Modelling the Temperature Inside a Greenhouse Tunnel
Abstract
:1. Introduction
2. Related Works
2.1. Precision Agriculture Adoption
2.2. Analytical Models
2.3. Empirical Data-Driven Models
2.4. Performance Metrics
2.4.1. RMSE
2.4.2.
2.4.3. MAE
2.4.4. MBE
3. Thermal Model Development
3.1. Tunnel Parameters and Data Acquisition
3.2. Analytical Thermal Model Development
- Take the current time step’s outside temperature and solar radiation, with the first recorded instance of the fan state to predict the inside temperature.
- Use this prediction with the previous fan state to simulate the fan being on or off.
- Predict the next inside temperature.
- Store the simulated fan state and predicted temperature in an array to be exported at a later stage.
3.3. Empirical Data-Driven Model Development (Support Vector Regression)
- Forecasting the subsequent 5 min internal temperature using the present time step’s input vector.
- Forecasting the subsequent 5 min internal temperature, incorporating it into the input vector for forecasting the subsequent time step’s internal temperature.
- Accumulating predictions in an error vector for each 5 min span over 12 predictions (1 h duration).
- Packing each prediction in an vector that contains the errors and depicting the 12th prediction.
- Progressing one time step of 5 min, and then repeating the process until the test set concludes.
4. Results
4.1. Analytical Model
4.2. SVR Predictive Model
4.3. Model Performance
5. Discussion: Applications and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohamed, M.A.; El Afandi, G.S.; El-Mahdy, M.E.S. Impact of climate change on rainfall variability in the Blue Nile basin. Alex. Eng. J. 2022, 61, 3265–3275. [Google Scholar] [CrossRef]
- Yang, H.; He, J.; Su, Y.; Xu, J. Adaptation to climate change: Ethnic groups in Southwest China. Environ. Hazards 2022, 21, 117–136. [Google Scholar] [CrossRef]
- Eftekhari, M.S. Impacts of Climate Change on Agriculture and Horticulture. In Climate Change; Springer: Berlin/Heidelberg, Germany, 2022; pp. 117–131. [Google Scholar]
- Wang, X.B.; Azarbad, H.; Leclerc, L.; Dozois, J.; Mukula, E.; Yergeau, É. A Drying-Rewetting Cycle Imposes More Important Shifts on Soil Microbial Communities than Does Reduced Precipitation. Msystems 2022, 7, e00247-22. [Google Scholar] [CrossRef] [PubMed]
- Bopche, U.; Kingra, P.K.; Setia, R.; Singh, S.P. Spatio-temporal analysis of meteorological drought in Punjab under past, present and future climate change scenarios. Arab. J. Geosci. 2022, 15, 756. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Yaseen, M.; Saqib, S.E. Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges. Int. J. Disaster Risk Reduct. 2022, 80, 103210. [Google Scholar] [CrossRef]
- Fujimori, S.; Wu, W.; Doelman, J.; Frank, S.; Hristov, J.; Kyle, P.; Sands, R.; Van Zeist, W.J.; Havlik, P.; Domínguez, I.P.; et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 2022, 3, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Munaweera, T.; Jayawardana, N.; Rajaratnam, R.; Dissanayake, N. Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agric. Food Secur. 2022, 11, 26. [Google Scholar] [CrossRef]
- Wang, H.; Xu, C.; Liu, Y.; Jeppesen, E.; Svenning, J.C.; Wu, J.; Zhang, W.; Zhou, T.; Wang, P.; Nangombe, S.; et al. From unusual suspect to serial killer: Cyanotoxins boosted by climate change may jeopardize megafauna. Innovation 2021, 2, 100092. [Google Scholar] [CrossRef] [PubMed]
- Ruggerio, C.A. Sustainability and sustainable development: A review of principles and definitions. Sci. Total Environ. 2021, 786, 147481. [Google Scholar] [CrossRef] [PubMed]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Waaswa, A.; Oywaya Nkurumwa, A.; Mwangi Kibe, A.; Ngeno Kipkemoi, J. Climate-Smart agriculture and potato production in Kenya: Review of the determinants of practice. Clim. Dev. 2022, 14, 75–90. [Google Scholar] [CrossRef]
- Ogunyiola, A.; Gardezi, M.; Vij, S. Smallholder farmers’ engagement with climate smart agriculture in Africa: Role of local knowledge and upscaling. Clim. Policy 2022, 22, 411–426. [Google Scholar] [CrossRef]
- von Braun, J. Food insecurity, hunger and malnutrition: Necessary policy and technology changes. New Biotechnol. 2010, 27, 449–452. [Google Scholar] [CrossRef]
- Anderson, M.D.; Rivera Ferre, M.G. Unsustainable by design: Extractive narratives of ending hunger and regenerative alternatives. Curr. Opin. Environ. Sustain. 2020. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Puri-Mirza, A. UAE: Abu Dhabi Contribution of Agriculture, Forestry and Fishing to the GDP 2019. 2021. Available online: https://www.statista.com/statistics/818124/uae-contribution-of-agriculture-forestry-and-fishing-to-the-gdp-in-abu-dhabi/ (accessed on 17 November 2023).
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar] [CrossRef]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van der Wal, T.; Soto, I.; Gómez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to GHG emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Mabitsela, M.M.; Motsi, H.; Hull, K.J.; Labuschagne, D.P.; Booysen, M.J.; Mavengahama, S.; Phiri, E.E. First report of aeroponically grown Bambara groundnut, an African indigenous hypogeal legume: Implications for climate adaptation. Heliyon 2023, 9. [Google Scholar] [CrossRef]
- Mizik, T. Climate-smart agriculture on small-scale farms: A systematic literature review. Agronomy 2021, 11, 1096. [Google Scholar] [CrossRef]
- Doyle, L.; Oliver, L.; Whitworth, C. Design of a climate smart farming system in East Africa. In Proceedings of the 2018 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 18–21 October 2018; pp. 1–6. [Google Scholar]
- Atayero, A.A.; Oluwatobi, S.; Alege, P.O. An assessment of the Internet of Things (IoT) adoption readiness of Sub-Saharan Africa. J. S. Afr. Bus. Res. 2016, 13, 1–13. [Google Scholar] [CrossRef]
- Nigussie, E.; Olwal, T.; Musumba, G.; Tegegne, T.; Lemma, A.; Mekuria, F. IoT-based irrigation management for smallholder farmers in rural sub-Saharan Africa. Procedia Comput. Sci. 2020, 177, 86–93. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, X.; Xue, Y.; Chang, X.; Bai, X. A review on basic theory and technology of agricultural energy internet. IET Renew. Power Gener. 2023. Available online: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/rpg2.12808 (accessed on 15 January 2024).
- Fu, X.; Zhou, Y. Collaborative Optimization of PV Greenhouses and Clean Energy Systems in Rural Areas. IEEE Trans. Sustain. Energy 2023, 14, 642–656. [Google Scholar] [CrossRef]
- Jans-Singh, M.; Leeming, K.; Choudhary, R.; Girolami, M. Digital twin of an urban-integrated hydroponic farm. Data-Centric Eng. 2020, 1, e20. [Google Scholar] [CrossRef]
- Patil, S.; Tantau, H.; Salokhe, V. Modelling of tropical greenhouse temperature by auto regressive and neural network models. Biosyst. Eng. 2008, 99, 423–431. [Google Scholar] [CrossRef]
- Allouhi, A.; Choab, N.; Hamrani, A.; Saadeddine, S. Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse. Clean. Eng. Technol. 2021, 5, 100346. [Google Scholar] [CrossRef]
- Aissa, M.; Boutelhig, A. CFD Comparative Study between Different Forms of Solar Greenhouses and Orientation Effect. Int. J. Heat Technol. 2021, 39, 433–440. [Google Scholar] [CrossRef]
- Mobtaker, H.G.; Ajabshirchi, Y.; Ranjbar, S.F.; Matloobi, M. Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation. Renew. Energy 2019, 135, 88–97. [Google Scholar] [CrossRef]
- Nauta, A.; Lubitz, W.D.; Tasnim, S.; Mahmud, S. Thermal modelling of greenhouse using 1D lumped capacitance model. In Proceedings of the 5th International Conference of the International Commission of Agricultural and Biosystems Engineering, Quebec, BC, Canada, 10–14 May 2021. [Google Scholar]
- Tadj, N.; Draoui, B.; Theodoridis, G.; Bartzanas, T.; Kittas, C. Convective heat transfer in a heated greenhouse tunnel. In Proceedings of the VIII International Symposium on Protected Cultivation in Mild Winter Climates: Advances in Soil and Soilless Cultivation under 747; Acta Horticulture: Agadir, Morocco, 2006; pp. 113–120. [Google Scholar]
- Tong, G.; Christopher, D.; Li, B. Numerical modelling of temperature variations in a Chinese solar greenhouse. Comput. Electron. Agric. 2009, 68, 129–139. [Google Scholar] [CrossRef]
- Tacarindua, C.R.; Shiraiwa, T.; Homma, K.; Kumagai, E.; Sameshima, R. The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crop. Res. 2013, 154, 74–81. [Google Scholar] [CrossRef]
- Jogunola, O.; Hull, K.; Mabitsela, M.; Phiri, E.E.; Booysen, M.J. Deep Learning-Enabled Temperature Simulation of a Greenhouse Tunnel. 2023. Available online: https://www.researchgate.net/publication/377265253_Deep_Learning-Enabled_Temperature_Simulation_of_a_Greenhouse_Tunnel (accessed on 15 January 2024).
- Hull, K.; Mabitsela, M.; Phiri, E.; Booysen, M. Dataset of temperature, humidity, and actuator states of an east-facing South African Greenhouse Tunnel. Data Brief 2023, 51, 109633. [Google Scholar] [CrossRef] [PubMed]
- Kittas, C.; Bartzanas, T.; Jaffrin, A. Greenhouse evaporative cooling: Measurement and data analysis. Trans. ASAE 2001, 44, 683. [Google Scholar] [CrossRef]
- Kittas, C.; Bartzanas, T.; Jaffrin, A. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosyst. Eng. 2003, 85, 87–94. [Google Scholar] [CrossRef]
- CFWFans. Maxiflow Fans. Available online: https://www.cfwfans.co.za/wp-content/uploads/2019/07/Maxiflow-Brochure.pdf (accessed on 10 August 2023).
- Meteoblue. Universität Basel, Basel, Switzerland. Available online: https://www.meteoblue.com (accessed on 15 August 2023).
- Hull, K.; Mabitsela, M.; Phiri, E.E.; Booysen, M. Temperature and Humidity Dataset of an East-Facing South African Greenhouse Tunnel. Mendeley Data 2024, V2. [Google Scholar] [CrossRef]
- Hull, K.; Booysen, M.; Mabitsela, M.; Phiri, E.E. Using a Digital Twin for Greenhouse Tunnel Temperature Management and Prediction. In Proceedings of the 2023 IEEE AFRICON, Nairobi, Kenya, 20–22 September 2023; pp. 1–6. [Google Scholar] [CrossRef]
Name | Represents | Constant? | Value | Units |
---|---|---|---|---|
Current temperature at position x from the wet wall | N | * | °C | |
Outside temperature | N | * | °C | |
Wet bulb temperature | N | * | °C | |
Plant transpiration rate | Y | 0.8 | Dimensionless | |
Transmissivity of the greenhouse cover | Y | 0.35 | Dimensionless | |
Solar radiation outside the tunnel | N | * | W/m2 | |
L | Greenhouse width | Y | 9 | m |
P | Roof perimeter | Y | 28.2 | m |
V | Ventilation rate | Y | 2 | m3/s |
Specific heat capacity of air | Y | 1005 | ||
Air density | Y | 1.14 | ||
Heat loss coefficient of greenhouse cover | Y | 3 | W/m2 °C | |
Cooling efficiency | Y | 0.3 | Dimensionless |
Model Used | RMSE (°C) | MAE (°C) | MBE | |
---|---|---|---|---|
5 min ahead prediction | 0.87 | 0.47 | −0.05 | 0.98 |
30 min ahead simulation | 1.31 | 0.86 | −0.15 | 0.95 |
1 h ahead simulation | 1.76 | 1.17 | −0.24 | 0.9 |
Analytical model | 2.93 | 2.16 | −1.029 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hull, K.; van Schalkwyk, P.D.; Mabitsela, M.; Phiri, E.E.; Booysen, M.J. Modelling the Temperature Inside a Greenhouse Tunnel. AgriEngineering 2024, 6, 285-301. https://doi.org/10.3390/agriengineering6010017
Hull K, van Schalkwyk PD, Mabitsela M, Phiri EE, Booysen MJ. Modelling the Temperature Inside a Greenhouse Tunnel. AgriEngineering. 2024; 6(1):285-301. https://doi.org/10.3390/agriengineering6010017
Chicago/Turabian StyleHull, Keegan, Pieter Daniel van Schalkwyk, Mosima Mabitsela, Ethel Emmarantia Phiri, and Marthinus Johannes Booysen. 2024. "Modelling the Temperature Inside a Greenhouse Tunnel" AgriEngineering 6, no. 1: 285-301. https://doi.org/10.3390/agriengineering6010017
APA StyleHull, K., van Schalkwyk, P. D., Mabitsela, M., Phiri, E. E., & Booysen, M. J. (2024). Modelling the Temperature Inside a Greenhouse Tunnel. AgriEngineering, 6(1), 285-301. https://doi.org/10.3390/agriengineering6010017