Nitrogen fertilization is decisive for maize productivity, fertilizer use efficiency, and sustainability, which calls for fast and nondestructive nutritional diagnosis. This study evaluated the classification of maize plant nutritional status from red, green, and blue (RGB) leaf images using texture attributes. A greenhouse
[...] Read more.
Nitrogen fertilization is decisive for maize productivity, fertilizer use efficiency, and sustainability, which calls for fast and nondestructive nutritional diagnosis. This study evaluated the classification of maize plant nutritional status from red, green, and blue (RGB) leaf images using texture attributes. A greenhouse experiment was conducted under a completely randomized factorial design with four nitrogen doses, one maize hybrid Pioneer 30F35, and four replicates, at two sampling times corresponding to distinct phenological stages, totaling thirty-two experimental units. Images were processed with the gray-level cooccurrence matrix computed at three distances 1, 3, and 5 pixels and four orientations 0°, 45°, 90°, and 135°, yielding eight texture descriptors that served as inputs to five supervised classifiers: an artificial neural network, a support vector machine, k nearest neighbors, a decision tree, and Naive Bayes. The results indicated that texture descriptors discriminated nitrogen doses with good performance and moderate computational cost, and that homogeneity, dissimilarity, and contrast were the most informative attributes. The artificial neural network showed the most stable performance at both stages, followed by the support vector machine and k nearest neighbors, whereas the decision tree and Naive Bayes were less suitable. Confusion matrices and receiver operating characteristic curves indicated greater separability for omission and excess classes, with D1 standing out, and the patterns were consistent with the chemical analysis. Future work should include field validation, multiple seasons and genotypes, integration with spectral indices and multisensor data, application of model explainability techniques, and assessment of latency and scalability in operational scenarios.
Full article