Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential
Abstract
:1. Introduction
2. Methods
3. Essential Oils with Antiarthritic Potential
3.1. Aquilaria agallocha Roxb.
3.2. Cedrus deodara (Roxb.) Loud.
3.3. Chamaecyparis obtusa (Siebold & Zucc.) Endl.
3.4. Cyperus spp.
3.5. Gaultheria fragrantissima Wall.
3.6. Lagerstroemia speciosa (L.) Pers.
3.7. Litsea cubeba (Lour.) Pers.
3.8. Ocimum americanum L.
3.9. Rhododendron tomentosum Harmaja
3.10. Strobilanthus ixiocephala Benth
3.11. Zingiber officinale Roscoe
3.12. Other Investigated Essential Oils
3.13. Ointment Containing a Mixture of Essential Oils
4. Essential Oils Main Components with Potential Antiarthritic Activity
4.1. β-Caryophyllene
4.2. Cinnamaldehyde
4.3. Eucalyptol
4.4. Eugenol
4.5. Nerolidol
4.6. Sclareol
4.7. Thymoquinone
5. Mechanisms of Action
6. Essential Oils and Their Chemical Components in the Treatment of Arthritis-Related Pain
7. Negative Results
8. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACLT | anterior cruciate ligament transection |
CIA | collagen-induced arthritis |
COX-2 | cyclooxygenase-2 |
DMARDs | disease-modifying antirheumatic drugs |
EO | essential oil |
FCA | Freund’s complete adjuvant |
FDA | Food and Drug Administration |
IFN-γ | interferon-γ |
IL-1β | interleukin-1β |
IL-6 | interleukin-6 |
iNOS | inducible nitric oxide synthase |
JAK/STAT | Janus kinase/signal transducer and activator of transcription |
LPS | lipopolysaccharide |
MMPs | matrix metalloproteinases |
MSU | monosodium urate |
Mtb | M. tuberculosis |
NLRP3 | NOD-, LRR-, and pyrin-domain-containing 3 |
NO | nitric oxide |
NSAIDs | non-steroidal anti-inflammatory drugs |
OA | osteoarthritis |
PGE2 | prostaglandin E2 |
RA | rheumatoid arthritis |
SCW | streptococcal cell wall |
SF | synovial fluid |
SIC | synovium-infiltrating cells |
SW982 | human synovial cell line |
TGF | tumor growth factor |
TIMPs | tissue inhibitors of metalloproteinases |
TNF-α | tumor necrosis factor |
References
- Dunlop, D.D.; Manheim, L.M.; Yelin, E.H.; Song, J.; Chang, R.W. The costs of arthritis. Arthrit. Care Res. 2003, 49, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Khan, R.; Kazmi, I.; Afzal, M. Medicinal Plants in the Treatment of Arthritis. In Plant and Human Health; Ozturk, M., Hakeem, K.R., Eds.; Springer Nature: London, UK, 2019; Volume 3, pp. 101–137. [Google Scholar]
- Khaleghi, M. New Arthritis Foundation Guidelines On CBD Use Could Be First of Many More to Come. Altern. Ther. Health. Med. 2020, 26, 8–11. [Google Scholar] [PubMed]
- Sacks, J.J.; Luo, Y.H.; Helmick, C.G. Prevalence of specific types of arthritis and other rheumatic conditions in the ambulatory health care system in the United States, 2001–2005. Arthrit. Care Res. 2010, 62, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.L.; Hunter, D.J. The epidemiology of osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2014, 28, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, E.; Petrelli, F.; Bonifacio, A.F.; Puxeddu, I.; Alunno, A. One year in review 2018: Pathogenesis of rheumatoid arthritis. Clin. Exp. Rheumatol. 2018, 36, 175–184. [Google Scholar]
- Karami, J.; Aslani, S.; Jamshidi, A.; Garshasbi, M.; Mahmoudi, M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 2019, 702, 8–16. [Google Scholar] [CrossRef]
- Ahmed, S.; Anuntiyo, J.; Malemud, C.J.; Haqqi, T.M. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: A review. Evid. Based Complement. Alternat. Med. 2005, 2, 301–308. [Google Scholar] [CrossRef]
- Subramoniam, A.; Madhavachandran, V.; Gangaprasad, A. Medicinal plants in the treatment of arthritis. Ann. Phytomed. 2013, 2, 3–36. [Google Scholar]
- Choudhary, M.; Kumar, V.; Malhotra, H.; Singh, S. Medicinal plants with potential anti-arthritic activity. J. Intercult. Etnopharmacol. 2015, 4, 147. [Google Scholar] [CrossRef]
- Arya, V.; Gupta, V.K.; Kaur, R. A review on plants having anti-arthritic potential. Int. J. Pharm. Sci. Rev. Res. 2011, 7, 131–136. [Google Scholar]
- Farzaei, M.H.; Farzaei, F.; Abdollahi, M.; Abbasabadi, Z.; Abdolghaffari, A.H.; Mehraban, B. A mechanistic review on medicinal plants used for rheumatoid arthritis in traditional Persian medicine. J. Pharm. Pharmacol. 2016, 68, 1233–1248. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.K.; Singh, D.; Nainwani, R. Medicinal Plants having Anti-arthritic Potential: A Review. Int. J. Pharm. Sci. Rev. Res. 2013, 19, 96–102. [Google Scholar]
- Patel, D.; Kaur, G.; Sawant, M.G.; Deshmukh, P. Herbal Medicine—A natural cure to arthritis. IJNPR 2013, 4, 27–35. [Google Scholar]
- Kaur, A.; Nain, P.; Nain, J. Herbal plants used in treatment of rheumatoid arthritis: A review. Int. J. Pharm. Pharm. Sci. 2012, 4, 44–57. [Google Scholar]
- Khanna, D.; Sethi, G.; Ahn, K.S.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Aggarwal, A.; Aggarwal, B.B. Natural products as a gold mine for arthritis treatment. Curr. Opin. Pharmacol. 2007, 7, 344–351. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Sampath, V.; Pai, S.; Babu, U.; Lobo, R. Antiarthritic Medicinal Plants: A Review. Res. J. Pharm. Technol. 2019, 12, 375–381. [Google Scholar] [CrossRef]
- Pandey, R.; Upadhayay, P.; Shukla, S.S. Plants having Anti-arthritic and Immunomodulator Potentials: An Review. Res. J. Pharm. Technol. 2017, 10, 1252–1256. [Google Scholar] [CrossRef]
- Reddy, V.J.S.; Rao, P.; Lakshmi, G.R. A review on antiarthritic activity of some medicinal plants. J. Glob. Trends Pharm. Sci. 2014, 5, 2061–2073. [Google Scholar]
- Sadia, S.; Tariq, A.; Shaheen, S.; Malik, K.; Ahmad, M.; Qureshi, H.; Nayyar, B.G. Ethnopharmacological profile of anti-arthritic plants of Asia-a systematic review. J. Herb. Med. 2018, 13, 8–25. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchbauer, G. Biological activities of essential oils. In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 235–280. [Google Scholar]
- Alam, J.; Mujahid, M.; Rahman, M.; Akhtar, J.; Khalid, M.; Jahan, Y.; Basit, A.; Khan, A.; Shawwal, M.; Iqbal, S. An insight of pharmacognostic study and phytopharmacology of Aquilaria agallocha. J. Appl. Pharm. Sci. 2015, 5, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour Fragr. J. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Hashim, Y.Z.H.-Y.; Kerr, P.G.; Abbas, P.; Salleh, H.M. Aquilaria spp. (agarwood) as source of health beneficial compounds: A review of traditional use, phytochemistry and pharmacology. J. Ethnopharmacol. 2016, 189, 331–360. [Google Scholar] [CrossRef]
- Rahman, H.; Eswaraiah, M.C.; Dutta, A. Anti-arthritic activity of leaves and oil of Aquilaria agallocha. Saudi J. Life Sci. 2016, 1, 34–43. [Google Scholar]
- Chaudhary, A.K.; Ahmad, S.; Mazumder, A. Cedrus deodara (Roxb.) Loud.: A review on its ethnobotany, phytochemical and pharmacological profile. Pharmacogn. J. 2011, 3, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Shinde, U.; Kulkarni, K.; Phadke, A.; Nair, A.; Mungantiwar, A.; Dikshit, V.; Saraf, M. Mast cell stabilizing and lipoxygenase inhibitory activity of Cedrus deodara (Roxb.) Loud. wood oil. IJEB 1999, 37, 258–261. [Google Scholar]
- Shinde, U.; Phadke, A.; Nair, A.; Mungantiwar, A.; Dikshit, V.; Saraf, M. Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil. J. Ethnopharmacol. 1999, 65, 21–27. [Google Scholar] [CrossRef]
- Suh, H.R.; Chung, H.J.; Park, E.H.; Moon, S.W.; Park, S.J.; Park, C.W.; Kim, Y.I.; Han, H.C. The effects of Chamaecyparis obtusa essential oil on pain-related behavior and expression of pro-inflammatory cytokines in carrageenan-induced arthritis in rats. Biosci. Biotech. Biochem. 2016, 80, 203–209. [Google Scholar] [CrossRef]
- Biradar, S.; Kangralkar, V.; Mandavkar, Y.; Thakur, M.; Chougule, N. Antiinflammatory, antiarthritic, analgesic and anticonvulsant activity of Cyperus essential oils. Int. J. Pharm. Pharm. Sci. 2010, 2, 112–115. [Google Scholar]
- Barik, S.K.; Singh, B.N. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Sci. Rep. 2019, 9, 1–13. [Google Scholar]
- Uriah, T.; Rai, S.; Mohanty, J.; Ghosh, P. Physicochemical evaluation, in vitro anti-inflammatory, in vitro anti-arthritic activities and GC-MS analysis of the oil from the leaves of Gaultheria fragrantissima Wall of Meghalaya. J. Drug Deliv. Ther. 2019, 9, 170–180. [Google Scholar]
- Chan, E.W.C.; Tan, L.N.; Wong, S.K. Phytochemistry and pharmacology of Lagerstroemia speciosa: A natural remedy for diabetes. Int. J. Herb. Med. 2014, 2, 100–105. [Google Scholar]
- Stohs, S.J.; Miller, H.; Kaats, G.R. A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother. Res. 2012, 26, 317–324. [Google Scholar] [CrossRef]
- Sai Saraswathi, V.; Himaja, M.; Saravanan, D.; Chaitra, M.; Pragya, C. Chemical composition and in-vitro anti-arthritic activity of essential oils extracted from the leaves of Lagerstroemia speciosa. Int. J. Pharm. Sci. Rev. Res. 2015, 6, 152–156. [Google Scholar]
- Thielmann, J.; Muranyi, P. Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene. J. Essent. Oil Res. 2019, 31, 361–378. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Q.; Ma, J. Chemical composition and anti-arthritic activity of the essential oil from Litsea cubeba against Type II collagen rheumatoid arthritis in rat collagen. Trop. J. Pharm. Res. 2020, 19, 645–650. [Google Scholar] [CrossRef]
- Dhale, D.; Birari, A.; Dhulgande, G. Preliminary Screening of Antibacterial and Phytochemical Studies of Ocimum americanum Linn. J. Ecobiotechnol. 2010, 2, 11–13. [Google Scholar]
- Zengin, G.; Ferrante, C.; Gnapi, D.E.; Sinan, K.I.; Orlando, G.; Recinella, L.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Chiavaroli, A. Comprehensive approaches on the chemical constituents and pharmacological properties of flowers and leaves of American basil (Ocimum americanum L). Food Res. Int. 2019, 125, 108610. [Google Scholar] [CrossRef]
- Yamada, A.N.; Grespan, R.; Yamada, Á.T.; Silva, E.L.; Silva-Filho, S.E.; Damião, M.J.; de Oliveira Dalalio, M.M.; Bersani-Amado, C.A.; Cuman, R.K.N. Anti-inflammatory activity of Ocimum americanum L. essential oil in experimental model of zymosan-induced arthritis. Am. J. Chin. Med. 2013, 41, 913–926. [Google Scholar] [CrossRef]
- Dampc, A.; Luczkiewicz, M. Rhododendron tomentosum (Ledum palustre). A review of traditional use based on current research. Fitoterapia 2013, 85, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Jesionek, A.; Kokotkiewicz, A.; Mikosik-Roczynska, A.; Ciesielska-Figlon, K.; Luczkiewicz, P.; Bucinski, A.; Daca, A.; Witkowski, J.M.; Bryl, E.; Zabiegala, B. Chemical variability of Rhododendron tomentosum (Ledum palustre) essential oils and their pro-apoptotic effect on lymphocytes and rheumatoid arthritis synoviocytes. Fitoterapia 2019, 139, 104402. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.B.; Rangari, V.D. Phytochemical investigation and evaluation of anti-inflammatory and anti-arthritic activities of essential oil of Strobilanthus ixiocephala Benth. IJEB 2003, 41, 890–894. [Google Scholar]
- Agarwal, R.; Rangari, V. Seasonal variation in the essential oil of Strobilanthus ixiocephala Benth. J. Essent. Oil Res. 2005, 17, 246–248. [Google Scholar] [CrossRef]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef]
- Al-Nahain, A.; Jahan, R.; Rahmatullah, M. Zingiber officinale: A potential plant against rheumatoid arthritis. Arthritis 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Timmermann, B.N. Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental rheumatoid arthritis. J. Nat. Prod. 2009, 72, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Chen, J.; Zhang, H.; Timmermann, B.N. Anti-inflammatory effects of the essential oils of ginger (Zingiber officinale Roscoe) in experimental rheumatoid arthritis. PharmaNutrition 2016, 4, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liang, X.; Ou, Z.; Ye, M.; Shi, Y.; Chen, Y.; Zhao, J.; Zheng, D.; Xiang, H. Screening of chemical composition, anti-arthritis, antitumor and antioxidant capacities of essential oils from four Zingiberaceae herbs. Ind. Crop. Prod. 2020, 149, 112342. [Google Scholar] [CrossRef]
- Komeh-Nkrumah, S.A.; Nanjundaiah, S.M.; Rajaiah, R.; Yu, H.; Moudgil, K.D. Topical dermal application of essential oils attenuates the severity of adjuvant arthritis in Lewis rats. Phytother. Res. 2012, 26, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.; Heimfarth, L.; Santos, K.A.; Guimarães, A.G.; Picot, L.; Almeida, J.R.; Quintans, J.S.; Quintans-Júnior, L.J. Terpenes as possible drugs for the mitigation of arthritic symptoms–A systematic review. Phytomedicine 2019, 57, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Vijayalaxmi, A.; Bakshi, V.; Begum, N.; Kowmudi, V.; Naveen, K.; Reddy, Y. Anti-arthritic and anti inflammatory activity of beta caryophyllene against Freund’s complete adjuvant induced arthritis in wistar rats. J. Bone Rep. Recomm. 2015, 1, 1–10. [Google Scholar]
- El-Sheikh, S.M.; Abd El, A.E.-A.F.; Galal, A.A.; El-Sayed, R.G.; El-Naseery, N.I. Anti-arthritic effect of β-caryophyllene and its ameliorative role on methotrexate and/or leflunomide-induced side effects in arthritic rats. Life Sci. 2019, 233, 116750. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-X.; Zhong, S.; Meng, X.-B.; Zheng, N.-Y.; Zhang, P.; Wang, Y.; Qin, L.; Wang, X.-L. Cinnamaldehyde inhibits inflammation of human synoviocyte cells through regulation of Jak/Stat pathway and ameliorates collagen-induced arthritis in rats. J. Pharmacol. Exp. Ther. 2020, 373, 302–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateen, S.; Shahzad, S.; Ahmad, S.; Naeem, S.S.; Khalid, S.; Akhtar, K.; Rizvi, W.; Moin, S. Cinnamaldehyde and eugenol attenuates collagen induced arthritis via reduction of free radicals and pro-inflammatory cytokines. Phytomedicine 2019, 53, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Liu, B.; Wang, P.; Li, X.; Li, Y.; Zheng, X.; Tai, Y.; Wang, C.; Liu, B. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol. 2020, 177, 2042–2057. [Google Scholar] [CrossRef]
- Grespan, R.; Paludo, M.; de Paula Lemos, H.; Barbosa, C.P.; Bersani-Amado, C.A.; de Oliveira Dalalio, M.M.; Cuman, R.K.N. Anti-arthritic effect of eugenol on collagen-induced arthritis experimental model. Biol. Pharm. Bull. 2012, 35, 1818–1820. [Google Scholar] [CrossRef] [Green Version]
- Barros Silva Soares de Souza, E.P.; Trindade, G.d.G.G.; Gomes, M.V.L.D.; Silva, L.A.S.; Grespan, R.; Junior, L.J.Q.; de Albuquerque Júnior, R.L.C.; Shanmugan, S.; de Souza Araújo, A.A. Anti-inflammatory effect of nano-encapsulated nerolidol on zymosan-induced arthritis in mice. Food Chem. Toxicol. 2020, 135, 110958. [Google Scholar] [CrossRef]
- Zhong, Y.; Huang, Y.; Santoso, M.B.; Wu, L.-D. Sclareol exerts anti-osteoarthritic activities in interleukin-1β-induced rabbit chondrocytes and a rabbit osteoarthritis model. Int. J. Clin. Exp. Pathol. 2015, 8, 2365. [Google Scholar]
- Tsai, S.-W.; Hsieh, M.-C.; Li, S.; Lin, S.-C.; Wang, S.-P.; Lehman, C.W.; Lien, C.Z.; Lin, C.-C. Therapeutic potential of sclareol in experimental models of rheumatoid arthritis. Int. J. Mol. Sci. 2018, 19, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekeoglu, I.; Dogan, A.; Ediz, L.; Budancamanak, M.; Demirel, A. Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother. Res. 2007, 21, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Al Kaabi, J.M.; Nurulain, S.M.; Goyal, S.N.; Amjad Kamal, M.; Ojha, S. Polypharmacological properties and therapeutic potential of β-caryophyllene: A dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des. 2016, 22, 3237–3264. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Harden, L.A. Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J. Agric. Food Chem. 2000, 48, 5702–5709. [Google Scholar] [CrossRef]
- Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res. 2017, 122, 78–89. [Google Scholar] [CrossRef]
- Liao, J.-C.; Deng, J.-S.; Chiu, C.-S.; Hou, W.-C.; Huang, S.-S.; Shie, P.-H.; Huang, G.-J. Anti-inflammatory activities of Cinnamomum cassia constituents in vitro and in vivo. Evid. Based Complement. Alternat. Med. 2012, 2012, 429320. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Silva, R.; Campos, A.; De Araujo, R.; Júnior, R.L.; Rao, V. 1, 8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol. 2004, 42, 579–584. [Google Scholar] [CrossRef]
- Juergens, U.R.; Dethlefsen, U.; Steinkamp, G.; Gillissen, A.; Repges, R.; Vetter, H. Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: A double-blind placebo-controlled trial. Resp. Med. 2003, 97, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Caceres, A.I.; Liu, B.; Jabba, S.V.; Achanta, S.; Morris, J.B.; Jordt, S.E. Transient receptor potential cation channel subfamily M member 8 channels mediate the anti-inflammatory effects of eucalyptol. Br. J. Pharmacol. 2017, 174, 867–879. [Google Scholar] [CrossRef]
- Seol, G.H.; Kim, K.Y. Eucalyptol and its role in chronic diseases. In Drug Discovery from Mother Nature; Gupta, S.C., Prasad, S., Aggarwal, B.B., Eds.; Springer: Houston, TX, USA, 2016; pp. 389–398. [Google Scholar]
- Zhao, X.-S.; Huang, L.-B.; Yang, H.-J.; Ou, S.-L.; Feng, J.-D. Simultaneous determination of eugenol, isoeugenol, myristicin and elemicin in Myristica fragrans Houtt. by GC. Chin. J. Pharm. Anal. 2012, 32, 1569–1573. [Google Scholar]
- Lewinsohn, E.; Ziv-Raz, I.; Dudai, N.; Tadmor, Y.; Lastochkin, E.; Larkov, O.; Chaimovitsh, D.; Ravid, U.; Putievsky, E.; Pichersky, E. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L). Developmental and chemotypic association of allylphenol O-methyltransferase activities. Plant Sci. 2000, 160, 27–35. [Google Scholar] [CrossRef]
- Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol—From the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules 2012, 17, 6953–6981. [Google Scholar] [CrossRef] [PubMed]
- Arruda, D.C.; D’Alexandri, F.L.; Katzin, A.M.; Uliana, S.R. Antileishmanial activity of the terpene nerolidol. Antimicrob. Agents Chemother. 2005, 49, 1679–1687. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.-K.; Tan, L.T.-H.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Wang, C.-Z.; Kong, Z.-W. Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo biloba L. leaves. Molecules 2013, 18, 2166–2182. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.M.; Barreto, A.L.S.; Curvelo, J.A.d.R.; Romanos, M.T.V.; Soares, R.M.d.A.; Kaplan, M.A.C. Antileishmanial activity of nerolidol-rich essential oil from Piper claussenianum. Rev. Bras. Farmacogn. 2011, 21, 908–914. [Google Scholar] [CrossRef]
- Ahmad, Z.; Zamhuri, K.F.; Yaacob, A.; Siong, C.H.; Selvarajah, M.; Ismail, A.; Hakim, M.N. In vitro anti-diabetic activities and chemical analysis of polypeptide-k and oil isolated from seeds of Momordica charantia (bitter gourd). Molecules 2012, 17, 9631–9640. [Google Scholar] [CrossRef] [Green Version]
- Klopell, F.C.; Lemos, M.; Sousa, J.P.B.; Comunello, E.; Maistro, E.L.; Bastos, J.K.; De Andrade, S.F. Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z. Naturforsch. C 2007, 62, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Caniard, A.; Zerbe, P.; Legrand, S.; Cohade, A.; Valot, N.; Magnard, J.-L.; Bohlmann, J.; Legendre, L. Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea (L.) and their relevance for perfume manufacture. BMC Plant Biol. 2012, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Schalk, M.; Pastore, L.; Mirata, M.A.; Khim, S.; Schouwey, M.; Deguerry, F.; Pineda, V.; Rocci, L.; Daviet, L. Toward a biosynthetic route to sclareol and amber odorants. J. Am. Chem. Soc. 2012, 134, 18900–18903. [Google Scholar] [CrossRef] [PubMed]
- McNeil, M.J.; Porter, R.B.; Williams, L.A.; Rainford, L. Chemical composition and antimicrobial activity of the essential oils from Cleome spinosa. Nat. Prod. Commun. 2010, 5, 1301–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skorić, M.; Todorović, S.; Gligorijević, N.; Janković, R.; Živković, S.; Ristić, M.; Radulović, S. Cytotoxic activity of ethanol extracts of in vitro grown Cistus creticus subsp. creticus L. on human cancer cell lines. Ind. Crop. Prod. 2012, 38, 153–159. [Google Scholar]
- Huang, G.-J.; Pan, C.-H.; Wu, C.-H. Sclareol exhibits anti-inflammatory activity in both lipopolysaccharide-stimulated macrophages and the λ-carrageenan-induced paw edema model. J. Nat. Prod. 2012, 75, 54–59. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Parvardeh, S. Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 2004, 11, 56–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkhondeh, T.; Samarghandian, S.; Shahri, A.M.P.; Samini, F. The neuroprotective effects of thymoquinone: A review. Dose-Response 2018, 16, 1–11. [Google Scholar] [CrossRef]
- De Sousa, D.P. Analgesic-like activity of essential oils constituents. Molecules 2011, 16, 2233–2252. [Google Scholar] [CrossRef] [Green Version]
- Sarmento-Neto, J.F.; Do Nascimento, L.G.; Felipe, C.F.B.; De Sousa, D.P. Analgesic potential of essential oils. Molecules 2016, 21, 20. [Google Scholar] [CrossRef]
- Mahboubi, M. Mentha spicata as natural analgesia for treatment of pain in osteoarthritis patients. Complement. Ther. Clin. Pract. 2017, 26, 1–4. [Google Scholar] [CrossRef]
- Mota, C.M.; Rodrigues-Santos, C.; Carolino, R.O.; Anselmo-Franci, J.A.; Branco, L.G. Citral-induced analgesia is associated with increased spinal serotonin, reduced spinal nociceptive signaling, and reduced systemic oxidative stress in arthritis. J. Ethnopharmacol. 2020, 250, 112486. [Google Scholar] [CrossRef]
- Figueiredo, R.O.; Ming, L.; Machado, S.; Andrare, R. Yield of essential oil and citral content in different parts of lemongrass leaves (Cymbopogon citratus (DC) Stapf.) Poaceae. Acta Hortic. 1996, 426, 555–559. [Google Scholar]
- Mangprayool, T.; Kupittayanant, S.; Chudapongse, N. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action. Fitoterapia 2013, 89, 68–73. [Google Scholar] [CrossRef]
- Wohlmuth, H.; Smith, M.K.; Brooks, L.O.; Myers, S.P.; Leach, D.N. Essential oil composition of diploid and tetraploid clones of ginger (Zingiber officinale Roscoe) grown in Australia. J. Agric. Food Chem. 2006, 54, 1414–1419. [Google Scholar] [CrossRef] [PubMed]
- Funk, J.L.; Frye, J.B.; Oyarzo, J.N.; Zhang, H.; Timmermann, B.N. Anti-arthritic effects and toxicity of the essential oils of turmeric (Curcuma longa L.). J. Agric. Food Chem. 2010, 58, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, J.L.; Oyarzo, J.N.; Frye, J.B.; Chen, G.; Lantz, R.C.; Jolad, S.D.; Sólyom, A.M.; Timmermann, B.N. Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis. J. Nat. Prod. 2006, 69, 351–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonose, N.; Pereira, J.A.; Machado, P.R.M.; Rodrigues, M.R.; Sato, D.T.; Martinez, C.A.R. Oral administration of curcumin (Curcuma longa) can attenuate the neutrophil inflammatory response in zymosan-induced arthritis in rats. Acta Cir. Bras. 2014, 29, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food. Sci. F 2013, 12, 40–53. [Google Scholar] [CrossRef]
Plant Species | Common Name | Family | Part | Study | Animal Model/In Vitro Test | Ref. |
---|---|---|---|---|---|---|
Alpinia galanga (L.) Willd. | greater galangal | Zingiberaceae | n.s. 1 | In vivo | Freund’s adjuvant-induced arthritic rats | [52] |
Alpinia oxyphylla Miq. | black cardamom | Zingiberaceae | n.s. | In vivo | Freund’s adjuvant-induced arthritic rats | [52] |
Amomum kravanh Pierre ex Gagnep. | cardamom | Zingiberaceae | n.s. | In vivo | Freund’s adjuvant-induced arthritic rats | [52] |
Aquilaria agallocha Roxb. | agarwood | Thymelaeaceae | Heartwood | In vitro | BSA denaturation method | [28] |
In vivo | Freund’s adjuvant-induced arthritic rats | |||||
Calophyllum inophyllum L. | Alexandrian laurel | Clusiaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Cedrus deodara (Roxb.) Loud. | deodar | Pinaceae | Wood | In vivo | Freund’s adjuvant-induced arthritis in rats | [31] |
Chamaecyparis obtusa (Siebold and Zucc.) Endl. | hinoki cypress | Cupressaceae | Leaves | In vivo | Carrageenan-induced arthritis in rats | [32] |
Citrus aurantium L. | bitter orange | Rutaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Cyperus esculenthus L. | yellow nutsedge | Cyperaceae | n.s. | In vivo | Formaldehyde-induced arthritis in rats | [33] |
Cyperus rotondus L. | yellow nutsedge | Cyperaceae | n.s. | In vivo | Formaldehyde-induced arthritis in rats | [33] |
Eucalyptus globulus Labill. | Tasmanian blue gum | Myrtaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Eugenia caryophyllata L. | clove | Myrtaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Foeniculum vulgare L. | sweet fennel | Apiaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Gaultheria fragrantissima Wall. | wintergreen | Ericaceae | Leaves | In vitro | Protein denaturation method; egg albumin denaturation method | [35] |
Helichrysum angustifolium DC. | everlasting | Asteraceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Juniperus virginiana L. | red cedar | Cupressaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Kaempferia galanga L. | kencur | Zingiberaceae | n.s. | In vivo | Freund’s adjuvant-induced arthritic rats | [52] |
Lagerstroemia speciosa (L.) Pers. | banaba | Lythraceae | Leaves | In vitro | Protein denaturation method | [38] |
Lavandula angustifolia Mill. | lavender | Lamiaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Litsea cubeba (Lour.) Pers. | mountain pepper | Lauraceae | Fruits | In vivo | Collagen-induced arthritic rats | [40] |
Myristica fragrans Houtt. | nutmeg | Myristicaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Ocimum americanum L. | American basil | Lamiaceae | Leaves | In vivo | Zymosan-induced arthritis in mice | [43] |
Ocimum basilicum L. | basil | Lamiaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Pinus sylvestris L. | Scots pine | Pinaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Piper nigrum L. | black pepper | Piperaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Rhododendron tomentosum Harmaja | marsh Labrador tea | Ericaceae | shoots | In vitro | Peripheral blood lymphocytes of healthy volunteers; synoviocytes and immune cells isolated from synovia of RA patients | [45] |
Rosmarinus officinalis L. | rosemary | Lamiaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Salvia sclarea L. | clary sage | Lamiaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Salvia officinalis L. | sage | Lamiaceae | n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
Strobilanthus ixiocephala Benth. | waiti | Acanthaceae | Flowering tops | In vivo | Freund’s adjuvant-induced arthritis in rats | [46] |
Zingiber officinale Roscoe | ginger | Zingiberaceae | Rhizome | In vivo | SCW-induced arthritis | [51] |
n.s. | In vivo | Mixture of essential oils tested on adjuvant arthritis in Lewis rats | [53] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrelli, M.; Amodeo, V.; Perri, M.R.; Conforti, F.; Statti, G. Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential. Plants 2020, 9, 1252. https://doi.org/10.3390/plants9101252
Marrelli M, Amodeo V, Perri MR, Conforti F, Statti G. Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential. Plants. 2020; 9(10):1252. https://doi.org/10.3390/plants9101252
Chicago/Turabian StyleMarrelli, Mariangela, Valentina Amodeo, Maria Rosaria Perri, Filomena Conforti, and Giancarlo Statti. 2020. "Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential" Plants 9, no. 10: 1252. https://doi.org/10.3390/plants9101252
APA StyleMarrelli, M., Amodeo, V., Perri, M. R., Conforti, F., & Statti, G. (2020). Essential Oils and Bioactive Components against Arthritis: A Novel Perspective on Their Therapeutic Potential. Plants, 9(10), 1252. https://doi.org/10.3390/plants9101252