Oxidative Desulfurization of Tire Pyrolysis Oil over Molybdenum Heteropolyacid Loaded Mesoporous Catalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ti-Al2O3 Supports and HPMo Supported Catalysts
2.2. Synthesis of Ti-TUD-1 Supports and HPMo Supported Catalysts
2.3. Supports and Catalysts Characterization
2.4. Catalytic Oxidative Desulfurization
2.5. Process Parameter Optimization
3. Results and Discussion
3.1. Catalyst Characterization
3.2. Catalyst Screening for Oxidative Desulfurization
3.3. Optimization of ODS Parameters
3.4. Kinetics of the ODS of Tire Pyrolysis Oil
3.5. Catalyst Reusability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bockstal, L.; Berchem, T.; Schmetz, Q.; Richel, A. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review. J. Clean. Prod. 2019, 236, 117574. [Google Scholar] [CrossRef]
- Schnecko, H. Rubber recycling. Macromol. Symp. 1998, 135, 327–343. [Google Scholar] [CrossRef]
- Bazyari, A.; Khodadadi, A.A.; Mamaghani, A.H.; Beheshtian, J.; Thompson, L.T.; Mortazavi, Y. Microporous titania–silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization. Appl. Catal. B Environ. 2016, 180, 65–77. [Google Scholar] [CrossRef]
- Quek, A.; Balasubramanian, R. Liquefaction of waste tires by pyrolysis for oil and chemicals—A review. J. Anal. Appl. Pyrolysis 2013, 101, 1–16. [Google Scholar] [CrossRef]
- Ahmad, S.; Ahmad, M.I.; Naeem, K.; Humayun, M.; Sebt-E-Zaeem, S.; Faheem, F. Oxidative desulfurization of tire pyrolysis oil. Chem. Ind. Chem. Eng. Q. 2016, 22, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Bunthid, D.; Prasassarakich, P.; Hinchiranan, N. Oxidative desulfurization of tire pyrolysis naphtha in formic acid/H2O2/pyrolysis char system. Fuel 2010, 89, 2617–2622. [Google Scholar] [CrossRef]
- Li, W.; Huang, C.; Li, D.; Huo, P.; Wang, M.; Han, L.; Chen, G.; Li, H.; Li, X.; Wang, Y.; et al. Derived oil production by catalytic pyrolysis of scrap tires. Chin. J. Catal. 2016, 37, 526–532. [Google Scholar] [CrossRef]
- Dick, D.T.; Agboola, O.; Ayeni, A.O. Pyrolysis of waste tyre for high-quality fuel products: A review. AIMS Energy 2020, 8, 869–895. [Google Scholar] [CrossRef]
- Yaqoob, H.; Teoh, Y.; Sher, F.; Jamil, M.; Murtaza, D.; Al Qubeissi, M.; Hassan, M.U.; Mujtaba, M. Current Status and Potential of Tire Pyrolysis Oil Production as an Alternative Fuel in Developing Countries. Sustainability 2021, 13, 3214. [Google Scholar] [CrossRef]
- Hossain, M.N.; Park, H.C.; Choi, H.S. A Comprehensive Review on Catalytic Oxidative Desulfurization of Liquid Fuel Oil. Catalysts 2019, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Estephane, G.; Lancelot, C.; Blanchard, P.; Toufaily, J.; Hamiye, T.; Lamonier, C. Sulfur compounds reactivity in the ODS of model and real feeds on W–SBA based catalysts. RSC Adv. 2018, 8, 13714–13721. [Google Scholar] [CrossRef] [Green Version]
- Doustkhah, E.; Mohtasham, H.; Hasani, M.; Ide, Y.; Rostamnia, S.; Tsunoji, N.; Assadi, M.H.N. Merging periodic mesoporous organosilica (PMO) with mesoporous aluminosilica (Al/Si-PMO): A catalyst for green oxidation. Mol. Catal. 2020, 482, 110676. [Google Scholar] [CrossRef]
- Fan, J.; Chen, A.; Saxena, S.; Vedachalam, S.; Dalai, A.K.; Zhang, W.; Emwas, A.H.; Roberts, W.L. Ultrasound-assisted oxidative desulfurization of Arabian extra light oil (AXL) with molecular characterization of the sulfur compounds. Fuel 2021, 305, 121612. [Google Scholar] [CrossRef]
- Jiang, W.; Zhu, W.; Li, H.; Chao, Y.; Xun, S.; Chang, Y.; Liu, H.; Zhao, Z. Mechanism and optimization for oxidative desulfurization of fuels catalyzed by Fenton-like catalysts in hydrophobic ionic liquid. J. Mol. Catal. A Chem. 2014, 382, 8–14. [Google Scholar] [CrossRef]
- Zheng, D.; Zhu, W.; Xun, S.; Zhou, M.; Zhang, M.; Jiang, W.; Qin, Y.; Li, H. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids. Fuel 2015, 159, 446–453. [Google Scholar] [CrossRef]
- Afzalinia, A.; Mirzaie, A.; Nikseresht, A.; Musabeygi, T. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(II)-based MOF as catalyst. Ultrason. Sonochem. 2017, 34, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-S.; Yang, G.-Y. Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Lin, S.; Cheng, Y.; Liu, S.; Xiong, J.-R. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide. Ultrason. Sonochem. 2013, 20, 1168–1175. [Google Scholar] [CrossRef]
- Mohammed, D.M.; Isah, A.G.; Musa, U.; Shehu, A.; Abdullahi, Y.N. Comparative study on sulphur reduction from heavy petroleum—Solvent extraction and microwave irradiation approach. Int. J. Energy Environ. 2012, 3, 949–960. [Google Scholar]
- Dogan, O.; Çelik, M.B.; Ozdalyan, B. The effect of tire derived fuel/diesel fuel blends utilization on diesel engine performance and emissions. Fuel 2012, 95, 340–346. [Google Scholar] [CrossRef]
- Al-Lal, A.-M.; Bolonio, D.; Llamas, A.; Lapuerta, M.; Canoira, L. Desulfurization of pyrolysis fuels obtained from waste: Lube oils, tires and plastics. Fuel 2015, 150, 208–216. [Google Scholar] [CrossRef]
- Polikarpova, P.; Akopyan, A.; Shigapova, A.; Glotov, A.; Anisimov, A.; Karakhanov, E. Oxidative Desulfurization of Fuels Using Heterogeneous Catalysts Based on MCM-41. Energy Fuels 2018, 32, 10898–10903. [Google Scholar] [CrossRef]
- Sikarwar, P.; Kumar, U.A.; Gosu, V.; Subbaramaiah, V. Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash. J. Environ. Chem. Eng. 2018, 6, 1736–1744. [Google Scholar] [CrossRef]
- Akopyan, A.; Polikarpova, P.; Gul, O.; Anisimov, A.; Karakhanov, E. Catalysts Based on Acidic SBA-15 for Deep Oxidative Desulfurization of Model Fuels. Energy Fuels 2020, 34, 14611–14619. [Google Scholar] [CrossRef]
- Jin, W.; Tian, Y.; Wang, G.; Zeng, D.; Xu, Q.; Cui, J. Ultra-deep oxidative desulfurization of fuel with H2O2catalyzed by molybdenum oxide supported on alumina modified by Ca2+. RSC Adv. 2017, 7, 48208–48213. [Google Scholar] [CrossRef] [Green Version]
- Čejka, J. Organized mesoporous alumina: Synthesis, structure and potential in catalysis. Appl. Catal. A Gen. 2003, 254, 327–338. [Google Scholar] [CrossRef]
- Telalović, S.; Ramanathan, A.; Mul, G.; Hanefeld, U. TUD-1: Synthesis and application of a versatile catalyst, carrier, material…. J. Mater. Chem. 2010, 20, 642–658. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Wang, Y.J.; Xu, J.H.; Luo, G.S. Oxidative desulfurization of DBT with H2O2catalysed by TiO2/porous glass. Green Chem. 2016, 18, 771–781. [Google Scholar] [CrossRef]
- Fraile, J.M.; Gil, C.; Mayoral, J.A.; Muel, B.; Roldán, L.; Vispe, E.; Calderón, S.; Puente, F. Heterogeneous titanium catalysts for oxidation of dibenzothiophene in hydrocarbon solutions with hydrogen peroxide: On the road to oxidative desulfurization. Appl. Catal. B Environ. 2016, 180, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Zhang, G.; Zhao, H. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil. Catal. Today 2010, 149, 117–121. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Li, S.; Jin, Q.; Zhao, J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J. Ind. Eng. Chem. 2020, 82, 1–16. [Google Scholar] [CrossRef]
- Lesaint, C.; Glomm, W.R.; Borg, Ø.; Eri, S.; Rytter, E.; Øye, G. Synthesis and characterization of mesoporous alumina with large pore size and their performance in Fischer–Tropsch synthesis. Appl. Catal. A Gen. 2008, 351, 131–135. [Google Scholar] [CrossRef]
- Shan, Z.; Gianotti, E.; Jansen, J.C.; Peters, J.A.; Marchese, L.; Maschmeyer, T. One-step synthesis of a highly active, mesoporous, titanium-containing silica by using bifunctional templating. Chem.—A Eur. J. 2001, 7, 1437–1443. [Google Scholar] [CrossRef]
- Badoga, S.; Sharma, R.V.; Dalai, A.K.; Adjaye, J. Hydrotreating of Heavy Gas Oil on Mesoporous Mixed Metal Oxides (M–Al2O3, M = TiO2, ZrO2, SnO2) Supported NiMo Catalysts: Influence of Surface Acidity. Ind. Eng. Chem. Res. 2014, 53, 18729–18739. [Google Scholar] [CrossRef]
- Marosi, L.; Platero, E.E.; Cifre, J.; Areán, C.O. Thermal dehydration of H3 + xPVxM12 − xO40·yH2O Keggin type heteropolyacids; formation, thermal stability and structure of the anhydrous acids H3PM12O40, of the corresponding anhydrides PM12O38.5 and of a novel trihydrate H3PW12O40·3H2O. J. Mater. Chem. 2000, 10, 1949–1955. [Google Scholar] [CrossRef]
- Van Veen, J.A.R.; Hendriks, P.A.J.M.; Andrea, R.R.; Romers, E.J.G.M.; Wilson, A.E. Chemistry of phosphomolybdate adsorption on alumina surfaces. 2. The molybdate/phosphated alumina and phosphomolybdate/alumina systems. J. Phys. Chem. 1990, 94, 5282–5285. [Google Scholar] [CrossRef]
- Vedachalam, S.; Boahene, P.E.; Dalai, A.K. Oxidative Desulfurization of Heavy Gas Oil over a Ti–TUD-1-Supported Keggin-Type Molybdenum Heteropolyacid. Energy Fuels 2020, 34, 15299–15312. [Google Scholar] [CrossRef]
- Saha, B.; Vedachalam, S.; Dalai, A.K. Review on recent advances in adsorptive desulfurization. Fuel Process. Technol. 2021, 214, 106685. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, M.; Jones, I.; Zhang, Z.; Zhang, D. Desulfurization of Spent Tire Pyrolysis Oil and Its Distillate via Combined Catalytic Oxidation using H2O2 with Formic Acid and Selective Adsorption over Al2O3. Energy Fuels 2020, 34, 6209–6219. [Google Scholar] [CrossRef]
- Hossain, M.N.; Choi, M.K.; Park, H.C.; Choi, H.S. Purifying of Waste Tire Pyrolysis Oil Using an S-ZrO2/SBA-15-H2O2 Catalytic Oxidation Method. Catalysts 2020, 10, 368. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, A.; Kamble, P.D.; Basu, J.K.; Sengupta, S. Kinetic Study and Optimization of Oxidative Desulfurization of Benzothiophene Using Mesoporous Titanium Silicate-1 Catalyst. Ind. Eng. Chem. Res. 2012, 51, 147–157. [Google Scholar] [CrossRef]
- Kong, L.; Li, G.; Wang, X. Kinetics and Mechanism of Liquid-Phase Oxidation of Thiophene over TS-1 Using H2O2Under Mild Conditions. Catal. Lett. 2004, 92, 163–167. [Google Scholar] [CrossRef]
- Chamack, M.; Mahjoub, A.; Aghayan, H. Cesium salts of tungsten-substituted molybdophosphoric acid immobilized onto platelet mesoporous silica: Efficient catalysts for oxidative desulfurization of dibenzothiophene. Chem. Eng. J. 2014, 255, 686–694. [Google Scholar] [CrossRef]
- Houda, S.; Lancelot, C.; Blanchard, P.; Poinel, L.; Lamonier, C. Oxidative Desulfurization of Heavy Oils with High Sulfur Content: A Review. Catalysts 2018, 8, 344. [Google Scholar] [CrossRef] [Green Version]
Source of Sulfur | Catalyst and Oxidant | Reaction Conditions | Sulfur Removal (%) | References |
---|---|---|---|---|
Gasoline | ChFeCl4 and H2O2 | T = 30 °C, t = 30 min | 97 | [14] |
Diesel/DBT | TiO2 and H2O2 | T = 40 °C, t = 90 min | 99 | [15] |
DBT | Mesoporous TS-1 and TBHP | T = 80 °C, t = 180 min | 96 | [16] |
Model oil (BT, T, DBT) | Copper phthalocyanine molecular sieve/HZSM-5 and O2 | T = 60 °C, t = 180 min | T = 93, BT = 91, DBT = 87 | [17] |
Gas oil | HCOOH and H2O2 | T = 50 °C, t = 46 min | 96 | [18] |
Crude oil | CH3COOH and H2O2 | T = 90 °C, t = 15 min | 77 | [19] |
Run | O/S (Molar Ratio) | Temperature (°C) | Amount of Catalyst in Oil (wt%) |
---|---|---|---|
1 | 3.0 | 35.0 | 13.0 |
2 | 6.5 | 52.5 | 9.0 |
3 | 6.5 | 52.5 | 15.7 |
4 | 3.0 | 35.0 | 5.0 |
5 | 10.0 | 35.0 | 13.0 |
6 | 6.5 | 81.9 | 9.0 |
7 | 10.0 | 70.0 | 13.0 |
8 | 0.6 | 52.5 | 9.0 |
9 | 6.5 | 52.5 | 2.3 |
10 | 6.5 | 52.5 | 9.0 |
11 | 12.4 | 52.5 | 9.0 |
12 | 6.5 | 23.1 | 9.0 |
13 | 6.5 | 52.5 | 9.0 |
14 | 6.5 | 52.5 | 9.0 |
15 | 6.5 | 52.5 | 9.0 |
16 | 10.0 | 35.0 | 5.0 |
17 | 10.0 | 70.0 | 5.0 |
18 | 3.0 | 70.0 | 5.0 |
19 | 3.0 | 70.0 | 13.0 |
20 | 6.5 | 52.5 | 9.0 |
Sample ID | BET Surface Area (m2/g) | Pore Volume (cm3/g) | BJH Pore Diameter (nm) | Total Acid Sites (mmol/g) |
---|---|---|---|---|
Ti-Al2O3 (Ti/Al = 0) | 361 | 1.4 | 10.1 | - |
Ti-Al2O3 (Ti/Al = 0.0125) | 387 | 1.9 | 14.0 | - |
Ti-Al2O3 (Ti/Al = 0.025) | 374 | 1.8 | 14.4 | - |
Ti-Al2O3 (Ti/Al = 0.05) | 388 | 1.7 | 12.9 | - |
HPMo/Ti-Al2O3 (Ti/Al = 0) | 279 | 0.9 | 9.4 | 0.317 |
HPMo/Ti-Al2O3 (Ti/Al = 0.0125) | 310 | 1.3 | 13.4 | 0.361 |
HPMo/Ti-Al2O3 (Ti/Al = 0.025) | 280 | 1.3 | 14.1 | 0.393 |
HPMo/Ti-Al2O3 (Ti/Al = 0.05) | 271 | 1.2 | 12.2 | 0.407 |
Ti-TUD-1 (Ti/Si = 0) | 356 | 1.8 | 25.1 | - |
Ti-TUD-1 (Ti/Si = 0.0125) | 352 | 1.9 | 21.7 | - |
Ti-TUD-1 (Ti/Si = 0.025) | 432 | 1.5 | 14.0 | - |
Ti-TUD-1 (Ti/Si = 0.05) | 608 | 1.3 | 7.8 | - |
HPMo/Ti-TUD-1 (Ti/Si = 0) | 234 | 1.5 | 26.9 | 0.309 |
HPMo/Ti-TUD-1 (Ti/Si = 0.0125) | 254 | 1.7 | 22.1 | 0.334 |
HPMo/Ti-TUD-1 (Ti/Si = 0.025) | 358 | 1.3 | 12.7 | 0.438 |
HPMo/Ti-TUD-1 (Ti/Si = 0.05) | 406 | 0.9 | 7.4 | 0.442 |
Sulfur Content of Tire Pyrolysis Oil (wt%) | Catalyst System | Desulfurization (wt%) | Reference |
---|---|---|---|
1 | H2O2-acetic acid | 50 | [5] |
1.4 | H2O2-formic acid | 40 | [39] |
0.87 | H2O2-formic acid | 53 | [21] |
1.2 | S-ZrO2/SBA-15 -hydrogen peroxide | 59 | [40] |
0.7 | H2O2 and HPMO/Ti-TUD-1 catalyst | 45.2 | Current work |
Source | Sum of Squares | df | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Model | 638.34 | 9 | 70.93 | 9.12 | 0.0009 |
A—O/S | 422.28 | 1 | 422.28 | 54.33 | <0.0001 |
B—Temp | 18.31 | 1 | 18.31 | 2.36 | 0.1558 |
C—Cat/Oil | 47.55 | 1 | 47.55 | 6.12 | 0.0329 |
AB | 12.30 | 1 | 12.30 | 1.58 | 0.2370 |
AC | 27.16 | 1 | 27.16 | 3.49 | 0.0911 |
BC | 9.68 | 1 | 9.68 | 1.25 | 0.2905 |
A2 | 94.15 | 1 | 94.15 | 12.11 | 0.0059 |
B2 | 0.04 | 1 | 0.04 | 0.01 | 0.9417 |
C2 | 10.15 | 1 | 10.15 | 1.31 | 0.2797 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, J.; Vedachalam, S.; Boahene, P.; Dalai, A.K. Oxidative Desulfurization of Tire Pyrolysis Oil over Molybdenum Heteropolyacid Loaded Mesoporous Catalysts. Reactions 2021, 2, 457-472. https://doi.org/10.3390/reactions2040029
Kaur J, Vedachalam S, Boahene P, Dalai AK. Oxidative Desulfurization of Tire Pyrolysis Oil over Molybdenum Heteropolyacid Loaded Mesoporous Catalysts. Reactions. 2021; 2(4):457-472. https://doi.org/10.3390/reactions2040029
Chicago/Turabian StyleKaur, Jasmine, Sundaramurthy Vedachalam, Philip Boahene, and Ajay K. Dalai. 2021. "Oxidative Desulfurization of Tire Pyrolysis Oil over Molybdenum Heteropolyacid Loaded Mesoporous Catalysts" Reactions 2, no. 4: 457-472. https://doi.org/10.3390/reactions2040029
APA StyleKaur, J., Vedachalam, S., Boahene, P., & Dalai, A. K. (2021). Oxidative Desulfurization of Tire Pyrolysis Oil over Molybdenum Heteropolyacid Loaded Mesoporous Catalysts. Reactions, 2(4), 457-472. https://doi.org/10.3390/reactions2040029