An Ethical Framework for Artificial Intelligence and Sustainable Cities
Abstract
1. Introduction
2. Methods
2.1. Analysis of Digitalization
2.2. Requirements of an Ethical Framework
2.3. Features of the Ethical Framework
2.4. Discovery of Ethical Principles
3. Framework
3.1. SDG-11 and Principles
3.2. Relational Framework
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Oursel, P. La Philosophie en Orient; Presses Universitaires de France: Paris, France, 1938; Volume 1. [Google Scholar]
- Kramer, S.N. History Begins at Sumer: Thirty-Nine Firsts in Recorded History; University of Pennsylvania Press: Philadelphia, PA, USA, 1981. [Google Scholar]
- Oppenheim, A.L. Ancient Mesopotamia: Portrait of a Dead Civilization; With Plates, A Reduced Photographic Reprint of the Edition of 1964; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Hackforth, R. Plato: Phaedrus; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
- Ameriks, K.; Clarke, D.M. Aristotle: Nicomachean Ethics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kant, I. Critique of Practical Reason; Hackett Publishing: Indianapolis, IN, USA, 2002. [Google Scholar]
- Freud, S. Más Allá del Principio del Placer; Ediciones AKAL: Madrid, Spain, 2020; Volume 357. [Google Scholar]
- Marx, K.; Engels, F. Tesis Sobre Feuerbach; El Cid Editor: Sunny Isles Beach, FL, USA, 2004. [Google Scholar]
- Nietsche, F. On truth and lying in an extra-moral sense. In Friedrich Nietzsche on Rhetoric and Language; Gilman, S.L., Blair, C., Parent, D.J., Eds.; Oxford University Press: Oxford, UK, 1989; pp. 247–257. [Google Scholar]
- Sartre, J.-P.; Camus, A.; Sprintzen, D.; Van den Hoven, A. Sartre and Camus: A Historic Confrontation; Humanities Press: London, UK, 2004. [Google Scholar]
- Muguerza, J. Ethics and Perplexity: Toward a Critique of Dialogical Reason; Rodopi: Düsseldorf, Germany, 2004. [Google Scholar]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Rahwan, I.; Cebrian, M.; Obradovich, N.; Bongard, J.; Bonnefon, J.-F.; Breazeal, C.; Crandall, J.W.; Christakis, N.A.; Couzin, I.D.; Jackson, M.O. Machine behaviour. Nature 2019, 568, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Barocas, S.; Selbst, A.D. Big data’s disparate impact. Calif. Law Rev. 2016, 104, 671. [Google Scholar] [CrossRef]
- Sachs, J.D. From millennium development goals to sustainable development goals. Lancet 2012, 379, 2206–2211. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305. [Google Scholar] [CrossRef]
- Pastor-Escuredo, D.; Morales-Guzmán, A.; Torres-Fernández, Y.; Bauer, J.-M.; Wadhwa, A.; Castro-Correa, C.; Romanoff, L.; Lee, J.G.; Rutherford, A.; Frias-Martinez, V. Flooding through the lens of mobile phone activity. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Jose, CA, USA, 10–13 October 2014; pp. 279–286. [Google Scholar]
- Zufiria, P.J.; Pastor-Escuredo, D.; Úbeda-Medina, L.; Hernandez-Medina, M.A.; Barriales-Valbuena, I.; Morales, A.J.; Jacques, D.C.; Nkwambi, W.; Diop, M.B.; Quinn, J. Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security. PLoS ONE 2018, 13, e0195714. [Google Scholar] [CrossRef]
- Khamis, A.; Li, H.; Prestes, E.; Haidegger, T. AI: A key enabler of sustainable development goals, part 1 [industry activities]. IEEE Robot. Autom. Mag. 2019, 26, 95–102. [Google Scholar] [CrossRef]
- Astobiza, A.M.; Toboso, M.; Aparicio, M.; López, D. AI ethics for sustainable development goals. IEEE Technol. Soc. Mag. 2021, 40, 66–71. [Google Scholar] [CrossRef]
- Kirkpatrick, R. Big data for development. Big Data 2013, 1, 3–4. [Google Scholar] [CrossRef]
- Apel, K.-O. Globalisation and the need for universal ethics. In Public Reason and Applied Ethics: The Ways of Practical Reason in a Pluralist Society; Ashgate: Aldershot, UK, 2008; pp. 135–154. [Google Scholar]
- Pastor-Escuredo, D.; Treleaven, P. Multiscale Governance. arXiv 2021, arXiv:2104.02752. [Google Scholar] [CrossRef]
- Escuredo, D.P.; Fernández-Aller, C.; Salgado, J.; Izquierdo, L.; Huerta, M.A. Ciudades y digitalización: Construyendo desde la ética. In Revista Diecisiete: Investigación Interdisciplinar Para los Objetivos de Desarrollo Sostenible; Fundación Dialnet: Logroño, Spain, 2021; pp. 201–210. [Google Scholar]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Barlacchi, G.; De Nadai, M.; Larcher, R.; Casella, A.; Chitic, C.; Torrisi, G.; Antonelli, F.; Vespignani, A.; Pentland, A.; Lepri, B. A multi-source dataset of urban life in the city of Milan and the Province of Trentino. Sci. Data 2015, 2, 150055. [Google Scholar] [CrossRef] [PubMed]
- Boy, J.; Pastor-Escuredo, D.; Macguire, D.; Jimenez, R.M.; Luengo-Oroz, M. Towards an understanding of refugee segregation, isolation, homophily and ultimately integration in Turkey using call detail records. In Guide to Mobile Data Analytics in Refugee Scenarios; Springer: Berlin/Heidelberg, Germany, 2019; pp. 141–164. [Google Scholar]
- Morales, A.J.; Dong, X.; Bar-Yam, Y.; Pentland, A.S. Segregation and polarization in urban areas. R. Soc. Open Sci. 2019, 6, 190573. [Google Scholar] [CrossRef]
- Castells, M. The Internet Galaxy: Reflections on the Internet, Business, and Society; Oxford University Press on Demand: Oxford, UK, 2002. [Google Scholar]
- Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Simon, H.A. The Sciences of the Artificial; MIT Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Stone, P.; Brooks, R.; Brynjolfsson, E.; Calo, R.; Etzioni, O.; Hager, G.; Hirschberg, J.; Kalyanakrishnan, S.; Kamar, E.; Kraus, S. Artificial Intelligence and Life in 2030: One Hundred Year Study on Artificial Intelligence: Report of the 2015–2016 Study Panel; Stanford University: Stanford, CA, USA, 2016; Available online: https://ai100.stanford.edu/2016-report (accessed on 11 July 2022).
- Schwab, K. The Fourth Industrial Revolution; Currency: Sydney, Australia, 2017. [Google Scholar]
- Holden, E.; Linnerud, K.; Banister, D.; Schwanitz, V.J.; Wierling, A. The Imperatives of Sustainable Development: Needs, Justice, Limits; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Theodorou, A.; Dignum, V. Towards ethical and socio-legal governance in AI. Nat. Mach. Intell. 2019, 2, 10–12. [Google Scholar] [CrossRef]
- Floridi, L. Translating principles into practices of digital ethics: Five risks of being unethical. Philos. Technol. 2019, 32, 185–193. [Google Scholar] [CrossRef]
- Floridi, L. Establishing the rules for building trustworthy AI. Nat. Mach. Intell. 2019, 1, 261–262. [Google Scholar] [CrossRef]
- Weber, I.; Imran, M.; Ofli, F.; Mrad, F.; Colville, J.; Fathallah, M.; Chaker, A.; Ahmed, W.S. Non-traditional data sources: Providing insights into sustainable development. Commun. ACM 2021, 64, 88–95. [Google Scholar] [CrossRef]
- Truby, J. Governing artificial intelligence to benefit the UN sustainable development goals. Sustain. Dev. 2020, 28, 946–959. [Google Scholar] [CrossRef]
- Sætra, H.S. AI in context and the sustainable development goals: Factoring in the unsustainability of the sociotechnical system. Sustainability 2021, 13, 1738. [Google Scholar] [CrossRef]
- Sætra, H.S. A Framework for Evaluating and Disclosing the ESG Related Impacts of AI with the SDGs. Sustainability 2021, 13, 8503. [Google Scholar] [CrossRef]
- Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.; Melero, F.J.; Molina, D.; Fernández, B. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Appl. Intell. 2021, 51, 6497–6527. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.-C.; Wu, A.-W.; Yu, H.-C.; Wu, H.C.; Kuo, Y.-P.; Chen, P.-X. Public perception of artificial intelligence and its connections to the sustainable development goals. Sustainability 2021, 13, 9165. [Google Scholar] [CrossRef]
- Cowls, J. ‘AI for Social Good’: Whose Good and Who’s Good? Introduction to the Special Issue on Artificial Intelligence for Social Good. Philos. Technol. 2021, 34, 1–5. [Google Scholar] [CrossRef]
- Visvizi, A. Artificial Intelligence (AI) and Sustainable Development Goals (SDGs): Exploring the Impact of AI on Politics and Society. Sustainability 2022, 14, 1730. [Google Scholar] [CrossRef]
- Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. A definition, benchmark and database of AI for social good initiatives. Nat. Mach. Intell. 2021, 3, 111–115. [Google Scholar] [CrossRef]
- Goh, H.-H.; Vinuesa, R. Regulating artificial-intelligence applications to achieve the sustainable development goals. Discov. Sustain. 2021, 2, 52. [Google Scholar] [CrossRef]
- UNGP. Discovery. Available online: https://www.unglobalpulse.org/discovery/ (accessed on 1 June 2017).
- UNICEF. Magic Box. Available online: https://www.unicef.org/innovation/Magicbox (accessed on 1 March 2019).
- Hilbert, M. Big data for development: A review of promises and challenges. Dev. Policy Rev. 2016, 34, 135–174. [Google Scholar]
- Varela, F.J.; Thompson, E.; Rosch, E. The Embodied Mind: Cognitive Science and Human Experience; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- UN Global Pulse. Mapping the Risk-Utility Landscape: Mobile Data for Sustainable Development and Humanitarian Action; Global Pulse Project Series No. 18; UN Global Pulse: New York, NY, USA, 2015. [Google Scholar]
- UN Global Pulse. Integrating Big Data into the Monitoring and Evaluation of Development Programmes; UN Global Pulse: New York, NY, USA, 2016. [Google Scholar]
- Malone, T.W. The Future of Work; Audio-Tech Business Book Summaries, Incorporated; Harvard Business School Press: Boston, MA, USA, 2004. [Google Scholar]
- Malone, T.W.; Laubacher, R.; Dellarocas, C. Harnessing Crowds: Mapping the Genome of Collective Intelligence; MIT Sloan School of Management: Cambridge, MA, USA, 2009. [Google Scholar]
- Malone, T.W.; Laubacher, R.; Dellarocas, C. The collective intelligence genome. MIT Sloan Manag. Rev. 2010, 51, 21. [Google Scholar] [CrossRef]
- Chile. Virtual Congress. Available online: https://congresovirtual.cl/page/about (accessed on 1 December 2020).
- European Commission. On Artificial Intelligence—A European Approach to Excellence and Trust. Available online: https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf (accessed on 1 February 2020).
- Luengo-Oroz, M. Solidarity should be a core ethical principle of AI. Nat. Mach. Intell. 2019, 1, 494. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, R.; Sirmacek, B. Interpretable deep-learning models to help achieve the Sustainable Development Goals. Nat. Mach. Intell. 2021, 3, 926. [Google Scholar] [CrossRef]
- Rutherford, A.; Lupu, Y.; Cebrian, M.; Rahwan, I.; LeVeck, B.L.; Garcia-Herranz, M. Inferring mechanisms for global constitutional progress. Nat. Hum. Behav. 2018, 2, 592. [Google Scholar] [CrossRef] [PubMed]
- Escuredo, D.P.; Giacomelli, G.; Martín, J.L.; Sopeña, J.G. Ethical and Sustainable Future of Work. Rev. Diecisiete 2021, 4, 183–192. [Google Scholar] [CrossRef]
- Pastor-Escuredo, D.; Frias-Martinez, E. Flow descriptors of human mobility networks. arXiv 2020, arXiv:2003.07279. [Google Scholar]
- European Commission. Urbanisation Worldwide. Available online: https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-urbanisation/urbanisation-worldwide_en (accessed on 1 March 2022).
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef]
- Malone, T.W. How human-computer’Superminds’ are redefining the future of work. MIT Sloan Manag. Rev. 2018, 59, 34–41. [Google Scholar]
- European Commission. EU Mission: Climate-Neutral and Smart Cities. Available online: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/climate-neutral-and-smart-cities_en (accessed on 1 March 2022).
- Gupta, S.; Langhans, S.D.; Domisch, S.; Fuso-Nerini, F.; Felländer, A.; Battaglini, M.; Tegmark, M.; Vinuesa, R. Assessing whether artificial intelligence is an enabler or an inhibitor of sustainability at indicator level. Transp. Eng. 2021, 4, 100064. [Google Scholar] [CrossRef]
- Güemes, A.; Discetti, S.; Ianiro, A.; Sirmacek, B.; Azizpour, H.; Vinuesa, R. From coarse wall measurements to turbulent velocity fields through deep learning. Phys. Fluids 2021, 33, 075121. [Google Scholar] [CrossRef]
- Sirmacek, B.; Vinuesa, R. Remote sensing and AI for building climate adaptation applications. Results Eng. 2022, 15, 100524. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor-Escuredo, D.; Treleaven, P.; Vinuesa, R. An Ethical Framework for Artificial Intelligence and Sustainable Cities. AI 2022, 3, 961-974. https://doi.org/10.3390/ai3040057
Pastor-Escuredo D, Treleaven P, Vinuesa R. An Ethical Framework for Artificial Intelligence and Sustainable Cities. AI. 2022; 3(4):961-974. https://doi.org/10.3390/ai3040057
Chicago/Turabian StylePastor-Escuredo, David, Philip Treleaven, and Ricardo Vinuesa. 2022. "An Ethical Framework for Artificial Intelligence and Sustainable Cities" AI 3, no. 4: 961-974. https://doi.org/10.3390/ai3040057
APA StylePastor-Escuredo, D., Treleaven, P., & Vinuesa, R. (2022). An Ethical Framework for Artificial Intelligence and Sustainable Cities. AI, 3(4), 961-974. https://doi.org/10.3390/ai3040057