Open AccessArticle
Impact of Drying Conditions on Soybean Quality: Mathematical Model Evaluation
by
Emmanuel Baidhe, Clairmont L. Clementson, Ibukunoluwa Ajayi-Banji, Wilber Akatuhurira, Ewumbua Monono and Kenneth Hellevang
AgriEngineering 2025, 7(9), 273; https://doi.org/10.3390/agriengineering7090273 (registering DOI) - 25 Aug 2025
Abstract
Soybean (
Glycine max L.) is one of the world’s most important sources of plant-based protein, with a protein content exceeding 35–40% (dry basis), along with other essential nutritional benefits. Ideally, soybeans are field-dried to approximately 13% moisture content (wet basis, wb); however,
[...] Read more.
Soybean (
Glycine max L.) is one of the world’s most important sources of plant-based protein, with a protein content exceeding 35–40% (dry basis), along with other essential nutritional benefits. Ideally, soybeans are field-dried to approximately 13% moisture content (wet basis, wb); however, adverse weather conditions can necessitate harvesting at elevated moisture levels sometimes exceeding 20% (wb). In such cases, mechanized drying systems, particularly in northern U.S. regions, become essential for safe storage and quality preservation. This study investigated the effects of drying temperature, airflow rate, and initial moisture content on drying kinetics and kernel integrity using mathematical modeling. Drying behavior was modeled using fractional calculus and compared to the empirical Page model, while kernel cracking and breakage were analyzed using logistic regression. Both fractional and Page models exhibited strong agreement with experimental data (R
2 = 0.903–0.993). The fractional model achieved superior predictive accuracy, improving RMSE and MAE by 83.7% and 81.2%, respectively, compared to the Page model. Cracking and breakage were more strongly influenced by drying temperature than by initial moisture content, with the greatest quality degradation occurring at high temperatures. Optimal drying conditions were identified as temperatures below 27 °C and initial moisture contents between 19 and 20% (wb), which best preserved kernel quality. Logistic models more accurately predicted breakage than cracking, confirming their effectiveness in assessing mechanical damage during drying. The results affirm the suitability of fractional order models for accurately capturing drying kinetics, while logistic models offer robust performance for evaluating physical quality degradation. These modeling approaches provide a framework for efficient and quality-preserving soybean drying strategies in regions reliant on off-field drying systems.
Full article
►▼
Show Figures