Correlation of Visible Reflectance Spectrometry and Portable Raman Data for Red Pigment Identification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Red Pigments Used for Library
2.1.2. Wall Painting Located within the Norman Castle of Aci Castello (Catania, Italy)
2.2. Methods
2.2.1. Visible Reflectance Spectrometry (Vis-RS) Measurements
2.2.2. Raman Measurements
3. Results and Discussion
3.1. Database Analysis Results
3.2. On-Site Measurement Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miguel, C.; Claro, A.; Gonçalves, A.P.; Muralha, V.S.F.; Melo, M.J. A study on red lead degradation in a medieval manuscript Lorvão Apocalypse (1189). J. Raman Spectrosc. 2009, 40, 1966–1973. [Google Scholar] [CrossRef]
- Steger, S.; Stege, H.; Bretz, S.; Hahn, O. A complementary spectroscopic approach for the non-invasive in-situ identification of synthetic organic pigments in modern reverse paintings on glass (1913–1946). J. Cult. Herit. 2019, 38, 20–28. [Google Scholar] [CrossRef]
- Angelin, E.M.; Bacci, M.; Bartolozzi, G.; Cantisani, E.; Picollo, M. Contemporary artists’ spinel pigments: Non-invasive characterization by means of electronic spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 510–515. [Google Scholar] [CrossRef]
- Daniel Martin-Ramos, J.; Zafra-Gómez, A.; Vílchez, J.L. Non-destructive pigment characterization in the painting Little Madonna of Foligno by X-ray Powder Diffraction. Microchem. J. 2017, 134, 343–353. [Google Scholar] [CrossRef]
- Crupi, V.; La Russa, M.F.; Venuti, V.; Ruffolo, S.; Ricca, M.; Paladini, G.; Albini, R.; Macchia, A.; Denaro, L.; Birarda, G.; et al. A combined SR-based Raman and InfraRed investigation of pigmenting matter used in wall paintings: The San Gennaro and San Gaudioso Catacombs (Naples, Italy) case. Eur. Phys. J. Plus 2018, 133, 369. [Google Scholar] [CrossRef]
- Venuti, V.; Fazzari, B.; Crupi, V.; Majolino, D.; Paladini, G.; Morabito, G.; Certo, G.; Lamberto, S.; Giacobbe, L. In situ diagnostic analysis of the XVIII century Madonna della Lettera panel painting (Messina, Italy). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117822. [Google Scholar] [CrossRef]
- Pellis, G.; Bertasa, M.; Ricci, C.; Scarcella, A.; Croveri, P.; Poli, T.; Scalarone, D. A multi-analytical approach for precise identification of alkyd spray paints and for a better understanding of their ageing behaviour in graffiti and urban artworks. J. Anal. Appl. Pyrolysis 2022, 165, 105576. [Google Scholar] [CrossRef]
- Moura, L.; Melo, M.J.; Casanova, C.; Claro, A. A study on Portuguese manuscript illumination: The Charter of Vila Flor (Flower town), 1512. J. Cult. Herit. 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Melo, M.J.; Claro, A. Bright Light: Microspectrofluorimetry for the Characterization of Lake Pigments and Dyes in Works of Art. Acc. Chem. Res. 2010, 43, 857–866. [Google Scholar] [CrossRef]
- Melo, M.J.; Otero, V.; Vitorino, T.; Araújo, R.; Muralha, V.S.F.; Lemos, A.; Picollo, M. A Spectroscopic Study of Brazilwood Paints in Medieval Books of Hours. Appl. Spectrosc. 2014, 68, 434–444. [Google Scholar] [CrossRef]
- Longoni, M.; Bruni, S. Identification of Synthetic Organic Pigments in Contemporary Artists’ Paints by FT-IR and FT-Raman: An Advanced Analytical Experiment. J. Chem. Educ. 2021, 98, 966–972. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, S.; Hou, M.; Gao, Z.; Wang, W.; Zhou, X. A novel spectral matching approach for pigment: Spectral subsection identification considering ion absorption characteristics. Remote Sens. 2020, 12, 3415. [Google Scholar] [CrossRef]
- Kogou, S.; Lucian, A.; Bellesia, S.; Burgio, L.; Bailey, K.; Brooks, C.; Liang, H. A holistic multimodal approach to the non-invasive analysis of watercolour paintings. Appl. Phys. A 2015, 121, 999–1014. [Google Scholar] [CrossRef]
- Eisnor, M.M.; McLeod, K.E.R.; Bindesri, S.; Svoboda, S.A.; Wustholz, K.L.; Brosseau, C.L. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS): A tool for the identification of polyphenolic components in natural lake pigments. Phys. Chem. Chem. Phys. 2022, 24, 347–356. [Google Scholar] [CrossRef]
- Gueli, A.M.; Pasquale, S.; Politi, G.; Stella, G. The Role of Scale Adjustment in Color Change Evaluation. Instruments 2019, 3, 42. [Google Scholar] [CrossRef]
- Pasquale, S.; Zimbone, M.; Ruffino, F.; Stella, G.; Gueli, A.M. Evaluation of the Photocatalytic Activity of Water-Based TiO2 Nanoparticle Dispersions Applied on Historical Painting Surfaces. Heritage 2021, 4, 1854–1867. [Google Scholar] [CrossRef]
- D’Amico, S.; Comite, V.; Paladini, G.; Ricca, M.; Colica, E.; Galone, L.; Guido, S.; Mantella, G.; Crupi, V.; Majolino, D.; et al. Multitechnique diagnostic analysis and 3D surveying prior to the restoration of St. Michael defeating Evil painting by Mattia Preti. Environ. Sci. Pollut. Res. 2022, 29, 29478–29497. [Google Scholar] [CrossRef]
- Andreotti, A.; Izzo, F.C.; Bonaduce, I. Archaeometric Study of the Mural Paintings by Saturnino Gatti and Workshop in the Church of San Panfilo, Tornimparte (AQ): The Study of Organic Materials in Original and Restored Areas. Appl. Sci. 2023, 13, 7153. [Google Scholar] [CrossRef]
- Armetta, F.; Giuffrida, D.; Ponterio, R.C.; Falcon Martinez, M.F.; Briani, F.; Pecchioni, E.; Santo, A.P.; Ciaramitaro, V.C.; Saladino, M.L. Looking for the original materials and evidence of restoration at the Vault of the San Panfilo Church in Tornimparte (AQ). Appl. Sci. 2023, 13, 7088. [Google Scholar] [CrossRef]
- Colantonio, C.; Pelosi, C.; Calabrò, G.; Spizzichino, V.; Partenzi, I.; Lanteri, L. Scientific Investigation of Contemporary Pastel Painting by Roberto Sebastian Matta: Characterization of Original Materials through Multispectral Imaging and Spectroscopic Techniques. Heritage 2023, 6, 2541–2558. [Google Scholar] [CrossRef]
- Iwanicka, M.; Moretti, P.; Pilz, K.; Doherty, B.; Cartechini, L.; Geldof, M.; de Groot, S.; Miliani, C.; Targowski, P. Congregation leaving the Reformed Church in Nuenen by Vincent van Gogh: A combined multi-instrumental approach to analyse the painting’s stratigraphy in support of varnish removal. Herit. Sci. 2022, 10, 167. [Google Scholar] [CrossRef]
- Pagnin, L.; Brunnbauer, L.; Wiesinger, R.; Limbeck, A.; Schreiner, M. Multivariate analysis and laser-induced breakdown spectroscopy (LIBS): A new approach for the spatially resolved classification of modern art materials. Anal. Bioanal. Chem. 2020, 412, 3187–3198. [Google Scholar] [CrossRef] [PubMed]
- Lama, E.; Prieto-Taboada, N.; Etxebarria, I.; Bermejo, J.; Castro, K.; Arana, G.; Rodríguez Laso, M.D.; Madariaga, J.M. Spectroscopic characterization of xx century mural paintings of punta begoña’s galleries under conservation works. Microchem. J. 2021, 168, 106423. [Google Scholar] [CrossRef]
- Germinario, G.; Talarico, F.; Torre, M. Microanalyses and Spectroscopic Techniques for the Identification of Pigments and Pictorial Materials in Monet’s Pink Water Lilies Painting. Microsc. Microanal. 2022, 28, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, G.; Costa, E.; Marchetta, C.; Pappalardo, L.; Romano, F.P.; Zucchiatti, A.; Prati, P.; Mandò, P.A.; Migliori, A.; Palombo, L.; et al. Non-destructive characterization of Della Robbia sculptures at the Bargello museum in Florence by the combined use of PIXE and XRF portable systems. J. Cult. Herit. 2004, 5, 183–188. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Castro, K.; Hargreaves, M.; Moens, L.; Madariaga, J.M.; Edwards, H.G.M. Comparative study of mobile Raman instrumentation for art analysis. Anal. Chim. Acta 2007, 588, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Angelini, E.; Grassini, S.; Corbellini, S.; Ingo, G.M.; de Caro, T.; Plescia, P.; Riccucci, C.; Bianco, A.; Agostini, S. Potentialities of XRF and EIS portable instruments for the characterisation of ancient artefacts. Appl. Phys. A 2006, 83, 643–649. [Google Scholar] [CrossRef]
- Perez-Alonso, M.; Castro, K.; Martinez-Arkarazo, I.; Angulo, M.; Olazabal, M.A.; Madariaga, J.M. Analysis of bulk and inorganic degradation products of stones, mortars and wall paintings by portable Raman microprobe spectroscopy. Anal. Bioanal. Chem. 2004, 379, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Casadio, F.; Toniolo, L. The analysis of polychrome works of art: 40 years of infrared spectroscopic investigations. J. Cult. Herit. 2001, 2, 71–78. [Google Scholar] [CrossRef]
- Leona, M.; Casadio, F.; Bacci, M.; Picollo, M. Identification of the Pre-Columbian Pigment Mayablue on Works of Art by Noninvasive UV-Vis and Raman Spectroscopic Techniques. J. Am. Inst. Conserv. 2004, 43, 39–54. [Google Scholar] [CrossRef]
- Delaney, J.K.; Ricciardi, P.; Glinsman, L.D.; Facini, M.; Thoury, M.; Palmer, M.; Rie, E.R. de la Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud. Conserv. 2014, 59, 91–101. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Bruni, S.; Gargano, M.; Guglielmi, V.; Zaffino, C.; Pezzotta, A.; Pilato, A.; Auricchio, T.; Delvaux, L.; Ludwig, N. Use of integrated non-invasive analyses for pigment characterization and indirect dating of old restorations on one Egyptian coffin of the XXI dynasty. Microchem. J. 2018, 138, 122–131. [Google Scholar] [CrossRef]
- Sfarra, S.; Ibarra-Castanedo, C.; Tortora, M.; Arrizza, L.; Cerichelli, G.; Nardi, I.; Maldague, X. Diagnostics of wall paintings: A smart and reliable approach. J. Cult. Herit. 2016, 18, 229–241. [Google Scholar] [CrossRef]
- D’Amico, S.; Venuti, V.; Colica, E.; Crupi, V.; Majolino, D.; Paladini, G.; Guido, S.; Mantella, G.; Zumbo, R. Scientific investigation of the Conversion of St Paul painting (Mdina, Malta). In Proceedings of the 2019 IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Florence, Italy, 4–6 December 2019; 2019; pp. 330–334. [Google Scholar]
- Barone, G.; Crupi, V.; Longo, F.; Majolino, D.; Mazzoleni, P.; Raneri, S.; Venuti, V. A multi-technique approach for the characterization of decorative stones and non-destructive method for the discrimination of similar rocks. X-Ray Spectrom. 2014, 43, 83–92. [Google Scholar] [CrossRef]
- Appolonia, L.; Vaudan, D.; Chatel, V.; Aceto, M.; Mirti, P. Combined use of FORS, XRF and Raman spectroscopy in the study of mural paintings in the Aosta Valley (Italy). Anal. Bioanal. Chem. 2009, 395, 2005–2013. [Google Scholar] [CrossRef] [PubMed]
- Rosi, F.; Burnstock, A.; Van den Berg, K.J.; Miliani, C.; Brunetti, B.G.; Sgamellotti, A. A non-invasive XRF study supported by multivariate statistical analysis and reflectance FTIR to assess the composition of modern painting materials. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2009, 71, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- de Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Bacci, M.; Casini, A.; Cucci, C.; Picollo, M.; Radicati, B.; Vervat, M. Non-invasive spectroscopic measurements on the Il ritratto della figliastra by Giovanni Fattori: Identification of pigments and colourimetric analysis. J. Cult. Herit. 2003, 4, 329–336. [Google Scholar] [CrossRef]
- Plutino, A.; Richard, N.; Deborah, H.; Fernandez-Maloigne, C.; Ludwig, N.G. Spectral Divergence for Cultural Heritage applications. Color Imaging Conf. 2017, 25, 141–146. [Google Scholar] [CrossRef]
- Cavaleri, T.; Giovagnoli, A.; Nervo, M. Pigments and Mixtures Identification by Visible Reflectance Spectroscopy. Procedia Chem. 2013, 8, 45–54. [Google Scholar] [CrossRef]
- Dupuis, G.; Menu, M. Quantitative evaluation of pigment particles in organic layers by fibre-optics diffuse-reflectance spectroscopy. Appl. Phys. A 2005, 80, 667–673. [Google Scholar] [CrossRef]
- Cosentino, A. Effects of different binders on technical photography and infrared reflectography of 54 historical pigments. Int. J. Conserv. Sci. 2015, 6, 287. [Google Scholar]
- Gutiérrez-Neira, P.C.; Agulló-Rueda, F.; Climent-Font, A.; Garrido, C. Raman spectroscopy analysis of pigments on Diego Velázquez paintings. Vib. Spectrosc. 2013, 69, 13–20. [Google Scholar] [CrossRef]
- Briani, F.; Caridi, F.; Ferella, F.; Gueli, A.M.; Marchegiani, F.; Nisi, S.; Paladini, G.; Pecchioni, E.; Politi, G.; Santo, A.P.; et al. Multi-Technique Characterization of Painting Drawings of the Pictorial Cycle at the San Panfilo Church in Tornimparte (AQ). Appl. Sci. 2023, 13, 6492. [Google Scholar] [CrossRef]
- de Waal, D. Raman investigation of ceramics from 16th and 17th century Portuguese shipwrecks. J. Raman Spectrosc. 2004, 35, 646–649. [Google Scholar] [CrossRef]
- Striova, J.; Lofrumento, C.; Zoppi, A.; Castellucci, E.M. Prehistoric Anasazi ceramics studied by micro-Raman spectroscopy. J. Raman Spectrosc. 2006, 37, 1139–1145. [Google Scholar] [CrossRef]
- Moioli, P.; Seccaroni, C. Analysis of Art Objects Using a Portable X-ray Fluorescence Spectrometer. X-Ray Spectrom. 2000, 29, 48–52. [Google Scholar] [CrossRef]
- Mosca, S.; Frizzi, T.; Pontone, M.; Alberti, R.; Bombelli, L.; Capogrosso, V.; Nevin, A.; Valentini, G.; Comelli, D. Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 2016, 124, 775–784. [Google Scholar] [CrossRef]
- Muralha, V.S.F.; Miguel, C.; Melo, M.J. Micro-Raman study of Medieval Cistercian 12–13th century manuscripts: Santa Maria de Alcobaça, Portugal. J. Raman Spectrosc. 2012, 43, 1737–1746. [Google Scholar] [CrossRef]
- Angelini, I.; Asscher, Y.; Secco, M.; Parisatto, M.; Artioli, G. The pigments of the frigidarium in the Sarno Baths, Pompeii: Identification, stratigraphy and weathering. J. Cult. Herit. 2019, 40, 309–316. [Google Scholar] [CrossRef]
- Guglielmi, V.; Comite, V.; Andreoli, M.; Demartin, F.; Lombardi, C.A.; Fermo, P. Pigments on Roman Wall Painting and Stucco Fragments from the Monte d’Oro Area (Rome): A Multi-Technique Approach. Appl. Sci. 2020, 10, 7121. [Google Scholar] [CrossRef]
- Crocombe, R.A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef]
- Colomban, P. The on-site/remote Raman analysis with mobile instruments: A review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 2012, 43, 1529–1535. [Google Scholar] [CrossRef]
- Lauwers, D.; Hutado, A.G.; Tanevska, V.; Moens, L.; Bersani, D.; Vandenabeele, P. Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Vandenabeele, P.; Edwards, H.G.M.; Jehlička, J. The role of mobile instrumentation in novel applications of Raman spectroscopy: Archaeometry, geosciences, and forensics. Chem. Soc. Rev. 2014, 43, 2628. [Google Scholar] [CrossRef] [PubMed]
- Vandenabeele, P.; Weis, T.L.; Grant, E.R.; Moens, L.J. A new instrument adapted to in situ Raman analysis of objects of art. Anal. Bioanal. Chem. 2004, 379, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Gueli, A.M.; Bonfiglio, G.; Pasquale, S.; Troja, S.O. Effect of particle size on pigments colour. Color Res. Appl. 2017, 42, 236–243. [Google Scholar] [CrossRef]
- Gueli, A.M.; Pasquale, S.; Troja, S.O. Influence of vehicle on historical pigments colour. Color Res. Appl. 2017, 42, 823–835. [Google Scholar] [CrossRef]
- Burrafato, G.; Troja, S.; Gueli, A.M.; Stella, G.; Zuccarello, A. Ruolo della calibrazione nella valutazione delle varia-zioni cromatiche, Colore e Colorimetria contributi multidis-ciplinari. Quad. Di Fotonica E Ottica 2007, 13, 211–218. [Google Scholar]
- Bacci, M.; Picollo, M.; Trumpy, G.; Tsukada, M.; Kunzelman, D. Non-Invasive Identification of White Pigments on 20Th-Century Oil Paintings by Using Fiber Optic Reflectance Spectroscopy. J. Am. Inst. Conserv. 2007, 46, 27–37. [Google Scholar] [CrossRef]
- Montagner, C.; Bacci, M.; Bracci, S.; Freeman, R.; Picollo, M. Library of UV–Vis–NIR reflectance spectra of modern organic dyes from historic pattern-card coloured papers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1669–1680. [Google Scholar] [CrossRef] [PubMed]
- Bacci, M.; Casini, A.; Picollo, M.; Radicati, B.; Stefani, L. Integrated non-invasive technologies for the diagnosis and conservation of the cultural heritage. J. Neutron Res. 2006, 14, 11–16. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Zhou, W.; Hao, S.; Zhou, Z.; Qi, X.; Shi, J. Pigment identification on an undated Chinese painting by non-destructive analysis. Vib. Spectrosc. 2019, 101, 28–33. [Google Scholar] [CrossRef]
- Palamara, E.; Palles, D.; Kamitsos, E.I.; Pratim Das, P.; Tirado, J.I.; Nicolopoulos, S.; Zacharias, N. Fragments of luxury: Opaque glass from the Palace of Mystras, Greece. J. Archaeol. Sci. Rep. 2023, 51, 104145. [Google Scholar] [CrossRef]
- Lin, C.H.; Chang, Y.F. Comparison and characterization of pigments and dyes by Raman spectroscopy. Anal. Sci. 2022, 38, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Bell, I.M.; Clark, R.J.H.; Gibbs, P.J. Raman spectroscopic library of natural and synthetic pigments (pre- ≈ 1850 AD). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 2159–2179. [Google Scholar] [CrossRef] [PubMed]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2015; pp. 1–30. ISBN 9783110417104. [Google Scholar]
- Baraldi, P.; Fagnano, C.; Ghittoni, A.L.; Tassi, L.; Zannini, P. Vibrational spectra of some pigments from Pompeii. Acta Univ. Carol. Geol. 2002, 1, 49–65. [Google Scholar] [CrossRef]
- Baraldi, P.; Baraldi, C.; Curina, R.; Tassi, L.; Zannini, P. A micro-Raman archaeometric approach to Roman wall paintings. Vib. Spectrosc. 2007, 43, 420–426. [Google Scholar] [CrossRef]
- Bruni, S.; Cariati, F.; Consolandi, L.; Galli, A.; Guglielmi, V.; Ludwig, N.; Milazzo, M. Field and Laboratory Spectroscopic Methods for the Identification of Pigments in a Northern Italian Eleventh Century Fresco Cycle. Appl. Spectrosc. 2002, 56, 827–833. [Google Scholar] [CrossRef]
- Amadori, M.L.; Poldi, G.; Germinario, G.; Arduini, J.; Mengacci, V. Spectroscopic and Imaging Analyses on Easel Paintings by Giovanni Santi. Appl. Sci. 2023, 13, 3581. [Google Scholar] [CrossRef]
- Amadori, M.L.; Baraldi, P.; Barcelli, S.; Poldi, G. New Studies on Lorenzo Lotto ’ S Pigments: Non-Invasive and Micro-Invasive Analyses. In AI Ar. 2012 Modena, VII Congresso Nazionale di Archeometria, Atti del Congresso; Pàtron Editore: Bologna, Italy, 2011. [Google Scholar]
- IRUG. Keyword Search IRUG Spectral Database. Available online: http://www.irug.org/search-spectral-database (accessed on 10 November 2023).
- RRUFF. Search RRUFF Sample Data. Available online: http://rruff.info/ (accessed on 10 November 2023).
- Aceto, M.; Fenoglio, G.; Labate, M.; Picollo, M.; Bacci, M.; Agostino, A. A fast non-invasive method for preliminary authentication of mediaeval glass enamels using UV–visible–NIR diffuse reflectance spectrophotometry. J. Cult. Herit. 2020, 45, 33–40. [Google Scholar] [CrossRef]
- Elias, M.; Chartier, C.; Prévot, G.; Garay, H.; Vignaud, C. The colour of ochres explained by their composition. Mater. Sci. Eng. B 2006, 127, 70–80. [Google Scholar] [CrossRef]
- Marey Mahmoud, H.H. Colorimetric and spectral reflectance access to some ancient Egyptian pigments. J. Int. Colour Assoc. 2019, 24, 35–45. [Google Scholar]
ID Code | Color Index | Product Name | Description |
---|---|---|---|
23610 42100 10800 42500 48700 11300 48120 40440 40351 40490 40500 40510 40542 40545 11574 11575 11576 11577 11584 11585 48600 11360 48100 48150 48200 48250 52350 52400 10620 10621 | PR 83 NR 4.1, 75470 PY 39. 77085 PR 105 77578 PR 102 PW 27.77811 PR 101.77491 PBr 7 PR 102.77491 PR 102 PR 102 PR 102 PR 101 PR 101 PR 102 PR 101.77491 PR 102 PR 101.77491 PR 102 PR 102 PR101 PR102 PR 101.77491 PR 101.77491 PR 101.77491 PR 101.77491 PR 102. 77491 PR 101.77491 PR 106. 77766 PR 106. 77766 | Alizarine crimson dark Carmine naccarat Realgar Red lead, minium Caput Mortuum reddish Red jasper Iron oxide red 120 m Pompei red Red mine ochre Satorius red Red bolus Venetian red English red light English red deep Burgundy red ochre medium, 0–80 µ Burgundy red ochre medium 0–120 µ Burgundy red ochre deep 0–80 µ Burgundy red ochre deep 0–120 µ Spanish red ochre 0–120 µ Spanish red ochre 0–63 µ Iron oxide red natural Brown-red slate Iron oxide red 110 m, light Iron oxide red 130 b, medium Iron oxide red 130 m, medium Iron oxide red 222, dark Translucent orange-red Translucent red medium Natural cinnabar Natural cinnabar, light | Synthetic organic pigment Natural aluminum lake of carminic acid Natural orange-red sulphide of arsenic Synthetic Pb-based pigment Natural iron oxide pigment Natural amorphous quartz Synthetic iron oxide pigment Synthetic iron oxide pigment Natural iron oxide pigment Natural iron oxide pigment Natural iron oxide pigment Natural iron oxide pigment Synthetic iron oxide pigment Synthetic iron oxide pigment Natural iron oxide pigment Synthetic iron oxide pigment Natural iron oxide pigment Synthetic iron oxide pigment Natural iron oxide pigment Natural iron oxide pigment Synthetic iron oxide pigment Natural iron oxide pigment Synthetic iron oxide pigment Synthetic iron oxide pigment Synthetic iron oxide pigment Synthetic iron oxide pigment Natural iron oxide pigment Synthetic iron oxide pigment Natural HgS mineral mercuric sulfide Natural HgS mineral mercuric sulfide |
10622 | PR 106. 77766 | Natural cinnabar, powder | Natural HgS mineral mercuric sulfide |
37000 37202 36020 37030 | NR 31 NR 9. 75330 NR 25.75450 NO 2.75310 | Dragon’s blood, powder Madder lake Lac dye Resina kamala | Natural organic pigment Natural organic pigment Natural organic pigment Natural organic pigment |
Analyzed Area | Description | Figure |
---|---|---|
R1 | Light-red area | not assignable to any figure |
R2 | Dark-red area | not assignable to any figure |
R3 | Dark-red area | not assignable to any figure |
R4 | Red area | not assignable to any figure |
R5 | Red area | halo of Mary |
R6 | Red area | not assignable to any figure |
R7 | Red area | not assignable to any figure |
R8 | Light-red area | not assignable to any figure |
R9 | Red area | not assignable to any figure |
R10 | Light-red area | not assignable to any figure |
ID Code | Raman Features 1 (cm−1) | Extrema Points 2 (nm) |
---|---|---|
23610 | 1293 m, 1322 m, 1479 vs | 430 (v); 480 (sh); 510 (sh); 620 (p-h); 680 (v) |
42100 | N/A | 410 (sh); 440 (v); 480 (sh); 520 (p-l); 550 (v); 610 (p-h); 680 (p-l) |
10800 | 140 m, 181 s, 191 s, 217 s, 252 m, 339 s, 351 vs | 420 (v); 480 (sh); 560 (p-h); 650 (p-l); 680 (p-l) |
42500 | 118 vs, 149 m, 222 w, 312 m, 389 m, 547 s | 570 (p-h); 650 (sh); 690 (p-l) |
48700 | 219 vs, 285 vs, 402 m, 483 w, 602 w | 420 (v); 460 (v); 510 (sh); 590 (p-h); 640 (v); 680 (sh) |
11300 | 120 s, 222 s, 287 vs, 402 s, 460 s, 604 s | 420 (v); 440 (p-l); 500 (p-l); 580 (p-h); 640 (v); 680 (sh) |
48120 | 219 vs, 287 vs, 402 m, 491 w, 604 w | 430 (v); 450 (p-l); 590 (p-h); 640 (v); 690 (sh) |
40440 | 287 w, 1194 br, 1282 br | 440 (p-l); 460 (v); 510 (sh); 590 (p-h); 650 (v); 680 (w); 690 (sh) |
40351 | 219 m, 287 s, 402 m, 604 w | 410 (v); 440 (v); 510 (sh); 580 (p-h); 640 (v); 680 (sh) |
40490 | 143 vs, 224 w, 290 m, 412 w, 605 w | 410 (v); 470 (v); 580 (p-h); 650 (v) |
40500 | 141 w, 290 w | 420 (v); 440 (p-l); 590 (p-h); 680 (p-l) |
40510 | 224 s, 289 vs, 411 s, 496 w, 609 w, 1008 m | 500 (sh); 580 (p-h); 640 (v); 690 (sh) |
40542 | 224 s, 290 vs, 1087 w | 420 (v); 440 (sh); 590 (p-h), 650 (v); 690 (sh) |
40545 | 224 s, 291 vs, 408 m, 496 s, 610 w, 1086 m | 420 (v); 440 (sh); 480 (p-l); 590 (p-h); 640 (v); 690 (p-l) |
11574 | 284 w | 470 (v); 490 (p-l); 590 (p-h); 660 (v); 680 (p-l) |
11575 | 284 w | 430 (p-l); 490 (p-l); 590 (p-h); 660 (p-l); 680 (p-l) |
11576 | N/A | 500 (sh); 590 (p-h); 650 (v); 680 (sh) |
11577 | N/A | 410 (v); 450 (p-l); 490 (p-l); 590 (p-h); 660 (v); 680 (sh) |
11584 | 224 w, 285 w | 410 (v); 450 (p-l); 580 (p-h); 650 (v); 680 (p-l) |
11585 | 224 w, 285 w | 440 (p-l); 490 (p-l); 580 (p-h); 680 (sh) |
48600 | 220 s, 291 vs, 408 m, 496 w, 610 w | 420 (v); 500 (sh); 590 (p-h); 640 (v); 650 (p-l) |
11360 | 284 w, 1130 w (br), 1228 s (br), 1288 s (br), 1428 s (br) | 420 (v); 460 (p-l); 480 (v); 500 (p-l); 510 (p-l); 570 (p-h); 640 (v) |
48100 | 219 s, 285 vs, 402 m, 493 w, 606 m | 430 (v); 460 (v); 500 (sh); 590 (p-h); 640 (v); 680 (sh) |
48150 | 222 vs, 287 vs, 404 m, 489 w, 606 m | 420 (sh); 450 (v); 510 (sh); 590 (p-h); 640 (v); 670 (sh) |
48200 | 222 vs, 287 vs, 404 m, 494 w, 606 m | 490 (p-l); 510 (sh); 580 (p-h); 640 (v); 670 (sh) |
48250 | 219 vs, 285 vs, 402 m, 485 w, 600 m | 450(v); 510 (sh); 590 (p-h); 650 (v); 680 (sh) |
52350 | 219 vs, 285 vs, 402 m, 484 w, 598 m | 440 (p-l); 590 (p-h); 640 (v); 690 (p-l) |
52400 | 219 w, 285 m, 400 m, 598 w | 480 (p-l); 510 (sh); 600 (p-h); 650 (v); 690 (sh) |
10620 | 250 vs, 280 m, 340 s | 430 (p-l); 460 (p-l); 510 (sh); 600 (p-h); 680 (sh) |
10621 | 252 vs, 280 m, 342 s | 420 (v); 600 (p-h) |
10622 | 252 vs, 283 m, 343 m | 420 (sh); 470 (sh); 500 (sh); 530 (sh); 610 (p-h); 680 (sh) |
37000 | N/A | 420 (sh); 460 (v); 560 (sh); 640 (p-h); 680 (sh) |
37202 | N/A | 440 (p-l); 480 (sh); 510 (p-l); 530 (v); 620 (p-h) |
36020 | N/A | 470 (sh); 520 (sh); 610 (p-h) |
37030 | N/A | 410 (sh); 440 (p-l); 470 (p-l); 510 (sh); 630 (p-h); 680 (p-h) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gueli, A.M.; Galvagno, R.; Incardona, A.; Pappalardo, E.; Politi, G.; Paladini, G.; Stella, G. Correlation of Visible Reflectance Spectrometry and Portable Raman Data for Red Pigment Identification. Heritage 2024, 7, 2161-2175. https://doi.org/10.3390/heritage7040102
Gueli AM, Galvagno R, Incardona A, Pappalardo E, Politi G, Paladini G, Stella G. Correlation of Visible Reflectance Spectrometry and Portable Raman Data for Red Pigment Identification. Heritage. 2024; 7(4):2161-2175. https://doi.org/10.3390/heritage7040102
Chicago/Turabian StyleGueli, Anna M., Rosaria Galvagno, Adriana Incardona, Eleonora Pappalardo, Giuseppe Politi, Giuseppe Paladini, and Giuseppe Stella. 2024. "Correlation of Visible Reflectance Spectrometry and Portable Raman Data for Red Pigment Identification" Heritage 7, no. 4: 2161-2175. https://doi.org/10.3390/heritage7040102
APA StyleGueli, A. M., Galvagno, R., Incardona, A., Pappalardo, E., Politi, G., Paladini, G., & Stella, G. (2024). Correlation of Visible Reflectance Spectrometry and Portable Raman Data for Red Pigment Identification. Heritage, 7(4), 2161-2175. https://doi.org/10.3390/heritage7040102