Applications of Pre- and Post-Harvest Techniques in Horticultural Products—2nd Edition

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Horticultural and Floricultural Crops".

Deadline for manuscript submissions: 31 March 2026 | Viewed by 291

Special Issue Editors


E-Mail Website
Guest Editor
College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
Interests: postharvest biology and technology; germplasm resources; fruit development and quality formation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Following on from the success of our first Special Issue of Agronomy, entitled “Applications of Pre- and Post-Harvest Techniques in Horticultural Products”, the Editorial Office is pleased to launch a second edition of this Special Issue.

Horticultural products include fruits, vegetables, flowers, and tea, which are indispensable elements for people's daily food security, dietary structure improvement, micronutrient supplementation, and life beautification. However, most horticultural products are fresh agricultural products with a high physiological metabolism and high water content, which are not ideal for storage and transportation after harvesting, and post-harvest aging and pathogen infection seriously affect the flavor and nutritional quality. Pre-harvest and post-harvest treatments, especially technological innovations, play an important role in guiding the preservation and storage of horticultural products. Post-harvest pre-cooling, refrigerated storage, post-harvest heat treatment, improved atmospheric packaging, the application of exogenous chemicals, and other physical or chemical methods are common practices used to minimize the post-harvest losses of horticultural products.

This Special Issue, entitled “Applications of Pre- and Post-Harvest Techniques in Horticultural Products—2nd Edition”, will focus on new developments in our understanding of horticultural product storage technology, pre-harvest factors and storage effects, post-harvest physiology, and commercialization treatment technology.

We invite researchers to contribute both original research articles and reviews to this Special Issue.

Dr. Mengyao Li
Prof. Dr. Ya Luo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • horticultural products
  • pre-harvest and post-harvest techniques
  • biological characteristics
  • nutritional quality

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 7052 KB  
Article
Identification of Carrot Expansin Gene Family and Its Regulation of Carrot Growth and Development
by Rong-Rong Zhang, Ya-Hui Wang, Jian-Ping Tao, Jian-Hua Zhou, Nan Zhang, Xue-Feng Peng, Li Zhang, Xiaoe Xiang, Yu-Jie Sun, Guo-Fei Tan and Ai-Sheng Xiong
Agronomy 2025, 15(10), 2338; https://doi.org/10.3390/agronomy15102338 - 5 Oct 2025
Viewed by 189
Abstract
Carrot (Daucus carota L.) is an important root vegetable crop in the Apiaceae and is widely cultivated around the world. Expansins play crucial roles in the growth and development of plants. Here, a total of 35 carrot expansins were identified from carrot. [...] Read more.
Carrot (Daucus carota L.) is an important root vegetable crop in the Apiaceae and is widely cultivated around the world. Expansins play crucial roles in the growth and development of plants. Here, a total of 35 carrot expansins were identified from carrot. Sequence alignment and phylogenetic analysis revealed that carrot expansins could be classified into four subfamilies, each with similar exon/intron structures and motif compositions, indicating that carrot expansins were relatively conserved during evolution. Chromosomal localization and gene duplication analysis indicated that DcEXP genes were unevenly distributed across carrot nine chromosomes and had evolved predominantly under purifying selection. Measurements of key agronomic characters of carrots at different developmental stages (30, 60, and 90 days after sowing) indicated significant positive correlations among root fresh weight, aboveground fresh weight, root–shoot ratio, root length, and root diameter. The period from 30 to 60 days after sowing was identified as the primary phase of taproot enlargement. Analysis of spatiotemporal expression patterns revealed that most DcEXP genes were specifically expressed in the taproots, and only one gene, DcEXP18, was specifically expressed in leaves. During the rapid growth period of carrot taproots (30 and 60 days after sowing), the genes DcEXP2, DcEXP3, DcEXP5, DcEXP8, DcEXP11, DcEXP13, DcEXP17, DcEXP19, DcEXP20, DcEXP22, DcEXP26, DcEXP28, and DcEXP33 exhibited high expression levels, suggesting that they played potential important roles in carrot taproot enlargement. These findings will advance our knowledge of the molecular mechanisms underlying expansin regulation of carrot growth and development. Full article
Show Figures

Figure 1

Back to TopTop