Previous Issue
Volume 5, September
 
 

Metrology, Volume 5, Issue 4 (December 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 1470 KB  
Article
Establishment of a Real-Time Monitoring System for the Flow Rate and Concentration of Process Gases for Calculating Tier 4 Emissions in the Semiconductor/Display Industry
by Bong Gyu Jeong, Sang-Hoon Park, Deuk-Hoon Goh and Bong-Jae Lee
Metrology 2025, 5(4), 60; https://doi.org/10.3390/metrology5040060 - 1 Oct 2025
Abstract
In this study, we propose a simple and effective method for gas analysis by establishing a correlation between residual gas analyzer (RGA) intensity and gas concentration. To achieve this, we focused on CF4 and NF3, two high-global warming potential (GWP) [...] Read more.
In this study, we propose a simple and effective method for gas analysis by establishing a correlation between residual gas analyzer (RGA) intensity and gas concentration. To achieve this, we focused on CF4 and NF3, two high-global warming potential (GWP) gases commonly used in industrial applications. The experiment was conducted in four key steps: identifying gas species using optical emission spectroscopy (OES), calibrating RGA with a quadrupole mass spectrometer (QMS), constructing a five-point calibration graph to correlate RGA and Fourier-transform infrared spectroscopy (FT-IR) data, and estimating the concentration of unknown samples using the calibration graph. The results under plasma-on conditions demonstrated correlation and accuracy, confirming the reliability of our approach. In other words, the method effectively captured the relationship between RGA intensity and gas concentration, providing valuable insights into concentration trends. Thus, our approach serves as a useful tool for estimating gas concentrations and understanding the correlation between RGA intensity and gas composition. Full article
Show Figures

Figure 1

15 pages, 556 KB  
Article
Measurement Uncertainty Evaluation: Differences Between Virtual Experiments and the Standardized Approach
by Gertjan Kok and Marcel van Dijk
Metrology 2025, 5(4), 59; https://doi.org/10.3390/metrology5040059 - 26 Sep 2025
Abstract
Virtual experiments (VE) can be used to assess the measurement uncertainty of complex measurements. The typical calculation procedure implemented in such a VE, called VE-DA in this paper, is based on a Monte Carlo method involving simulating possible measurement errors and possible measurement [...] Read more.
Virtual experiments (VE) can be used to assess the measurement uncertainty of complex measurements. The typical calculation procedure implemented in such a VE, called VE-DA in this paper, is based on a Monte Carlo method involving simulating possible measurement errors and possible measurement data based on extensive modeling of the measurement instrument, followed by applying a data analysis function (DA) to evaluate the measurement data. This procedure is similar to the propagation of distributions using a Monte Carlo method (PoD) procedure presented in the written standard JCGM-101, in which the Monte Carlo method is applied to an explicit mathematical model for the measurand involving simulating and applying possible corrections to the observed measurement data. However, in this paper, we show that the uncertainty provided by the VE-DA procedure can be both larger and smaller than the uncertainty evaluated based on applying the PoD to the correct measurement model, when available. This is important to realize by users of the VE-DA procedure when claiming conformity of an uncertainty evaluation with JCGM-101. Full article
(This article belongs to the Collection Measurement Uncertainty)
Show Figures

Figure 1

15 pages, 14701 KB  
Article
Vision-Based Characterization of Gear Transmission Mechanisms to Improve 3D Laser Scanner Accuracy
by Fernando Lopez-Medina, José A. Núñez-López, Oleg Sergiyenko, Dennis Molina-Quiroz, Cesar Sepulveda-Valdez, Jesús R. Herrera-García, Vera Tyrsa and Ruben Alaniz-Plata
Metrology 2025, 5(4), 58; https://doi.org/10.3390/metrology5040058 - 25 Sep 2025
Abstract
Some laser scanners utilize stepper motor-driven optomechanical assemblies to position the laser beam precisely during triangulation. In laser scanners such as the presented Technical Vision System (TVS), to enhance motion resolution, gear transmissions are implemented between the motor and the optical assembly. However, [...] Read more.
Some laser scanners utilize stepper motor-driven optomechanical assemblies to position the laser beam precisely during triangulation. In laser scanners such as the presented Technical Vision System (TVS), to enhance motion resolution, gear transmissions are implemented between the motor and the optical assembly. However, due to the customized nature of the mechanical design, errors in manufacturing or insufficient mechanical characterization can introduce deviations in the computed 3D coordinates. In this work, we present a novel method for estimating the degrees-per-step ratio at the output of the laser positioner’s transmission mechanism using a stereovision system. Experimental results demonstrate the effectiveness of the proposed method, which reduces the need for manual metrological instruments and simplifies the calibration procedure through vision-assisted measurements. The method yielded estimated angular resolutions of approximately 0.06° and 0.07° per motor step in the horizontal and vertical axes, respectively, key parameters that define the minimal resolvable displacement of the projected beam in dynamic triangulation. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Devices and Technologies)
Show Figures

Figure 1

Previous Issue
Back to TopTop