Pulsed Electromagnetic Field Stimulation in Bone Healing and Joint Preservation: A Narrative Review of the Literature
Abstract
:1. Introduction
1.1. Modulation of Membrane Receptors for Adenosine
1.2. Activation of Osteoinductive and Angiogenesis Pathways
1.3. Alteration of the Extracellular Matrix
1.4. Ion Channels
- -
- Delayed union and non-union.
- -
- Fractures with associated risk factors (open fractures, severe soft tissue damage, patient-specific factors).
- -
- Joint-replacement surgery.
- -
- Stress fractures.
- -
- Bone marrow edema.
- -
- CRPS-I.
- -
- Cartilage repair surgery.
- -
- Inflammatory and catabolic processes at the joint.
- -
- Increasing bone mineral density.
2. Application Fields
2.1. Bone Healing
2.2. Spinal Surgery
2.3. Joint Replacement
2.4. Joint Preservation
2.5. Osteopenia and Osteoporosis
3. Conclusions
4. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassett, C.A.; Pilla, A.A.; Pawluk, R.J. A non-operative salvage of surgically-resistant pseudarthroses and non-unions by pulsing electromagnetic fields. A preliminary report. Clin. Orthop. Relat. Res. 1977, 124, 128–143. [Google Scholar]
- Massari, L.; Benazzo, F.; Falez, F. Biophysical stimulation of bone and cartilage: State of the art and future perspectives. Int. Orthop. 2019, 43, 539–551. [Google Scholar] [CrossRef]
- Polk, C. Biological effects of low-level low-frequency electric and magnetic fields. IEEE Trans. Educ. 1991, 34, 243–249. [Google Scholar] [CrossRef]
- Rahbek, U.; Tritsaris, K.; Dissing, S. Interactions of Low-Frequency, Pulsed Electromagnetic Fields with Living Tissue: Biochemical Responses and Clinical Results. Oral Biosci. Med. 2005, 2, 29–40. [Google Scholar]
- Panagopoulos, D.J.; Karabarbounis, A.; Margaritis, L.H. Mechanism for action of electromagnetic fields on cells. Biochem. Biophys. Res. Commun. 2002, 298, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hronik-Tupaj, M.; Kaplan, D.L. A review of the responses of two- and three-dimensional engineered tissues to electric fields. Tissue Eng. Part B Rev. 2012, 18, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Gessi, S.; Merighi, S. Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br. J. Pharmacol. 2002, 136, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Ongaro, A.; Varani, K.; Masieri, F.F. Electromagnetic fields (EMFs) and adenosine receptors modulate prostaglandin E(2) and cytokine release in human osteoarthritic synovial fibroblasts. J. Cell. Physiol. 2012, 227, 2461–2469. [Google Scholar] [CrossRef]
- Ongaro, A.; Pellati, A.; Bagheri, L. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells. Bioelectromagnetics 2014, 35, 426–436. [Google Scholar] [CrossRef]
- Sollazzo, V.; Scapoli, L.; Palmieri, A.; Fanali, S.; Girardi, A.; Farinella, F.; Pezzetti, F.; Carinci, F. Early effects of pulsed electromagnetic fields on human osteoblasts and mesenchymal stem cells. Eur. J. Inflamm. 2011, 1, 95–100. [Google Scholar] [CrossRef]
- De Mattei, M.; Grassilli, S.; Pellati, A. Pulsed Electromagnetic Fields Modulate miRNAs During Osteogenic Differentiation of Bone Mesenchymal Stem Cells: A Possible Role in the Osteogenic-angiogenic Coupling. Stem Cell Rev. Rep. 2020, 16, 1005–1012. [Google Scholar] [CrossRef]
- Sollazzo, V.; Palmieri, A.; Pezzetti, F. Effects of pulsed electromagnetic fields on human osteoblastlike cells (MG-63): A pilot study. Clin. Orthop. Relat. Res. 2010, 468, 2260–2277. [Google Scholar] [CrossRef]
- Wiesmann, H.P.; Hartig, M.; Stratmann, U. Electrical stimulation in£uences mineral formation of osteoblast-like cells in vitro. Biochim. Biophys. Acta 2001, 1538, 28–37. [Google Scholar] [CrossRef]
- Clark, C.C.; Wang, W.; Brighton, C.T. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields: Electrical stimulation of human osteoblasts. J. Orthop. Res. 2014, 32, 894–903. [Google Scholar] [CrossRef]
- Hinsenkamp, M.; Tuerlinckx, B.; Rooze, M. Effect of elf fields on bone growth and fracture repair. In Biological Effects and Dosimetry of Static and ELF Electromagnetic Fields; Springer: New York, NY, USA, 1985; pp. 441–476. [Google Scholar]
- Murray, H.B.; Pethica, B.A. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of non-union fractures. Orthop. Res. Rev. 2016, 8, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Chen, Z.; Sun, G. The Efficacy of Pulsed Electromagnetic Fields on Pain, Stiffness, and Physical Function in Osteoarthritis: A Systematic Review and Meta-Analysis. Pain Res. Manag. 2022, 2022, 9939891. [Google Scholar] [CrossRef] [PubMed]
- Flatscher, J.; Pavez Loriè, E.; Mittermayr, R.; Meznik, P.; Slezak, P.; Redl, H.; Slezak, C. Pulsed Electromagnetic Fields (PEMF)-Physiological Response and Its Potential in Trauma Treatment. Int. J. Mol. Sci. 2023, 24, 11239. [Google Scholar] [CrossRef]
- Faldini, C.; Cadossi, M.; Deianira, L. Electromagnetic bone growth stimulation in patients with femoral neck fractures treated with screws: Prospective randomized double-blind study. Curr. Orthop. Pract. 2010, 21, 282–287. [Google Scholar] [CrossRef]
- Assiotis, A.; Sachinis, N.P.; Chalidis, B.E. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J. Orthop. Surg. Res. 2012, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Cebrián, J.L.; Gallego, P.; Francés, A. Comparative study of the use of electromagnetic fields in patients with pseudoarthrosis of tibia treated by intramedullary nailing. Int. Orthop. 2010, 34, 437–440. [Google Scholar] [CrossRef]
- Massari, L.; Benazzo, F.; Falez, F. Can Clinical and Surgical Parameters Be Combined to Predict How Long It Will Take a Tibia Fracture to Heal? A Prospective Multicentre Observational Study: The FRACTING Study. BioMed Res. Int. 2018, 2018, 1809091. [Google Scholar] [CrossRef]
- Shi, H.; Xiong, J.; Chen, Y. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: A prospective randomized controlled study. BMC Musculoskelet. Disord. 2013, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Streit, A.; Watson, B.C.; Granata, J.D. Effect on Clinical Outcome and Growth Factor Synthesis with Adjunctive Use of Pulsed Electromagnetic Fields for Fifth Metatarsal Nonunion Fracture: A Double-Blind Randomized Study. Foot Ankle Int. 2016, 37, 919–923. [Google Scholar] [CrossRef]
- Krzyżańska, L.; Straburzyńska-Lupa, A.; Rąglewska, P. Beneficial Effects of Pulsed Electromagnetic Field during Cast Immobilization in Patients with Distal Radius Fracture. BioMed Res. Int. 2020, 2020, 6849352. [Google Scholar] [CrossRef] [PubMed]
- Factor, S.; Druckmann, I.; Atlan, F. The Effects of Novel Pulsed Electromagnetic Field Therapy Device on Acute Distal Radius Fractures: A Prospective, Double-Blind, Sham-Controlled, Randomized Pilot Study. J. Clin. Med. 2023, 12, 1866. [Google Scholar] [CrossRef]
- Cheing, G.L.; Wan, J.W.; Lo, S. Ice and pulsed electromagnetic field to reduce pain and swelling after distal radius fractures. J. Rehabil. Med. 2005, 37, 372–377. [Google Scholar] [CrossRef]
- Lazović, M.; Kocić, M.; Dimitrijević, L. Pulsed electromagnetic field during cast immobilization in postmenopausal women with Colles’ fracture. Srp. Arh. Za Celok. Lek. 2012, 140, 619–624. [Google Scholar] [CrossRef]
- De Francesco, F.; Gravina, P.; Varagona, S.; Setti, S.; Gigante, A.; Riccio, M. Biophysical Stimulation in Delayed Fracture Healing of Hand Phalanx: A Radiographic Evaluation. Biomedicines 2022, 10, 2519. [Google Scholar] [CrossRef]
- Massari, L.; Barbanti Brodano, G.; Setti, S. Does Capacitively Coupled Electric Fields Stimulation Improve Clinical Outcomes After Instrumented Spinal Fusion? A Multicentered Randomized, Prospective, Double-Blind, Placebo-Controlled Trial. Int. J. Spine Surg. 2020, 14, 936–943. [Google Scholar] [CrossRef]
- Massari, L.; Caruso, G.; Sollazzo, V. Pulsed electromagnetic fields and low intensity pulsed ultrasound in bone tissue. Clin. Cases Min. Bone Metab. 2009, 6, 149–154. [Google Scholar]
- Liu, W.; Jin, X.; Guan, Z. Pulsed Electromagnetic Field Affects the Development of Postmenopausal Osteoporotic Women with Vertebral Fractures. BioMed Res. Int. 2021, 2021, 4650057. [Google Scholar] [CrossRef]
- Di Martino, A.; Villari, E.; Poluzzi, R. Role of biophysical stimulation in multimodal management of vertebral compression fractures. Comput. Struct. Biotechnol. J. 2023, 21, 5650–5661. [Google Scholar] [CrossRef]
- Massari, L.; Osti, L.; Lorusso, V. Biophysical stimulation and the periprosthetic bone: Is there a rationale in the use of Pulsed Electromagnetic Fields after a hip or knee implant? J. Biol. Regul. Homeost. Agents 2015, 29, 1013–1015. [Google Scholar]
- Lullini, G.; Cammisa, E.; Setti, S. Role of pulsed electromagnetic fields after joint replacements. World J. Orthop. 2020, 11, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, C.; Dall’Oca, C.; Cadossi, R. Effects of pulsed electromagnetic fields on patients’ recovery after arthroscopic surgery: Prospective, randomized and double-blind study. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2007, 15, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Adravanti, P.; Nicoletti, S.; Setti, S. Effect of pulsed electromagnetic field therapy in patients undergoing total knee arthroplasty: A randomised controlled trial. Int. Orthop. 2014, 38, 397–403. [Google Scholar] [CrossRef] [PubMed]
- La Verde, L.; Franceschetti, E.; Palumbo, A. Applicazione dei campi magnetici pulsati nei pazienti sottoposti a protesi inversa di spalla: Valutazione clinica e funzionale. GIOT 2019, 45, 37–46. [Google Scholar]
- D’Ambrosi, R.; Ursino, C.; Setti, S. Pulsed electromagnetic fields improve pain management and clinical outcomes after medial unicompartmental knee arthroplasty: A prospective randomised controlled trial. J. ISAKOS 2022, 7, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Sakhrani, N.; Stefani, R.; Setti, M. Pulsed Electromagnetic Field Therapy and Direct Current Electric Field Modulation Promote the Migration of Fibroblast-like Synoviocytes to Accelerate Cartilage Repair In Vitro. Appl. Sci. 2022, 12, 12406. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.; Feng, L. Pulsed Electromagnetic Field Enhances Healing of a Meniscal Tear and Mitigates Posttraumatic Osteoarthritis in a Rat Model. Am. J. Sports Med. 2022, 50, 2722–2732. [Google Scholar] [CrossRef]
- Yang, X.; Guo, H.; Ye, W. Pulsed Electromagnetic Field Attenuates Osteoarthritis Progression in a Murine Destabilization-Induced Model through Inhibition of TNF-α and IL-6 Signaling. Cartilage 2021, 13 (Suppl. S2), 1665S–1675S. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Guo, H.; Yang, X. Pulsed Electromagnetic Field Versus Whole Body Vibration on Cartilage and Subchondral Trabecular Bone in Mice With Knee Osteoarthritis. Bioelectromagnetics 2020, 41, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Benazzo, F.; Zanon, G.; Pederzini, L. Effects of biophysical stimulation in patients undergoing arthroscopic reconstruction of anterior cruciate ligament: Prospective, randomized and double-blind study. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 595–601. [Google Scholar] [CrossRef]
- Moretti, L.; Bizzoca, D.; Giancaspro, G.A. Biophysical Stimulation in Athletes’ Joint Degeneration: A Narrative Review. Medicina 2021, 57, 1206. [Google Scholar] [CrossRef]
- Reilingh, M.L.; van Berger, C.J.A.; Gerards, R.M. Effects of Pulsed Electromagnetic Fields on Return to Sports After Arthroscopic Debridement and Microfracture of Osteochondral Talar Defects: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. Am. J. Sports Med. 2016, 44, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Cadossi, M.; Buda, R.E.; Ramponi, L.; Sambri, A. Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: A randomized controlled study. Foot Ankle Int. 2014, 35, 981–987. [Google Scholar] [CrossRef]
- Collarile, M.; Sambri, A.; Lullini, G. Biophysical stimulation improves clinical results of matrix-assisted autologous chondrocyte implantation in the treatment of chondral lesions of the knee. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2008, 26, 1223–1229. [Google Scholar] [CrossRef]
- Nelson, F.R.; Zvirbulis, R.; Pilla, A.A. Non-invasive electromagnetic field therapy produces rapid and substantial pain reduction in early knee osteoarthritis: A randomized double-blind pilot study. Rheumatol. Int. 2013, 33, 2169–2173. [Google Scholar] [CrossRef]
- Iannitti, T.; Fistetto, G.; Esposito, A. Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: Clinical experience in the elderly. Clin. Interv. Aging 2013, 8, 1289–1293. [Google Scholar] [CrossRef]
- Paolucci, T.; Porto, D.; Pellegrino, R. Combined Rehabilitation Protocol in the Treatment of Osteoarthritis of the Knee: Comparative Study of Extremely Low-Frequency Magnetic Fields and Soft Elastic Knee Brace Effect. Healthcare 2023, 11, 1221. [Google Scholar] [CrossRef]
- Wuschech, H.; von Hehn, U.; Mikus, E. Effects of PEMF on patients with osteoarthritis: Results of a prospective, placebo-controlled, double-blind study. Bioelectromagnetics 2015, 36, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Massari, L.; Fini, M.; Cadossi, R. Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J. Bone Jt. Surg. 2006, 88 (Suppl. S3), 56–60. [Google Scholar]
- Marcheggiani Muccioli, G.M.; Grassi, A.; Setti, S. Conservative treatment of spontaneous osteonecrosis of the knee in the early stage: Pulsed electromagnetic fields therapy. Eur. J. Radiol. 2013, 82, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, G.L.; Miceli, G.; Marino, N. Pulsed electromagnetic fields in knee osteoarthritis: A double blind, placebo-controlled, randomized clinical trial. Rheumatology 2016, 55, 755–762. [Google Scholar] [CrossRef]
- Ozgüçlü, E.; Cetin, A.; Cetin, M. Additional effect of pulsed electromagnetic field therapy on knee osteoarthritis treatment: A randomized, placebo-controlled study. Clin. Rheumatol. 2010, 29, 927–931. [Google Scholar] [CrossRef]
- Viganò, M.; Perucca Orfei, C.; Ragni, E. Pain and Functional Scores in Patients Affected by Knee OA after Treatment with Pulsed Electromagnetic and Magnetic Fields: A Meta-Analysis. Cartilage 2021, 13 (Suppl. S1), 1749S–1760S. [Google Scholar] [CrossRef] [PubMed]
- Žnidarič, M.; Kozinc, Z.; Škrinjar, D. Potential of molecular biophysical stimulation therapy in chronic musculoskeletal disorders: A narrative review. Eur. J. Transl. Myol. 2023, 33, 10811630. [Google Scholar] [CrossRef]
- Jiang, Y.; Gou, H.; Wang, S. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway. Evid.-Based Complement. Altern. Med. eCAM 2016, 2016, 4927035. [Google Scholar] [CrossRef]
- Wang, P.; Tang, C.; Wu, J. Pulsed electromagnetic fields regulate osteocyte apoptosis, RANKL/OPG expression, and its control of osteoclastogenesis depending on the presence of primary cilia. J. Cell. Physiol. 2019, 234, 10588–10601. [Google Scholar] [CrossRef]
- Liu, H.F.; Yang, L.; He, H.C. Pulsed electromagnetic fields on postmenopausal osteoporosis in Southwest China: A randomized, active-controlled clinical trial. Bioelectromagnetics 2013, 34, 323–332. [Google Scholar] [CrossRef]
- Liu, H.F.; He, H.C.; Yang, L. Pulsed electromagnetic fields for postmenopausal osteoporosis and concomitant lumbar osteoarthritis in southwest China using proximal femur bone mineral density as the primary endpoint: Study protocol for a randomized controlled trial. Trials 2015, 16, 265. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, Z.; Wang, T. Pulsed electromagnetic fields as a promising therapy for glucocorticoid-induced osteoporosis. Front. Bioeng. Biotechnol. 2023, 11, 1103515. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xie, S.; Zhu, S. Efficacy of Pulsed Electromagnetic Fields on Experimental Osteopenia in Rodents: A Systematic Review. Bioelectromagnetics 2021, 42, 415–431. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Y.; Xu, J. The Possible Role of Electrical Stimulation in Osteoporosis: A Narrative Review. Medicina 2023, 59, 121. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caruso, G.; Massari, L.; Lentini, S.; Setti, S.; Gambuti, E.; Saracco, A. Pulsed Electromagnetic Field Stimulation in Bone Healing and Joint Preservation: A Narrative Review of the Literature. Appl. Sci. 2024, 14, 1789. https://doi.org/10.3390/app14051789
Caruso G, Massari L, Lentini S, Setti S, Gambuti E, Saracco A. Pulsed Electromagnetic Field Stimulation in Bone Healing and Joint Preservation: A Narrative Review of the Literature. Applied Sciences. 2024; 14(5):1789. https://doi.org/10.3390/app14051789
Chicago/Turabian StyleCaruso, Gaetano, Leo Massari, Sebastiano Lentini, Stefania Setti, Edoardo Gambuti, and Achille Saracco. 2024. "Pulsed Electromagnetic Field Stimulation in Bone Healing and Joint Preservation: A Narrative Review of the Literature" Applied Sciences 14, no. 5: 1789. https://doi.org/10.3390/app14051789