Previous Issue
Volume 5, September
 
 

Automation, Volume 5, Issue 4 (December 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 2209 KiB  
Article
Decoupled Model-Free Adaptive Control with Prediction Features Experimentally Applied to a Three-Tank System Following Time-Varying Trajectories
by Soheil Salighe, Nehal Trivedi, Fateme Bakhshande and Dirk Söffker
Automation 2024, 5(4), 527-544; https://doi.org/10.3390/automation5040030 - 15 Oct 2024
Viewed by 331
Abstract
In this paper, the performance of three model-free control approaches on a multi-input, multi-output (MIMO) nonlinear system with constant and time-varying references is compared. The first control algorithm is model-free adaptive control (MFAC). The second is a modified version of MFAC (MMFAC) designed [...] Read more.
In this paper, the performance of three model-free control approaches on a multi-input, multi-output (MIMO) nonlinear system with constant and time-varying references is compared. The first control algorithm is model-free adaptive control (MFAC). The second is a modified version of MFAC (MMFAC) designed to handle delays in the system by incorporating the output error difference (over two sample time steps) in the control input. The third approach, model-free adaptive predictive control (MFAPC) with a one-step-ahead forecast of the system input, is obtained by using predictions of the outputs based on the data-based linear model. The experimental device used is an MIMO three-tank system (3TS) assumed to be an interconnected system with multiple coupled single-input, single-output (SISO) subsystems with unmeasurable couplings. The novelty of this contribution is that each coupled SISO partition is assumed to be controlled independently using a decoupled control algorithm, leading to fewer control parameters compared to a centralized MIMO controller. Additionally, both parameter tuning for each controller and performance evaluation are conducted using an evaluation criterion considering energy consumption and accumulated tracking error. The results demonstrate that almost all the proposed model-free controllers effectively control an MIMO system by controlling its SISO subsystems individually. Moreover, the predictive features in the decoupled MFAPC contribute to more accurate tracking of time-varying references. The utilization of tracking error differences helps in reducing energy consumption. Full article
Show Figures

Figure 1

19 pages, 8953 KiB  
Article
Leveraging Multimodal Large Language Models (MLLMs) for Enhanced Object Detection and Scene Understanding in Thermal Images for Autonomous Driving Systems
by Huthaifa I. Ashqar, Taqwa I. Alhadidi, Mohammed Elhenawy and Nour O. Khanfar
Automation 2024, 5(4), 508-526; https://doi.org/10.3390/automation5040029 - 10 Oct 2024
Viewed by 896
Abstract
The integration of thermal imaging data with multimodal large language models (MLLMs) offers promising advancements for enhancing the safety and functionality of autonomous driving systems (ADS) and intelligent transportation systems (ITS). This study investigates the potential of MLLMs, specifically GPT-4 Vision Preview and [...] Read more.
The integration of thermal imaging data with multimodal large language models (MLLMs) offers promising advancements for enhancing the safety and functionality of autonomous driving systems (ADS) and intelligent transportation systems (ITS). This study investigates the potential of MLLMs, specifically GPT-4 Vision Preview and Gemini 1.0 Pro Vision, for interpreting thermal images for applications in ADS and ITS. Two primary research questions are addressed: the capacity of these models to detect and enumerate objects within thermal images, and to determine whether pairs of image sources represent the same scene. Furthermore, we propose a framework for object detection and classification by integrating infrared (IR) and RGB images of the same scene without requiring localization data. This framework is particularly valuable for enhancing the detection and classification accuracy in environments where both IR and RGB cameras are essential. By employing zero-shot in-context learning for object detection and the chain-of-thought technique for scene discernment, this study demonstrates that MLLMs can recognize objects such as vehicles and individuals with promising results, even in the challenging domain of thermal imaging. The results indicate a high true positive rate for larger objects and moderate success in scene discernment, with a recall of 0.91 and a precision of 0.79 for similar scenes. The integration of IR and RGB images further enhances detection capabilities, achieving an average precision of 0.93 and an average recall of 0.56. This approach leverages the complementary strengths of each modality to compensate for individual limitations. This study highlights the potential of combining advanced AI methodologies with thermal imaging to enhance the accuracy and reliability of ADS, while identifying areas for improvement in model performance. Full article
Show Figures

Figure 1

24 pages, 2690 KiB  
Review
Artificial Intelligence in Electric Vehicle Battery Disassembly: A Systematic Review
by Zekai Ai, A. Y. C. Nee and S. K. Ong
Automation 2024, 5(4), 484-507; https://doi.org/10.3390/automation5040028 - 24 Sep 2024
Viewed by 1227
Abstract
The rapidly increasing adoption of electric vehicles (EVs) globally underscores the urgent need for effective management strategies for end-of-life (EOL) EV batteries. Efficient EOL management is crucial in reducing the ecological footprint of EVs and promoting a circular economy where battery materials are [...] Read more.
The rapidly increasing adoption of electric vehicles (EVs) globally underscores the urgent need for effective management strategies for end-of-life (EOL) EV batteries. Efficient EOL management is crucial in reducing the ecological footprint of EVs and promoting a circular economy where battery materials are sustainably reused, thereby extending the life cycle of the resources and enhancing overall environmental sustainability. In response to this pressing issue, this review presents a comprehensive analysis of the role of artificial intelligence (AI) in improving the disassembly processes for EV batteries, which is integral to the practical echelon utilization and recycling process. This paper reviews the application of AI techniques in various stages of retired battery disassembly. A significant focus is placed on estimating batteries’ state of health (SOH), which is crucial for determining the availability of retired EV batteries. AI-driven methods for planning battery disassembly sequences are examined, revealing potential efficiency gains and cost reductions. AI-driven disassembly operations are discussed, highlighting how AI can streamline processes, improve safety, and reduce environmental hazards. The review concludes with insights into the future integration of electric vehicle battery (EVB) recycling and disassembly, emphasizing the possibility of battery swapping, design for disassembly, and the optimization of charging to prolong battery life and enhance recycling efficiency. This comprehensive analysis underscores the transformative potential of AI in revolutionizing the management of retired EVBs. Full article
(This article belongs to the Special Issue Smart Remanufacturing)
Show Figures

Figure 1

17 pages, 8496 KiB  
Article
Research on Pavement Crack Detection Based on Random Structure Forest and Density Clustering
by Xiaoyan Wang, Xiyu Wang, Jie Li, Wenhui Liang and Churan Bi
Automation 2024, 5(4), 467-483; https://doi.org/10.3390/automation5040027 - 24 Sep 2024
Viewed by 437
Abstract
The automatic detection of road surface cracks is a crucial task in road maintenance, but the complexity of crack topology and the susceptibility of detection results to environmental interference make it challenging. To address this issue, this paper proposes an automatic crack detection [...] Read more.
The automatic detection of road surface cracks is a crucial task in road maintenance, but the complexity of crack topology and the susceptibility of detection results to environmental interference make it challenging. To address this issue, this paper proposes an automatic crack detection method based on density clustering using random forest. First, a shadow elimination method based on brightness division is proposed to address the issue of lighting conditions affecting detection results in road images. This method compensates for brightness and enhances details, eliminating shadows while preserving texture information. Second, by combining the random forest algorithm with density clustering, the impact of noise on crack extraction is reduced, enabling the complete extraction and screening of crack information. This overcomes the shortcomings of the random forest method, which only detects crack edge information with low accuracy. The algorithm proposed in this paper was tested on the CFD and Cracktree200 datasets, achieving precision of 87.4% and 84.6%, recall rates of 83.9% and 82.6%, and F-1 scores of 85.6% and 83.6%, respectively. Compared to the CrackForest algorithm, it significantly improves accuracy, recall rate, and F-1 score. Compared to the UNet++ and Deeplabv3+ algorithms, it also achieves better detection results. The results show that the algorithm proposed in this paper can effectively overcome the impact of uneven brightness and complex topological structures on crack target detection, improving the accuracy of road crack detection and surpassing similar algorithms. It can provide technical support for the automatic detection of road surface cracks. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop