An Ethical Framework for Artificial Intelligence and Sustainable Cities
Abstract
:1. Introduction
2. Methods
2.1. Analysis of Digitalization
2.2. Requirements of an Ethical Framework
2.3. Features of the Ethical Framework
2.4. Discovery of Ethical Principles
3. Framework
3.1. SDG-11 and Principles
3.2. Relational Framework
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Oursel, P. La Philosophie en Orient; Presses Universitaires de France: Paris, France, 1938; Volume 1. [Google Scholar]
- Kramer, S.N. History Begins at Sumer: Thirty-Nine Firsts in Recorded History; University of Pennsylvania Press: Philadelphia, PA, USA, 1981. [Google Scholar]
- Oppenheim, A.L. Ancient Mesopotamia: Portrait of a Dead Civilization; With Plates, A Reduced Photographic Reprint of the Edition of 1964; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Hackforth, R. Plato: Phaedrus; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
- Ameriks, K.; Clarke, D.M. Aristotle: Nicomachean Ethics; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Kant, I. Critique of Practical Reason; Hackett Publishing: Indianapolis, IN, USA, 2002. [Google Scholar]
- Freud, S. Más Allá del Principio del Placer; Ediciones AKAL: Madrid, Spain, 2020; Volume 357. [Google Scholar]
- Marx, K.; Engels, F. Tesis Sobre Feuerbach; El Cid Editor: Sunny Isles Beach, FL, USA, 2004. [Google Scholar]
- Nietsche, F. On truth and lying in an extra-moral sense. In Friedrich Nietzsche on Rhetoric and Language; Gilman, S.L., Blair, C., Parent, D.J., Eds.; Oxford University Press: Oxford, UK, 1989; pp. 247–257. [Google Scholar]
- Sartre, J.-P.; Camus, A.; Sprintzen, D.; Van den Hoven, A. Sartre and Camus: A Historic Confrontation; Humanities Press: London, UK, 2004. [Google Scholar]
- Muguerza, J. Ethics and Perplexity: Toward a Critique of Dialogical Reason; Rodopi: Düsseldorf, Germany, 2004. [Google Scholar]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Nerini, F.F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahwan, I.; Cebrian, M.; Obradovich, N.; Bongard, J.; Bonnefon, J.-F.; Breazeal, C.; Crandall, J.W.; Christakis, N.A.; Couzin, I.D.; Jackson, M.O. Machine behaviour. Nature 2019, 568, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barocas, S.; Selbst, A.D. Big data’s disparate impact. Calif. Law Rev. 2016, 104, 671. [Google Scholar] [CrossRef]
- Sachs, J.D. From millennium development goals to sustainable development goals. Lancet 2012, 379, 2206–2211. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305. [Google Scholar] [CrossRef]
- Pastor-Escuredo, D.; Morales-Guzmán, A.; Torres-Fernández, Y.; Bauer, J.-M.; Wadhwa, A.; Castro-Correa, C.; Romanoff, L.; Lee, J.G.; Rutherford, A.; Frias-Martinez, V. Flooding through the lens of mobile phone activity. In Proceedings of the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Jose, CA, USA, 10–13 October 2014; pp. 279–286. [Google Scholar]
- Zufiria, P.J.; Pastor-Escuredo, D.; Úbeda-Medina, L.; Hernandez-Medina, M.A.; Barriales-Valbuena, I.; Morales, A.J.; Jacques, D.C.; Nkwambi, W.; Diop, M.B.; Quinn, J. Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security. PLoS ONE 2018, 13, e0195714. [Google Scholar] [CrossRef] [Green Version]
- Khamis, A.; Li, H.; Prestes, E.; Haidegger, T. AI: A key enabler of sustainable development goals, part 1 [industry activities]. IEEE Robot. Autom. Mag. 2019, 26, 95–102. [Google Scholar] [CrossRef]
- Astobiza, A.M.; Toboso, M.; Aparicio, M.; López, D. AI ethics for sustainable development goals. IEEE Technol. Soc. Mag. 2021, 40, 66–71. [Google Scholar] [CrossRef]
- Kirkpatrick, R. Big data for development. Big Data 2013, 1, 3–4. [Google Scholar] [CrossRef]
- Apel, K.-O. Globalisation and the need for universal ethics. In Public Reason and Applied Ethics: The Ways of Practical Reason in a Pluralist Society; Ashgate: Aldershot, UK, 2008; pp. 135–154. [Google Scholar]
- Pastor-Escuredo, D.; Treleaven, P. Multiscale Governance. arXiv 2021, arXiv:2104.02752. [Google Scholar] [CrossRef]
- Escuredo, D.P.; Fernández-Aller, C.; Salgado, J.; Izquierdo, L.; Huerta, M.A. Ciudades y digitalización: Construyendo desde la ética. In Revista Diecisiete: Investigación Interdisciplinar Para los Objetivos de Desarrollo Sostenible; Fundación Dialnet: Logroño, Spain, 2021; pp. 201–210. [Google Scholar]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Barlacchi, G.; De Nadai, M.; Larcher, R.; Casella, A.; Chitic, C.; Torrisi, G.; Antonelli, F.; Vespignani, A.; Pentland, A.; Lepri, B. A multi-source dataset of urban life in the city of Milan and the Province of Trentino. Sci. Data 2015, 2, 150055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boy, J.; Pastor-Escuredo, D.; Macguire, D.; Jimenez, R.M.; Luengo-Oroz, M. Towards an understanding of refugee segregation, isolation, homophily and ultimately integration in Turkey using call detail records. In Guide to Mobile Data Analytics in Refugee Scenarios; Springer: Berlin/Heidelberg, Germany, 2019; pp. 141–164. [Google Scholar]
- Morales, A.J.; Dong, X.; Bar-Yam, Y.; Pentland, A.S. Segregation and polarization in urban areas. R. Soc. Open Sci. 2019, 6, 190573. [Google Scholar] [CrossRef] [Green Version]
- Castells, M. The Internet Galaxy: Reflections on the Internet, Business, and Society; Oxford University Press on Demand: Oxford, UK, 2002. [Google Scholar]
- Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Simon, H.A. The Sciences of the Artificial; MIT Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Stone, P.; Brooks, R.; Brynjolfsson, E.; Calo, R.; Etzioni, O.; Hager, G.; Hirschberg, J.; Kalyanakrishnan, S.; Kamar, E.; Kraus, S. Artificial Intelligence and Life in 2030: One Hundred Year Study on Artificial Intelligence: Report of the 2015–2016 Study Panel; Stanford University: Stanford, CA, USA, 2016; Available online: https://ai100.stanford.edu/2016-report (accessed on 11 July 2022).
- Schwab, K. The Fourth Industrial Revolution; Currency: Sydney, Australia, 2017. [Google Scholar]
- Holden, E.; Linnerud, K.; Banister, D.; Schwanitz, V.J.; Wierling, A. The Imperatives of Sustainable Development: Needs, Justice, Limits; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Theodorou, A.; Dignum, V. Towards ethical and socio-legal governance in AI. Nat. Mach. Intell. 2019, 2, 10–12. [Google Scholar] [CrossRef]
- Floridi, L. Translating principles into practices of digital ethics: Five risks of being unethical. Philos. Technol. 2019, 32, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Floridi, L. Establishing the rules for building trustworthy AI. Nat. Mach. Intell. 2019, 1, 261–262. [Google Scholar] [CrossRef]
- Weber, I.; Imran, M.; Ofli, F.; Mrad, F.; Colville, J.; Fathallah, M.; Chaker, A.; Ahmed, W.S. Non-traditional data sources: Providing insights into sustainable development. Commun. ACM 2021, 64, 88–95. [Google Scholar] [CrossRef]
- Truby, J. Governing artificial intelligence to benefit the UN sustainable development goals. Sustain. Dev. 2020, 28, 946–959. [Google Scholar] [CrossRef]
- Sætra, H.S. AI in context and the sustainable development goals: Factoring in the unsustainability of the sociotechnical system. Sustainability 2021, 13, 1738. [Google Scholar] [CrossRef]
- Sætra, H.S. A Framework for Evaluating and Disclosing the ESG Related Impacts of AI with the SDGs. Sustainability 2021, 13, 8503. [Google Scholar] [CrossRef]
- Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.; Melero, F.J.; Molina, D.; Fernández, B. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Appl. Intell. 2021, 51, 6497–6527. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.-C.; Wu, A.-W.; Yu, H.-C.; Wu, H.C.; Kuo, Y.-P.; Chen, P.-X. Public perception of artificial intelligence and its connections to the sustainable development goals. Sustainability 2021, 13, 9165. [Google Scholar] [CrossRef]
- Cowls, J. ‘AI for Social Good’: Whose Good and Who’s Good? Introduction to the Special Issue on Artificial Intelligence for Social Good. Philos. Technol. 2021, 34, 1–5. [Google Scholar] [CrossRef]
- Visvizi, A. Artificial Intelligence (AI) and Sustainable Development Goals (SDGs): Exploring the Impact of AI on Politics and Society. Sustainability 2022, 14, 1730. [Google Scholar] [CrossRef]
- Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. A definition, benchmark and database of AI for social good initiatives. Nat. Mach. Intell. 2021, 3, 111–115. [Google Scholar] [CrossRef]
- Goh, H.-H.; Vinuesa, R. Regulating artificial-intelligence applications to achieve the sustainable development goals. Discov. Sustain. 2021, 2, 52. [Google Scholar] [CrossRef]
- UNGP. Discovery. Available online: https://www.unglobalpulse.org/discovery/ (accessed on 1 June 2017).
- UNICEF. Magic Box. Available online: https://www.unicef.org/innovation/Magicbox (accessed on 1 March 2019).
- Hilbert, M. Big data for development: A review of promises and challenges. Dev. Policy Rev. 2016, 34, 135–174. [Google Scholar]
- Varela, F.J.; Thompson, E.; Rosch, E. The Embodied Mind: Cognitive Science and Human Experience; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- UN Global Pulse. Mapping the Risk-Utility Landscape: Mobile Data for Sustainable Development and Humanitarian Action; Global Pulse Project Series No. 18; UN Global Pulse: New York, NY, USA, 2015. [Google Scholar]
- UN Global Pulse. Integrating Big Data into the Monitoring and Evaluation of Development Programmes; UN Global Pulse: New York, NY, USA, 2016. [Google Scholar]
- Malone, T.W. The Future of Work; Audio-Tech Business Book Summaries, Incorporated; Harvard Business School Press: Boston, MA, USA, 2004. [Google Scholar]
- Malone, T.W.; Laubacher, R.; Dellarocas, C. Harnessing Crowds: Mapping the Genome of Collective Intelligence; MIT Sloan School of Management: Cambridge, MA, USA, 2009. [Google Scholar]
- Malone, T.W.; Laubacher, R.; Dellarocas, C. The collective intelligence genome. MIT Sloan Manag. Rev. 2010, 51, 21. [Google Scholar] [CrossRef]
- Chile. Virtual Congress. Available online: https://congresovirtual.cl/page/about (accessed on 1 December 2020).
- European Commission. On Artificial Intelligence—A European Approach to Excellence and Trust. Available online: https://ec.europa.eu/info/sites/info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf (accessed on 1 February 2020).
- Luengo-Oroz, M. Solidarity should be a core ethical principle of AI. Nat. Mach. Intell. 2019, 1, 494. [Google Scholar] [CrossRef] [Green Version]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, R.; Sirmacek, B. Interpretable deep-learning models to help achieve the Sustainable Development Goals. Nat. Mach. Intell. 2021, 3, 926. [Google Scholar] [CrossRef]
- Rutherford, A.; Lupu, Y.; Cebrian, M.; Rahwan, I.; LeVeck, B.L.; Garcia-Herranz, M. Inferring mechanisms for global constitutional progress. Nat. Hum. Behav. 2018, 2, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escuredo, D.P.; Giacomelli, G.; Martín, J.L.; Sopeña, J.G. Ethical and Sustainable Future of Work. Rev. Diecisiete 2021, 4, 183–192. [Google Scholar] [CrossRef]
- Pastor-Escuredo, D.; Frias-Martinez, E. Flow descriptors of human mobility networks. arXiv 2020, arXiv:2003.07279. [Google Scholar]
- European Commission. Urbanisation Worldwide. Available online: https://ec.europa.eu/knowledge4policy/foresight/topic/continuing-urbanisation/urbanisation-worldwide_en (accessed on 1 March 2022).
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Malone, T.W. How human-computer’Superminds’ are redefining the future of work. MIT Sloan Manag. Rev. 2018, 59, 34–41. [Google Scholar]
- European Commission. EU Mission: Climate-Neutral and Smart Cities. Available online: https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-europe/eu-missions-horizon-europe/climate-neutral-and-smart-cities_en (accessed on 1 March 2022).
- Gupta, S.; Langhans, S.D.; Domisch, S.; Fuso-Nerini, F.; Felländer, A.; Battaglini, M.; Tegmark, M.; Vinuesa, R. Assessing whether artificial intelligence is an enabler or an inhibitor of sustainability at indicator level. Transp. Eng. 2021, 4, 100064. [Google Scholar] [CrossRef]
- Güemes, A.; Discetti, S.; Ianiro, A.; Sirmacek, B.; Azizpour, H.; Vinuesa, R. From coarse wall measurements to turbulent velocity fields through deep learning. Phys. Fluids 2021, 33, 075121. [Google Scholar] [CrossRef]
- Sirmacek, B.; Vinuesa, R. Remote sensing and AI for building climate adaptation applications. Results Eng. 2022, 15, 100524. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor-Escuredo, D.; Treleaven, P.; Vinuesa, R. An Ethical Framework for Artificial Intelligence and Sustainable Cities. AI 2022, 3, 961-974. https://doi.org/10.3390/ai3040057
Pastor-Escuredo D, Treleaven P, Vinuesa R. An Ethical Framework for Artificial Intelligence and Sustainable Cities. AI. 2022; 3(4):961-974. https://doi.org/10.3390/ai3040057
Chicago/Turabian StylePastor-Escuredo, David, Philip Treleaven, and Ricardo Vinuesa. 2022. "An Ethical Framework for Artificial Intelligence and Sustainable Cities" AI 3, no. 4: 961-974. https://doi.org/10.3390/ai3040057
APA StylePastor-Escuredo, D., Treleaven, P., & Vinuesa, R. (2022). An Ethical Framework for Artificial Intelligence and Sustainable Cities. AI, 3(4), 961-974. https://doi.org/10.3390/ai3040057