Previous Issue
Volume 5, June
 
 

Oceans, Volume 5, Issue 3 (September 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 13253 KiB  
Article
Cetacean Strandings along the Bulgarian Coast of the Black Sea in 2010–2022
by Dimitar Popov and Galina Meshkova
Oceans 2024, 5(3), 429-441; https://doi.org/10.3390/oceans5030025 - 26 Jun 2024
Viewed by 259
Abstract
Cetacean strandings are valuable sources of data about their life history, health status, population trends, and impact of threats. We examined the strandings along the Bulgarian coast of the Black Sea for a period of 13 years from 2010 to 2022. A total [...] Read more.
Cetacean strandings are valuable sources of data about their life history, health status, population trends, and impact of threats. We examined the strandings along the Bulgarian coast of the Black Sea for a period of 13 years from 2010 to 2022. A total of 1528 cetacean strandings of all three species inhabiting the basin were recorded: 1031 harbour porpoises Phocoena phocoena, 199 bottlenose dolphins Tursiops truncatus, 97 common dolphins Delphinus delphis, 19 delphinids and 182 unidentified. The highest numbers were observed in 2016 and 2022. Monthly peaks for harbour porpoise and bottlenose dolphin were in July and August and for common dolphin in May. An unusually high mortality of porpoise neonates was recorded in 2015 and 2016. The overall sex ratio showed a slightly higher share of males at 120:100. This bias was the most pronounced for males of common dolphins. Spatial distribution varied interspecifically but was predominantly along the southern coast. Bycatch signs were detected in 80 animals including during the turbot fishing ban period, suggesting the existence of illegal fishing operations. All of this highlights the need for better reinforcement and control to ensure both the conservation of endangered cetaceans and the sustainability of fisheries. Improvement in data collection is needed to improve the quality of information. Full article
Show Figures

Figure 1

31 pages, 1520 KiB  
Systematic Review
The Abundance of Microplastics in the World’s Oceans: A Systematic Review
by Judith Mutuku, Maria Yanotti, Mark Tocock and Darla Hatton MacDonald
Oceans 2024, 5(3), 398-428; https://doi.org/10.3390/oceans5030024 - 21 Jun 2024
Viewed by 248
Abstract
Microplastics are ubiquitous in marine environments and have been documented across all ocean compartments, especially surface waters, across the world. Even though several studies identify the presence of microplastics in the world’s five oceans, there remains an overt problem of large inconsistencies in [...] Read more.
Microplastics are ubiquitous in marine environments and have been documented across all ocean compartments, especially surface waters, across the world. Even though several studies identify the presence of microplastics in the world’s five oceans, there remains an overt problem of large inconsistencies in their sampling, extraction, and consequent quantification. Despite the complexity of these methodologies, researchers have tried to explore microplastic abundance in ocean surface waters. Using a systematic review approach, a dataset was derived from 73 primary studies undertaken since the year 2010 following the Oslo and Paris Conventions (OSPAR) guidelines to monitor and harmonise marine debris. The results showed differences in the abundance and distribution of microplastics in surface waters across oceans. The overall concentration of microplastics in all five oceans ranged between 0.002 and 62.50 items/m3, with a mean abundance of 2.76 items/m3. The highest mean concentration of microplastics was found in the Atlantic (4.98 items/m3), while the least was observed in the Southern Ocean (0.04 items/m3). While challenging, this paper recommends harmonisation of the sampling, separation, and identification methods across the globe to aid in the design of the appropriate mitigation strategies for reducing marine plastic pollution. Full article
(This article belongs to the Special Issue Floating Microplastics in the World’s Oceans)
Previous Issue
Back to TopTop