Diamond-Based Solvated Electron Generators: A Perspective on Applications in NRR, CO2RR, and Pollutant Degradation
Abstract
:1. Introduction
2. Diamond as a Solvated Electron Generator
- SEs emission in sorrounding media: It has been found that photoinjected SEs from diamond can exhibit an estimated diffusion length of up to 700 nm in extremely pure, degassed water. This derives from an estimated SE lifetime of about 100 μs, although the experimental lifetime can be calculated from transient absorption measurements and may be much shorter depending on the solution composition and experimental factors such as excitation wavelength and incident power. For example, from a chemical point of view, at pH 3, the rapid reaction of SEs with H⁺ reduces the lifetime to ~50 ns, corresponding to a diffusion length of ~16 nm. Dissolved gases, such as oxygen, can similarly quench SEs and shorten their diffusion [10,28]. Nonetheless, the photoinjection of electrons into solution gives the opportunity to perform reduction reactions in the bulk of the solution, avoiding the usually limiting reactant’s surface adsorption.
- Bulk chemical robustness: Diamond’s resistance to corrosion in aqueous environments makes it a suitable candidate for continuous operation. However, its termination stability must be further investigated [26].
- Tunability: Beyond the hydrogen termination, defect engineering [27] can introduce sub-bandgap states, allowing excitation with longer-wavelength light and broadening the operational window. Moreover, surface engineering offers a wide range of parameters to explore for tuning its electronic properties [9,19].
Challenges: Large Bandgap and Surface Degradation
3. Nitrogen Reduction Reaction (NRR)
4. Carbon Dioxide Reduction Reaction (CO2RR)
5. Degradation of Environmental Pollutants
6. Heterogeneous Catalysts and Microfluidic Reactor Approaches
7. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lan, J.; Kapil, V.; Gasparotto, P.; Ceriotti, M.; Iannuzzi, M.; Rybkin, V.V. Simulating the Ghost: Quantum Dynamics of the Solvated Electron. Nat. Commun. 2021, 12, 766. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.I.; Kim, Y.J.; You, Y.; Yang, J.W.; Kim, S.W. Birch Reduction of Aromatic Compounds by Inorganic Electride [Ca2N]+ e− in an Alcoholic Solvent: An Analogue of Solvated Electrons. J. Org. Chem. 2018, 83, 13847–13853. [Google Scholar] [CrossRef] [PubMed]
- Hosono, H.; Kitano, M. Advances in Materials and Applications of Inorganic Electrides. Chem. Rev. 2021, 121, 3121–3185. [Google Scholar] [CrossRef]
- Getoff, N. Fundamental Biological Importance of Solvated Electrons in Humans. Horm. Mol. Biol. Clin. Investig. 2013, 16, 125–128. [Google Scholar] [CrossRef]
- Buttersack, T.; Mason, P.E.; McMullen, R.S.; Schewe, H.C.; Martinek, T.; Brezina, K.; Crhan, M.; Gomez, A.; Hein, D.; Wartner, G.; et al. Photoelectron Spectra of Alkali Metal–Ammonia Microjets: From Blue Electrolyte to Bronze Metal. Science 2020, 368, 1086–1091. [Google Scholar] [CrossRef]
- Siefermann, K.R.; Liu, Y.; Lugovoy, E.; Link, O.; Faubel, M.; Buck, U.; Winter, B.; Abel, B. Binding Energies, Lifetimes and Implications of Bulk and Interface Solvated Electrons in Water. Nat. Chem. 2010, 2, 274–279. [Google Scholar] [CrossRef]
- Hawtof, R.; Ghosh, S.; Guarr, E.; Xu, C.; Mohan Sankaran, R.; Renner, J.N. Catalyst-Free, Highly Selective Synthesis of Ammonia from Nitrogen and Water by a Plasma Electrolytic System. Sci. Adv. 2019, 5, eaat5778. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Croot, A.; Fox, N.A.; Cattelan, M. Empty-State Band Mapping Using Momentum-Resolved Secondary Electron Emission. Adv. Funct. Mater. 2021, 31, 2007319. [Google Scholar] [CrossRef]
- Wan, G.; Cattelan, M.; Fox, N.A. Electronic Structure Tunability of Diamonds by Surface Functionalization. J. Phys. Chem. C 2019, 123, 4168–4177. [Google Scholar] [CrossRef]
- Bachman, B.F.; Zhu, D.; Bandy, J.; Zhang, L.; Hamers, R.J. Detection of Aqueous Solvated Electrons Produced by Photoemission from Solids Using Transient Absorption Measurements. ACS Meas. Sci. Au 2022, 2, 46–56. [Google Scholar] [CrossRef]
- Nemanich, R.J.; Baumann, P.K.; Benjamin, M.C.; King, S.W.; van der Weide, J.; Davis, R.F. Negative Electron Affinity Surfaces of Aluminum Nitride and Diamond. Diam. Relat. Mater. 1996, 5, 790–796. [Google Scholar] [CrossRef]
- Loh, K.P.; Nishitani-Gamo, M.; Sakaguchi, I.; Taniguchi, T.; Ando, T. Thermal Stability of the Negative Electron Affinity Condition on Cubic Boron Nitride. Appl. Phys. Lett. 1998, 72, 3023–3025. [Google Scholar] [CrossRef]
- Loh, K.P.; Sakaguchi, I.; Nishitani-Gamo, M.; Taniguchi, T.; Ando, T. Negative Electron Affinity of Cubic Boron Nitride. Diam. Relat. Mater. 1999, 8, 781–784. [Google Scholar] [CrossRef]
- Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S.-W.; Hara, M.; Hosono, H. Ammonia Synthesis Using a Stable Electride as an Electron Donor and Reversible Hydrogen Store. Nat. Chem. 2012, 4, 934–940. [Google Scholar] [CrossRef]
- Zhang, G.; Zou, J.; Xu, X. Reduced 3d Transition Metal Oxides Work as Solid-State Sources of Solvated Electrons and Directly Inject Electrons into Water for H2 Production under Mild Thermal or IR Excitation. Adv. Sustain. Syst. 2018, 2, 1700139. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Zou, J. Nitrogen Reduction Utilizing Solvated Electrons Produced by Thermal Excitation of Trapped Electrons in Reduced Titanium Oxide. New J. Chem. 2018, 42, 6084–6090. [Google Scholar] [CrossRef]
- Motta, S.; Siani, P.; Levy, A.; Di Valentin, C. Exploring the Drug Loading Mechanism of Photoactive Inorganic Nanocarriers through Molecular Dynamics Simulations. Nanoscale 2021, 13, 13000–13013. [Google Scholar] [CrossRef] [PubMed]
- Shilenko, V.; Miliutina, E.; Cichon, S.; Lancok, J.; Erzina, M.; Burtsev, V.; Buravets, V.; Zabelina, A.; Mares, D.; Rezek, B.; et al. Plasmon Assisted Generation of Solvated Electrons from Low Work Function Scandium Oxide and Their Utilization for Enhanced Nitrogen Reduction. Appl. Catal. B Environ. Energy 2025, 369, 125148. [Google Scholar] [CrossRef]
- Wan, G.; Panditharatne, S.; Fox, N.A.; Cattelan, M. Graphene-Diamond Junction Photoemission Microscopy and Electronic Interactions. Nano. Express 2020, 1, 020011. [Google Scholar] [CrossRef]
- Wan, G.; Cattelan, M.; Croot, A.; Dominguez-Andrade, H.; Nicley, S.S.; Haenen, K.; Fox, N.A. Spectroscopic Insight of Low Energy Electron Emission from Diamond Surfaces. Carbon N. Y. 2021, 185, 376–383. [Google Scholar] [CrossRef]
- Diederich, L.; Küttel, O.M.; Aebi, P.; Schlapbach, L. Electron Affinity and Work Function of Differently Oriented and Doped Diamond Surfaces Determined by Photoelectron Spectroscopy. Surf. Sci. 1998, 418, 219–239. [Google Scholar] [CrossRef]
- Cattelan, M.; Fox, N.A. A Perspective on the Application of Spatially Resolved ARPES for 2D Materials. Nanomaterials 2018, 8, 284. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, D.; Kato, H.; Ri, G.S.; Yamada, T.; Vinod, P.R.; Hwang, D.; Nebel, C.E.; Okushi, H.; Yamasaki, S. Direct Observation of Negative Electron Affinity in Hydrogen-Terminated Diamond Surfaces. Appl. Phys. Lett. 2005, 86, 152103. [Google Scholar] [CrossRef]
- Takeuchi, D.; Ri, S.-G.; Kato, H.; Nebel, C.E.; Yamasaki, S. Negative Electron Affinity on Hydrogen Terminated Diamond. Phys. Status Solidi (A) 2005, 202, 2098–2103. [Google Scholar] [CrossRef]
- Zhang, L.; Hamers, R.J. Photocatalytic Reduction of CO2 to CO by Diamond Nanoparticles. Diam. Relat. Mater. 2017, 78, 24–30. [Google Scholar] [CrossRef]
- Saucedo, C.; Rieders, N.; Hamers, R.J. Influence of Hydrogen and Oxygen Surface Termination on the Mechanism of Sub-Bandgap Photoelectron Emission from Diamond(111) into Vacuum and into Water. Diam. Relat. Mater. 2025, 153, 112011. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, L.; Ruther, R.E.; Hamers, R.J. Photo-Illuminated Diamond as a Solid-State Source of Solvated Electrons in Water for Nitrogen Reduction. Nat. Mater. 2013, 12, 836–841. [Google Scholar] [CrossRef]
- Maza, W.A.; Breslin, V.M.; Feygelson, T.I.; DeSario, P.A.; Pate, B.B.; Owrutsky, J.C.; Epshteyn, A. Degradation of Perfluorooctanesulfonate (PFOS) by Sub-Bandgap Irradiation of Hydrogen-Terminated Nanodiamond. Appl. Catal. B. 2023, 325, 122306. [Google Scholar] [CrossRef]
- Christianson, J.R.; Zhu, D.; Hamers, R.J.; Schmidt, J.R. Mechanism of N2Reduction to NH3 by Aqueous Solvated Electrons. J. Phys. Chem. B 2014, 118, 195–203. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, D.; Nathanson, G.M.; Hamers, R.J. Selective Photoelectrochemical Reduction of Aqueous CO2 to CO by Solvated Electrons. Angew. Chem. Int. Ed. 2014, 53, 9746–9750. [Google Scholar] [CrossRef]
- James, M.C.; Fogarty, F.; Zulkharnay, R.; Fox, N.A.; May, P.W. A Review of Surface Functionalisation of Diamond for Thermionic Emission Applications. Carbon N. Y. 2021, 171, 532–550. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Salustro, S.; Gentile, F.S.; Mackrodt, W.C.; Dovesi, R. Substitutional Nitrogen in Diamond: A Quantum Mechanical Investigation of the Electronic and Spectroscopic Properties. Carbon N. Y. 2018, 134, 354–365. [Google Scholar] [CrossRef]
- Chemin, A.; Levine, I.; Rusu, M.; Vaujour, R.; Knittel, P.; Reinke, P.; Hinrichs, K.; Unold, T.; Dittrich, T.; Petit, T. Surface-Mediated Charge Transfer of Photogenerated Carriers in Diamond. Small Methods 2023, 7, 2300423. [Google Scholar] [CrossRef]
- Goulet, T.; Bernas, A.; Ferradini, C.; Jay-Gerin, J.-P. On the Electronic Structure of Liquid Water: Conduction-Band Tail Revealed by Photoionization Data. Chem. Phys. Lett. 1990, 170, 492–496. [Google Scholar] [CrossRef]
- O’Donnell, K.M.; Edmonds, M.T.; Ristein, J.; Tadich, A.; Thomsen, L.; Wu, Q.; Pakes, C.I.; Ley, L. Diamond Surfaces with Air-Stable Negative Electron Affinity and Giant Electron Yield Enhancement. Adv. Funct. Mater. 2013, 23, 5608–5614. [Google Scholar] [CrossRef]
- Ullah, S.; Wan, G.; Kouzios, C.; Woodgate, C.; Cattelan, M.; Fox, N. Structure and Electronic Properties of Tin Monoxide (SnO) and Lithiated SnO Terminated Diamond (1 0 0) and Its Comparison with Lithium Oxide Terminated Diamond. Appl. Surf. Sci. 2021, 559, 149962. [Google Scholar] [CrossRef]
- James, M.C.; Cattelan, M.; Fox, N.A.; Silva, R.F.; Silva, R.M.; May, P.W. Experimental Studies of Electron Affinity and Work Function from Aluminium on Oxidized Diamond (100) and (111) Surfaces. Phys. Status Solidi (B) 2021, 258, 2100027. [Google Scholar] [CrossRef]
- Ullah, S.; Fox, N. Modification of the Surface Structure and Electronic Properties of Diamond (100) with Tin as a Surface Termination: A Density Functional Theory Study. J. Phys. Chem. C 2021, 125, 25165–25174. [Google Scholar] [CrossRef]
- Ullah, S.; Cullingford, L.; Zhang, T.; Wong, J.R.; Wan, G.; Cattelan, M.; Fox, N. An Investigation into the Surface Termination and Near-Surface Bulk Doping of Oxygen-Terminated Diamond with Lithium at Various Annealing Temperatures. MRS Adv. 2021, 6, 311–320. [Google Scholar] [CrossRef]
- Zulkharnay, R.; May, P.W. Experimental Evidence for Large Negative Electron Affinity from Scandium-Terminated Diamond. J. Mater. Chem. A Mater. 2023, 11, 13432–13445. [Google Scholar] [CrossRef]
- Zulkharnay, R.; Fox, N.A.; May, P.W. Enhanced Electron Emission Performance and Air-Surface Stability in ScO-Terminated Diamond for Thermionic Energy Converters. Small 2024, 20, 2405408. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Ben-Zvi, I.; Rao, T.; Dimitrov, D.A.; Chang, X.; Wu, Q.; Xin, T. Secondary-Electron Emission from Hydrogen-Terminated Diamond: Experiments and Model. Phys. Rev. Spec. Top. Accel. Beams 2011, 14, 111301. [Google Scholar] [CrossRef]
- Dominguez-Andrade, H.; Anaya, J.; Croot, A.; Cattelan, M.; Twitchen, D.J.; Kuball, M.; Fox, N.A. Correlating Thermionic Emission with Specific Surface Reconstructions in a <100> Hydrogenated Single-Crystal Diamond. ACS Appl. Mater. Interfaces 2020, 12, 26534–26542. [Google Scholar] [CrossRef]
- Ojelade, O.A.; Zaman, S.F.; Ni, B.-J. Green Ammonia Production Technologies: A Review of Practical Progress. J. Environ. Manag. 2023, 342, 118348. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Liu, S.; Xiang, Z. Ammonia as a Carbon-Free Hydrogen Carrier for Fuel Cells: A Perspective. Ind. Chem. Mater. 2023, 1, 332–342. [Google Scholar] [CrossRef]
- Jackson, R.B.; Canadell, J.G.; Le Quéré, C.; Andrew, R.M.; Korsbakken, J.I.; Peters, G.P.; Nakicenovic, N. Reaching Peak Emissions. Nat. Clim. Chang. 2016, 6, 7–10. [Google Scholar] [CrossRef]
- Wang, L.; Xia, M.; Wang, H.; Huang, K.; Qian, C.; Maravelias, C.T.; Ozin, G.A. Greening Ammonia toward the Solar Ammonia Refinery. Joule 2018, 2, 1055–1074. [Google Scholar] [CrossRef]
- Li, J.; Xiong, Q.; Mu, X.; Li, L. Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies. Chem. Sus. Chem. 2024, 17, e202301775. [Google Scholar] [CrossRef]
- Tang, X.; Ding, Z.; Wang, Z.; Arif, N.; Chen, Y.; Li, L.; Zeng, Y. Recent Advances in Photocatalytic Nitrogen Fixation Based on Two-Dimensional Materials. Chem. Cat. Chem. 2024, 16, e202401355. [Google Scholar] [CrossRef]
- Yue, Y.; Jin, Y.; Yan, X.; Hou, X.; Ou, H.; Huang, Q.; Hu, H.; Yang, G. Fabrication of TiO2 with Ru-Induced Lattice Strain for Enhancing Photocatalytic Nitrogen Fixation in Gas–Solid Reaction System. Chem. Eng. Sci. 2025, 304, 121071. [Google Scholar] [CrossRef]
- Vega, L.F.; Bahamon, D.; Alkhatib, I.I.I. Perspectives on Advancing Sustainable CO2 Conversion Processes: Trinomial Technology, Environment, and Economy. ACS Sustain. Chem. Eng. 2024, 12, 5357–5382. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Ma, Z.; Wang, D.; Ren, X. Strategies for Overcoming Challenges in Selective Electrochemical CO2 Conversion to Ethanol. iScience 2024, 27, 110437. [Google Scholar] [CrossRef]
- Hong, W.; Luthra, M.; Jakobsen, J.B.; Madsen, M.R.; Castro, A.C.; Hammershøj, H.C.D.; Pedersen, S.U.; Balcells, D.; Skrydstrup, T.; Daasbjerg, K.; et al. Exploring the Parameters Controlling Product Selectivity in Electrochemical CO2 Reduction in Competition with Hydrogen Evolution Employing Manganese Bipyridine Complexes. ACS Catal. 2023, 13, 3109–3119. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Johnson, M.S.; Schinke, R. Carbon Dioxide Photolysis from 150 to 210 Nm: Singlet and Triplet Channel Dynamics, UV-Spectrum, and Isotope Effects. Proc. Natl. Acad. Sci. USA 2013, 110, 17691–17696. [Google Scholar] [CrossRef] [PubMed]
- Aravind kumar, J.; Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent Organic Pollutants in Water Resources: Fate, Occurrence, Characterization and Risk Analysis. Sci. Total Environ. 2022, 831, 154808. [Google Scholar] [CrossRef] [PubMed]
- Fennell, B.D.; Mezyk, S.P.; McKay, G. Critical Review of UV-Advanced Reduction Processes for the Treatment of Chemical Contaminants in Water. ACS Environ. Au 2022, 2, 178–205. [Google Scholar] [CrossRef]
- Gu, Y.; Dong, W.; Luo, C.; Liu, T. Efficient Reductive Decomposition of Perfluorooctanesulfonate in a High Photon Flux UV/Sulfite System. Environ. Sci. Technol. 2016, 50, 10554–10561. [Google Scholar] [CrossRef]
- Truszkiewicz, E.; Raróg-Pilecka, W.; Schmidt-Szałowski, K.; Jodzis, S.; Wilczkowska, E.; Łomot, D.; Kaszkur, Z.; Karpiński, Z.; Kowalczyk, Z. Barium-Promoted Ru/Carbon Catalyst for Ammonia Synthesis: State of the System When Operating. J. Catal. 2009, 265, 181–190. [Google Scholar] [CrossRef]
- AIKA, K. Preparation and Characterization of Chlorine-Free Ruthenium Catalysts and the Promoter Effect in Ammonia Synthesis 3. A Magnesia-Supported Ruthenium Catalyst. J. Catal. 1992, 136, 126–140. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattelan, M. Diamond-Based Solvated Electron Generators: A Perspective on Applications in NRR, CO2RR, and Pollutant Degradation. Solids 2025, 6, 24. https://doi.org/10.3390/solids6020024
Cattelan M. Diamond-Based Solvated Electron Generators: A Perspective on Applications in NRR, CO2RR, and Pollutant Degradation. Solids. 2025; 6(2):24. https://doi.org/10.3390/solids6020024
Chicago/Turabian StyleCattelan, Mattia. 2025. "Diamond-Based Solvated Electron Generators: A Perspective on Applications in NRR, CO2RR, and Pollutant Degradation" Solids 6, no. 2: 24. https://doi.org/10.3390/solids6020024
APA StyleCattelan, M. (2025). Diamond-Based Solvated Electron Generators: A Perspective on Applications in NRR, CO2RR, and Pollutant Degradation. Solids, 6(2), 24. https://doi.org/10.3390/solids6020024