A Machine Vision System for Monitoring Wild Birds on Poultry Farms to Prevent Avian Influenza
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Data Collection
2.2. Dataset Augmentation Strategy
2.3. Detection of Wild Birds
2.4. Evaluation Standard for Monitoring Wild Birds
3. Results and Discussions
3.1. The Results and Comparisons of Different Algorithms
3.2. Identification and Classification of Wild Birds
3.3. Strategies to Prevent Avian Influenza
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Richardson, B.; Takle, E.; Chai, L.; Schmitt, D.; Xin, H. Airborne Transmission May Have Played a Role in the Spread of 2015 Highly Pathogenic Avian Influenza Outbreaks in the United States. Sci. Rep. 2019, 9, 11755. [Google Scholar] [CrossRef] [PubMed]
- CDC. Avian Influenza Current Situation Summary. Available online: https://www.cdc.gov/bird-flu/situation-summary/index.html (accessed on 11 March 2023).
- Chai, L.; Zhao, Y.; Xin, H.; Richardson, B. Heat Treatment for Disinfecting Egg Transport Tools. Appl. Eng. Agric. 2022, 38, 343–350. [Google Scholar] [CrossRef]
- Krauss, S.; Webster, R.G. Avian Influenza Virus Surveillance and Wild Birds: Past and Present. Avian Dis. 2010, 54, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, N.K.; Wang, F.-B.; Zou, X. Avian Influenza Dynamics in Wild Birds with Bird Mobility and Spatial Heterogeneous Environment. DCDS-B 2012, 17, 2829–2848. [Google Scholar] [CrossRef]
- Comin, A.; Klinkenberg, D.; Marangon, S.; Toffan, A.; Stegeman, A. Transmission Dynamics of Low Pathogenicity Avian Influenza Infections in Turkey Flocks. PLoS ONE 2011, 6, e26935. [Google Scholar] [CrossRef]
- Lupiani, B.; Reddy, S.M. The History of Avian Influenza. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 311–323. [Google Scholar] [CrossRef]
- Martinez, L.; Cheng, W.; Wang, X.; Ling, F.; Mu, L.; Li, C.; Huo, X.; Ebell, M.H.; Huang, H.; Zhu, L.; et al. A Risk Classification Model to Predict Mortality Among Laboratory-Confirmed Avian Influenza A H7N9 Patients: A Population-Based Observational Cohort Study. J. Infect. Dis. 2019, 220, 1780–1789. [Google Scholar] [CrossRef]
- Bouma, A.; Claassen, I.; Natih, K.; Klinkenberg, D.; Donnelly, C.A.; Koch, G.; Boven, M. van Estimation of Transmission Parameters of H5N1 Avian Influenza Virus in Chickens. PLoS Pathog. 2009, 5, e1000281. [Google Scholar] [CrossRef]
- Poulson, R.L.; Brown, J.D. Wild Bird Surveillance for Avian Influenza Virus. In Animal Influenza Virus: Methods and Protocols; Methods in Molecular Biology; Spackman, E., Ed.; Springer: New York, NY, USA, 2020; pp. 93–112. ISBN 978-1-07-160346-8. [Google Scholar]
- Kandeil, A.; Patton, C.; Jones, J.C.; Jeevan, T.; Harrington, W.N.; Trifkovic, S.; Seiler, J.P.; Fabrizio, T.; Woodard, K.; Turner, J.C.; et al. Rapid Evolution of A(H5N1) Influenza Viruses after Intercontinental Spread to North America. Nat. Commun. 2023, 14, 3082. [Google Scholar] [CrossRef]
- Li, C.; Peng, Q.; Wan, X.; Sun, H.; Tang, J. C-Terminal Motifs in Promyelocytic Leukemia Protein Isoforms Critically Regulate PML Nuclear Body Formation. J. Cell Sci. 2017, 130, 3496–3506. [Google Scholar] [CrossRef]
- Li, C.; Fu, J.; Shao, S.; Luo, Z.-Q. Legionella Pneumophila Exploits the Endo-Lysosomal Network for Phagosome Biogenesis by Co-Opting SUMOylated Rab7. PLoS Pathog. 2023, 20, e1011783. [Google Scholar] [CrossRef] [PubMed]
- Balaji, V.S.; Mahi, A.R.; Anirudh Ganapathy, P.S.; Manju, M. Scarecrow Monitoring System: Employing Mobilenet Ssd for Enhanced Animal Supervision. arXiv 2024, arXiv:2407.01435. [Google Scholar]
- Maheswaran, S.; Ramya, M.; Priyadharshini, P.; Sivaranjani, P. A Real Time Image Processing Based System to Scaring the Birds from the Agricultural Field. Indian J. Sci. Technol. 2016, 9, 98999. [Google Scholar] [CrossRef]
- Ge, Y.; Yao, Q.; Wang, X.; Chai, H.; Deng, G.; Chen, H.; Hua, Y. Detection of Reassortant Avian Influenza A (H11N9) Virus in Wild Birds in China. Transbound. Emerg. Dis. 2019, 66, 1142–1157. [Google Scholar] [CrossRef] [PubMed]
- Styś-Fijoł, N.; Kozdruń, W.; Czekaj, H. Detection of Avian Reoviruses in Wild Birds in Poland. J. Vet. Res. 2017, 61, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, M.; Ma, X.; Wu, X.; Wang, Y. High-Precision Wheat Head Detection Model Based on One-Stage Network and GAN Model. Front. Plant Sci. 2022, 13, 787852. [Google Scholar] [CrossRef]
- Datar, P.; Jain, K.; Dhedhi, B. Detection of Birds in the Wild Using Deep Learning Methods. In Proceedings of the 2018 4th International Conference for Convergence in Technology (I2CT), Mangalore, India, 27–28 October 2018; pp. 1–4. [Google Scholar]
- Yang, X.; Bahadur Bist, R.; Paneru, B.; Liu, T.; Applegate, T.; Ritz, C.; Kim, W.; Regmi, P.; Chai, L. Computer Vision-Based Cybernetics Systems for Promoting Modern Poultry Farming: A Critical Review. Comput. Electron. Agric. 2024, 225, 109339. [Google Scholar] [CrossRef]
- Subedi, S.; Bist, R.; Yang, X.; Chai, L. Tracking Pecking Behaviors and Damages of Cage-Free Laying Hens with Machine Vision Technologies. Comput. Electron. Agric. 2023, 204, 107545. [Google Scholar] [CrossRef]
- Yang, X.; Chai, L.; Bist, R.B.; Subedi, S.; Guo, Y. Variation of Litter Quality in Cage-Free Houses during Pullet Production. In Proceedings of the 2022 ASABE Annual International Meeting, Houston, TX, USA, 17–20 July 2022; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2022. [Google Scholar]
- Bist, R.B.; Subedi, S.; Chai, L.; Yang, X. Ammonia Emissions, Impacts, and Mitigation Strategies for Poultry Production: A Critical Review. J. Environ. Manag. 2023, 328, 116919. [Google Scholar] [CrossRef]
- Subedi, S.; Bist, R.; Yang, X.; Chai, L. Tracking Floor Eggs with Machine Vision in Cage-Free Hen Houses. Poult. Sci. 2023, 102, 102637. [Google Scholar] [CrossRef]
- Yang, X.; Chai, L.; Bist, R.B.; Subedi, S.; Wu, Z. A Deep Learning Model for Detecting Cage-Free Hens on the Litter Floor. Animals 2022, 12, 1983. [Google Scholar] [CrossRef] [PubMed]
- Hammami, M.; Friboulet, D.; Kechichian, R. Data Augmentation for Multi-Organ Detection in Medical Images. In Proceedings of the 2020 Tenth International Conference on Image Processing Theory, Tools and Applications (IPTA), Paris, France, 09–12 November 2020; pp. 1–6. [Google Scholar]
- Lin, S.-Y.; Li, H.-Y. Integrated Circuit Board Object Detection and Image Augmentation Fusion Model Based on YOLO. Front. Neurorobot. 2021, 15, 762702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhou, F. Self-Supervised Image Denoising for Real-World Images with Context-Aware Transformer. IEEE Access 2023, 11, 14340–14349. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, F.; Jiang, Y.; Fu, Z. MM-BSN: Self-Supervised Image Denoising for Real-World with Multi-Mask Based on Blind-Spot Network 2023. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023. [Google Scholar]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Kim, K.; Lee, H.S. Probabilistic Anchor Assignment with IoU Prediction for Object Detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part XXV 16; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Ren, J.; Wang, Z.; Zhang, Y.; Liao, L. YOLOv5-R: Lightweight Real-Time Detection Based on Improved YOLOv5. J. Electron. Imaging 2022, 31, 033033. [Google Scholar] [CrossRef]
- Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction Head for Object Detection on Drone-Captured Scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021. [Google Scholar]
- Panigrahi, S.; Raju, U.S.N. InceptionDepth-wiseYOLOv2: Improved Implementation of YOLO Framework for Pedestrian Detection. Int. J. Multimed. Inf. Retr. 2022, 11, 409–430. [Google Scholar] [CrossRef]
- Xue, Y.; Ju, Z.; Li, Y.; Zhang, W. MAF-YOLO: Multi-Modal Attention Fusion Based YOLO for Pedestrian Detection. Infrared Phys. Technol. 2021, 118, 103906. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C. Continual Learning on Deployment Pipelines for Machine Learning Systems. arXiv 2022, arXiv:2212.02659. [Google Scholar]
- Huang, Y.; Yang, X.; Guo, J.; Cheng, J.; Qu, H.; Ma, J.; Li, L. A High-Precision Method for 100-Day-Old Classification of Chickens in Edge Computing Scenarios Based on Federated Computing. Animals 2022, 12, 3450. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, W.; Wu, M.; Li, C.; Wang, X. Meta-YOLO: Meta-Learning for Few-Shot Traffic Sign Detection via Decoupling Dependencies. Appl. Sci. 2022, 12, 5543. [Google Scholar] [CrossRef]
- Gauthier-Clerc, M.; Tamisier, A.; Cezilly, F. Sleep-Vigilance Trade-off in Gadwall during the Winter Period. Condor 2000, 102, 307–313. [Google Scholar] [CrossRef]
- Rivers, J.W.; Sandercock, B.K. Predation by gray catbird on brown thrasher eggs. SWNA 2004, 49, 101–103. [Google Scholar] [CrossRef]
- Li, G.; Hui, X.; Chen, Z.; Chesser, G.D.; Zhao, Y. Development and Evaluation of a Method to Detect Broilers Continuously Walking around Feeder as an Indication of Restricted Feeding Behaviors. Comput. Electron. Agric. 2021, 181, 105982. [Google Scholar] [CrossRef]
- Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and Applications of Convolutional Neural Network-Based Computer Vision Systems in Animal Farming: A Review. Sensors 2021, 21, 1492. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.; Kim, S. ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image. Remote Sens. 2021, 13, 4851. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.; Zhang, C.; Wang, L.; Xu, J.; Liu, L. Rare Bird Recognition Method in Beijing Based on TC-YOLO Model. Biodivers. Sci. 2024, 32, 24056. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Q.; Zhang, N. Dual Fusion Paired Environmental Background and Face Region for Face Anti-Spoofing. In Proceedings of the 2021 5th Asian Conference on Artificial Intelligence Technology (ACAIT), Haikou, China, 29–31 October 2021; pp. 142–149. [Google Scholar]
- Zhou, F.; Fu, Z.; Zhang, D. High Dynamic Range Imaging with Context-Aware Transformer. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; pp. 1–8. [Google Scholar]
- Ju, Y.; Shi, B.; Jian, M.; Qi, L.; Dong, J.; Lam, K.-M. NormAttention-PSN: A High-Frequency Region Enhanced Photometric Stereo Network with Normalized Attention. Int. J. Comput. Vis. 2022, 130, 3014–3034. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation. In Proceedings of the The World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2000–2010. [Google Scholar]
- Dou, J.X.; Jia, M.; Zaslavsky, N.; Ebeid, M.; Bao, R.; Zhang, S.; Ni, K.; Liang, P.P.; Mao, H.; Mao, Z.H. Learning more effective cell representations efficiently. In Proceedings of the NeurIPS 2022 Workshop on Learning Meaningful Representations of Life, Virtual, 9 December 2022. [Google Scholar]
- Dou, J.X.; Mao, H.; Bao, R.; Liang, P.P.; Tan, X.; Zhang, S.; Jia, M.; Zhou, P.; Mao, Z.H. The Measurement of Knowledge in Knowledge Graphs. In Proceedings of the AAAI 2023 Workshop on Representation Learning for Responsible Human-Centric AI (R2HCAI); Association for the Advancement of Artificial Intelligence (AAAI): Washington, DC, USA, 2023. [Google Scholar]
- Munster, V.J.; Baas, C.; Lexmond, P.; Waldenström, J.; Wallensten, A.; Fransson, T.; Rimmelzwaan, G.F.; Beyer, W.E.P.; Schutten, M.; Olsen, B.; et al. Spatial, Temporal, and Species Variation in Prevalence of Influenza A Viruses in Wild Migratory Birds. PLoS Pathog. 2007, 3, e61. [Google Scholar] [CrossRef]
- Filaire, F.; Bertran, K.; Gaide, N.; Valle, R.; Secula, A.; Perlas, A.; Foret-Lucas, C.; Nofrarías, M.; Cantero, G.; Croville, G.; et al. Viral Shedding and Environmental Dispersion of Two Clade 2.3.4.4b H5 High Pathogenicity Avian Influenza Viruses in Experimentally Infected Mule Ducks: Implications for Environmental Sampling. Vet. Res. 2024, 55, 100. [Google Scholar] [CrossRef]
- Bahl, J.; Pham, T.T.; Hill, N.J.; Hussein, I.T.M.; Ma, E.J.; Easterday, B.C.; Halpin, R.A.; Stockwell, T.B.; Wentworth, D.E.; Kayali, G.; et al. Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential. PLoS Pathog. 2016, 12, e1005620. [Google Scholar] [CrossRef]
- Levey, D.J.; Tewksbury, J.J.; Cipollini, M.L.; Carlo, T.A. A Field Test of the Directed Deterrence Hypothesis in Two Species of Wild Chili. Oecologia 2006, 150, 61–68. [Google Scholar] [CrossRef]
- Cook, A.; Rushton, S.; Allan, J.; Baxter, A. An Evaluation of Techniques to Control Problem Bird Species on Landfill Sites. Environ. Manag. 2008, 41, 834–843. [Google Scholar] [CrossRef]
- Wen, F.; Qin, M.; Gratz, P.; Reddy, N. OpenMem: Hardware/Software Cooperative Management for Mobile Memory System. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 109–114. [Google Scholar]
Model | Size | Parameters (M) | FLOPs (G) |
---|---|---|---|
YOLOX-s | 640 | 9.0 | 26.8 |
YOLOX-m | 640 | 25.3 | 73.8 |
YOLOX-l | 640 | 54.2 | 155.6 |
YOLOX-x | 640 | 99.1 | 281.9 |
YOLOX-Darknet53 | 640 | 63.7 | 185.3 |
YOLOX-Nano | 416 | 0.91 | 1.08 |
YOLOX-Tiny | 416 | 5.06 | 6.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Bist, R.B.; Subedi, S.; Wu, Z.; Liu, T.; Paneru, B.; Chai, L. A Machine Vision System for Monitoring Wild Birds on Poultry Farms to Prevent Avian Influenza. AgriEngineering 2024, 6, 3704-3718. https://doi.org/10.3390/agriengineering6040211
Yang X, Bist RB, Subedi S, Wu Z, Liu T, Paneru B, Chai L. A Machine Vision System for Monitoring Wild Birds on Poultry Farms to Prevent Avian Influenza. AgriEngineering. 2024; 6(4):3704-3718. https://doi.org/10.3390/agriengineering6040211
Chicago/Turabian StyleYang, Xiao, Ramesh Bahadur Bist, Sachin Subedi, Zihao Wu, Tianming Liu, Bidur Paneru, and Lilong Chai. 2024. "A Machine Vision System for Monitoring Wild Birds on Poultry Farms to Prevent Avian Influenza" AgriEngineering 6, no. 4: 3704-3718. https://doi.org/10.3390/agriengineering6040211
APA StyleYang, X., Bist, R. B., Subedi, S., Wu, Z., Liu, T., Paneru, B., & Chai, L. (2024). A Machine Vision System for Monitoring Wild Birds on Poultry Farms to Prevent Avian Influenza. AgriEngineering, 6(4), 3704-3718. https://doi.org/10.3390/agriengineering6040211