S. Canopy Openness as the Main Driver of Aculeate Hymenoptera and Saproxylic Beetle Diversity Following Natural Disturbances and Salvage Logging. For. Ecol. Manag. 2023, 540, 121033. [Google Scholar] [CrossRef]
- Holuša, J.; Kočárek, P.; Vlk, R.; Marhoul, P. Annotated Checklist of the Grasshoppers and Crickets (Orthoptera) of the Czech Republic. Zootaxa 2013, 3616, 437–460. [Google Scholar] [CrossRef]
- Müller, J.; Hothorn, T.; Yuan, Y.; Seibold, S.; Mitesser, O.; Rothacher, J.; Freund, J.; Wild, C.; Wolz, M.; Menzel, A. Weather Explains the Decline and Rise of Insect Biomass over 34 Years. Nature 2023, 628, 349–354. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K.; Fluckiger, P.F. Forest edges are biodiversity hotspots-also for Neuroptera. Acta Zool. Acad. Sci. Hung. 2002, 48, 75–87. [Google Scholar]
- Malmström, A.; Persson, T.; Ahlström, K.; Gongalsky, K.B.; Bengtsson, J. Dynamics of Soil Meso- and Macrofauna during a 5-Year Period after Clear-Cut Burning in a Boreal Forest. Appl. Soil Ecol. 2009, 43, 61–74. [Google Scholar] [CrossRef]
- Kondratova, A.; Bryanin, S. Fire-Derived Charcoal Attracts Microarthropods in the Litter of Boreal Deciduous Forest. Forests 2023, 14, 1432. [Google Scholar] [CrossRef]
- Rusek, J. Biodiversity of Collembola and Their Functional Role in the Ecosystem. Biodivers. Conserv. 1998, 7, 1207–1219. [Google Scholar] [CrossRef]
- Ray, C.; Cluck, D.R.; Wilkerson, R.L.; Siegel, R.B.; White, A.M.; Tarbill, G.L.; Sawyer, S.C.; Howell, C.A. Patterns of Woodboring Beetle Activity Following Fires and Bark Beetle Outbreaks in Montane Forests of California, USA. Fire Ecol. 2019, 15, 21. [Google Scholar] [CrossRef]
- Koivula, M.; Cobb, T.; Déchêne, A.D.; Jacobs, J.; Spence, J.R. Re sponses of two Sericoda Kirby, 1837 (Coleoptera: Carabidae) species to forest harvesting, wildfire, and burn severity. Entomol. Fennica 2006, 17, 315–324. [Google Scholar] [CrossRef]
- Gongalsky, K.B.; Wikars, L.-O.; Persson, T. Dynamics of pyrophilous carabids in a burned pine forest in Central Sweden. Baltic J. Coleopterol. 2003, 3, 107–111. [Google Scholar]
- Blažej, L. Groung beetles (Coleoptera: Carabidae) of the forest burnt in Jetˇrichovice (Northern Bohemia). In Vlastivedný Sborník Ceskolipska 32/2023; BEZDEZ: Ceska Lípa, Czech Republic, 2023. [Google Scholar]
- Certini, G.; Moya, D.; Lucas-Borja, M.E.; Mastrolonardo, G. The Impact of Fire on Soil-Dwelling Biota: A Review. For. Ecol. Manag. 2021, 488, 118989. [Google Scholar] [CrossRef]
- Santorufo, L.; Memoli, V.; Zizolfi, M.; Santini, G.; Di Natale, G.; Trifuoggi, M.; Barile, R.; De Marco, A.; Maisto, G. Microarthropod Responses to Fire: Vegetation Cover Modulates Impacts on Collembola and Acari Assemblages in Mediterranean Area. Fire Ecol. 2024, 20, 97. [Google Scholar] [CrossRef]
- Trucchi, E.; Pitzalis, M.; Zapparoli, M.; Bologna, M. Short-Term Effects of Canopy and Surface Fire on Centipede (Chilopoda) Communities in a Semi Natural Mediterranean Forest. Entomol. Fennica 2009, 20, 129–138. [Google Scholar] [CrossRef][Green Version]
- Puga, J.R.L.; Moreira, F.; Keizer, J.J.; Abrantes, N.J.C. Immediate Impacts of Wildfires on Ground-Dwelling Macroinvertebrate Communities under Stones in Mediterranean Oak Forests. Environ. Manag. 2024, 74, 684–698. [Google Scholar] [CrossRef]
- Zhang, S.; Dekker, F.; van Logtestijn, R.S.P.; Cornelissen, J.H.C. Do Wood-boring Beetles Influence the Flammability of Deadwood? Ecology 2025, 106, e4508. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zumr, V.; Nakládal, O.; Remeš, J. Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe. Fire 2025, 8, 305. https://doi.org/10.3390/fire8080305
Zumr V, Nakládal O, Remeš J. Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe. Fire. 2025; 8(8):305. https://doi.org/10.3390/fire8080305
Chicago/Turabian StyleZumr, Václav, Oto Nakládal, and Jiří Remeš. 2025. "Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe" Fire 8, no. 8: 305. https://doi.org/10.3390/fire8080305
APA StyleZumr, V., Nakládal, O., & Remeš, J. (2025). Two-Year Post-Fire Abundance of Arthropod Groups Across Different Types of Forest in Temperate Central Europe. Fire, 8(8), 305. https://doi.org/10.3390/fire8080305