Synthesis of Novel Antimicrobial Agents

A special issue of Antibiotics (ISSN 2079-6382). This special issue belongs to the section "Novel Antimicrobial Agents".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 18257

Special Issue Editor


E-Mail Website
Guest Editor
Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
Interests: antibiotic resistance; ESKAPE pathogens; drug disocvery; natural products; screening

Special Issue Information

Dear Colleagues,

Antibiotics are pillars of modern healthcare, without which all the medical advances would be in vain. Antimicrobial resistance is one of the biggest threats to medical systems and is already negatively influencing global mortality. Thus, continuous discovery and development of new antimicrobials along with vaccines and non-classical antimicrobials are urgent, unmet medical needs to commute this direct threat to humanity. In this context, synthesis of novel antimicrobial agents is an integral step in this direction. This Special Issue seeks manuscript submissions that highlight the synthesis and biological evaluation of novel antimicrobial agents, especially against WHO and other priority pathogens. 

Dr. Sidharth Chopra
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antibiotics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 5071 KiB  
Article
Antibacterial Conjugates of Kanamycin A with Vancomycin and Eremomycin: Biological Activity and a New MS-Fragmentation Pattern of Cbz-Protected Amines
by Pavel N. Solyev, Elena B. Isakova and Evgenia N. Olsufyeva
Antibiotics 2023, 12(5), 894; https://doi.org/10.3390/antibiotics12050894 - 11 May 2023
Viewed by 1636
Abstract
A significant increase of microbial resistance to glycopeptides (especially vancomycin-resistant enterococci and Staphylococcus aureus) prompted researchers to design new semisynthetic glycopeptide derivatives, such as dual-action antibiotics that contain a glycopeptide molecule and an antibacterial agent of a different class. We synthesized novel dimeric [...] Read more.
A significant increase of microbial resistance to glycopeptides (especially vancomycin-resistant enterococci and Staphylococcus aureus) prompted researchers to design new semisynthetic glycopeptide derivatives, such as dual-action antibiotics that contain a glycopeptide molecule and an antibacterial agent of a different class. We synthesized novel dimeric conjugates of kanamycin A with glycopeptide antibiotics, vancomycin and eremomycin. Using tandem mass spectrometry fragmentation, UV, IR, and NMR spectral data, it was unequivocally proven that the glycopeptide is attached to the kanamycin A molecule at the position 1 of 2-deoxy-D-streptamine. New MS fragmentation patterns for N-Cbz-protected aminoglycosides were discovered. It was found that the resulting conjugates are active against Gram-positive bacteria, and some are active against vancomycin-resistant strains. Conjugates of two different classes can serve as dual-target antimicrobial candidates for further investigation and improvement. Full article
(This article belongs to the Special Issue Synthesis of Novel Antimicrobial Agents)
Show Figures

Figure 1

16 pages, 4516 KiB  
Article
Green Synthesis of Silver Nanoparticles Using the Leaf Extract of the Medicinal Plant, Uvaria narum and Its Antibacterial, Antiangiogenic, Anticancer and Catalytic Properties
by Anthyalam Parambil Ajaykumar, Anjaly Mathew, Ayanam Parambath Chandni, Sudhir Rama Varma, Kodangattil Narayanan Jayaraj, Ovungal Sabira, Vazhanthodi Abdul Rasheed, Valiyaparambil Sivadasan Binitha, Thangaraj Raja Swaminathan, Valaparambil Saidumohammad Basheer, Suvendu Giri and Suvro Chatterjee
Antibiotics 2023, 12(3), 564; https://doi.org/10.3390/antibiotics12030564 - 13 Mar 2023
Cited by 26 | Viewed by 6118
Abstract
Silver nanoparticles (AgNPs) made by green synthesis offer a variety of biochemical properties and are an excellent alternative to traditional medications due to their low cost. In the current study, we synthesised AgNPs from the leaf extract of the medicinal plant Uvaria narum [...] Read more.
Silver nanoparticles (AgNPs) made by green synthesis offer a variety of biochemical properties and are an excellent alternative to traditional medications due to their low cost. In the current study, we synthesised AgNPs from the leaf extract of the medicinal plant Uvaria narum, commonly called narumpanal. The nanoparticles were characterised by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM analysis showed AgNPs are highly crystalline and spherical with an average diameter of 7.13 nm. The outstanding catalytic activity of AgNPs was demonstrated by employing the reduction of 4-nitrophenol to 4-aminophenol. The AgNPs showed antiangiogenic activity in the chick chorioallantoic membrane (CAM) assay. AgNPs demonstrated anticancer activity against Dalton’s lymphoma ascites cells (DLA cells) in trypan blue assay and cytotoxicity against three fish cell lines: Oreochromis niloticus liver (onlL; National Repository of Fish Cell Lines, India (NRFC) Accession number—NRFC052) cells, Cyprinus carpio koi fin (CCKF; NRFC Accession number—NRFC007) cells and Cyprinus carpio gill (CyCKG; NRFC Accession number—NRFC064). Furthermore, the AgNPs demonstrated their ability to inhibit pathogenic microorganisms, Staphylococcus aureus, and Escherichia coli. The results from the study displayed green synthesised AgNPs exhibit antiangiogenic activity, cytotoxicity, antimicrobial and catalytic properties, which are crucial characteristics of a molecule with excellent clinical applications. Full article
(This article belongs to the Special Issue Synthesis of Novel Antimicrobial Agents)
Show Figures

Graphical abstract

14 pages, 2209 KiB  
Article
Novel Sulfonylurea Derivatives as Potential Antimicrobial Agents: Chemical Synthesis, Biological Evaluation, and Computational Study
by Fan-Fei Meng, Ming-Hao Shang, Wei Wei, Zhen-Wu Yu, Jun-Lian Liu, Zheng-Ming Li, Zhong-Wen Wang, Jian-Guo Wang and Huan-Qin Dai
Antibiotics 2023, 12(2), 323; https://doi.org/10.3390/antibiotics12020323 - 3 Feb 2023
Cited by 3 | Viewed by 2169
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide health threat and has already tormented humanity during its long history, creating an urgent need for the development of new classes of antibacterial agents. In this study, twenty-one novel sulfonylurea derivatives containing phenyl-5-vinyl and pyrimidinyl-4-aryl moieties [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide health threat and has already tormented humanity during its long history, creating an urgent need for the development of new classes of antibacterial agents. In this study, twenty-one novel sulfonylurea derivatives containing phenyl-5-vinyl and pyrimidinyl-4-aryl moieties were designed and synthesized, among which, nine compounds exhibited inhibitory potencies against Gram-positive bacterial strains: MRSA (Chaoyang clinical isolates), S. aureus ATCC6538, vancomycin-resistant Enterococci-309 (VRE-309), and Bacillus subtilis ATCC 6633. Especially, 9i and 9q demonstrated inhibitory activities against the four bacterial strains with minimum inhibitory concentrations (MICs) of 0.78–1.56 μg/mL, and quite a few of other MRSA clinical strains with MICs of 0.78 μg/mL, superior to those of the positive controls vancomycin (MIC of 1 μg/mL) and methicillin (MIC of >200 μg/mL). This is the very first time that sulfonylurea derivatives have been identified as promising inhibitors against different MRSA clinical isolates. In addition, all the MIC values of the synthesized compounds against Candida albicans were greater than 100 μg/mL. Since the reported anti-Candida activities of sulfonylureas were due to acetohydroxyacid synthase (AHAS) inhibition, the molecular target against MRSA for the target sulfonylureas was thought to be a different mode of action. Density functional theory (DFT) calculations were finally performed to understand the structure–activity relationships, based on which, significant differences were observed between their HOMO maps for compounds with strong antibacterial activities and weak anti-MRSA effects. The present results hence provide valuable guidance for the discovery of novel agents to treat bacterial infections, especially against MRSA. Full article
(This article belongs to the Special Issue Synthesis of Novel Antimicrobial Agents)
Show Figures

Figure 1

21 pages, 14413 KiB  
Article
In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria
by Gayathri Vijayakumar, Hyung Joo Kim and Senthil Kumaran Rangarajulu
Antibiotics 2023, 12(1), 141; https://doi.org/10.3390/antibiotics12010141 - 10 Jan 2023
Cited by 18 | Viewed by 2720
Abstract
The prospective application of probiotics is an adjuvant for the advancement of novel antimicrobial and wound-healing agents. Currently, probiotic bacteria are utilized for the biosynthesis of nanoparticles in the development of innovative therapeutics. The present study aimed at using nanoparticle-conjugated probiotic bacteria for [...] Read more.
The prospective application of probiotics is an adjuvant for the advancement of novel antimicrobial and wound-healing agents. Currently, probiotic bacteria are utilized for the biosynthesis of nanoparticles in the development of innovative therapeutics. The present study aimed at using nanoparticle-conjugated probiotic bacteria for enhanced antibacterial and wound-healing activity. In the present investigation, the probiotic bacteria were isolated from a dairy source (milk from domestic herbivores). They screened for antibacterial activity against infection-causing Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Bacillus subtilis and Staphylococcus aureus) pathogens. Further, the probiotic strain with higher bactericidal activity was used to synthesize silver, selenium, and copper nanoparticles. The isolated strain was found to be Lactiplantibacillus plantarum and it only has the ability to synthesize silver nanoparticles. This was verified using Ultra violet-Visible (UV-Vis) spectroscopy, where the test solution turned brown and the greatest UV-Vis absorptions peaked at 425 nm. Optimization studies on the synthesis of AgNPs (silver nanoparticles) are presented and the results show that stable synthesis was obtained by using a concentration of 1mM silver nitrate (AgNO3) at a temperature of 37 °C with pH 8. The FTIR (Fourier transform infrared spectroscopy) study confirmed the involvement of functional groups from the cell biomass that were involved in the reduction process. Additionally, biosynthesized AgNPs showed increased antioxidant and antibacterial activities. The nano silver had a size distribution of 14 nm and was recorded with HR-TEM (high-resolution transmission electron microscopy) examination. The EDX (energy dispersive X-ray) analysis revealed 57% of silver groups found in the nanoparticle production. The biosynthesized AgNPs show significant wound-healing capabilities with 96% of wound closure (fibroblast cells) being observed through an in vitro scratch-wound assay. The cytotoxic experiments demonstrated that the biosynthesized AgNPs are not extremely hazardous to the fibroblast cells. The present study provides a new platform for the green synthesis of AgNPs using probiotic bacteria, showing significant antibacterial and wound-healing potentials against infectious pathogens. Full article
(This article belongs to the Special Issue Synthesis of Novel Antimicrobial Agents)
Show Figures

Figure 1

27 pages, 5716 KiB  
Article
Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties
by Yogesh Dutt, Ramendra Pati Pandey, Mamta Dutt, Archana Gupta, Arpana Vibhuti, V. Samuel Raj, Chung-Ming Chang and Anjali Priyadarshini
Antibiotics 2023, 12(1), 121; https://doi.org/10.3390/antibiotics12010121 - 9 Jan 2023
Cited by 15 | Viewed by 4557
Abstract
Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, [...] Read more.
Silver nanoparticles (AgNPs) have unlocked numerous novel disciplines in nanobiotechnological protocols due to their larger surface area-to-volume ratios, which are attributed to the marked reactivity of nanosilver, and due to their extremely small size, which enables AgNPs to enter cells, interact with organelles, and yield distinct biological effects. AgNPs are capable of bypassing immune cells, staying in the system for longer periods and with a higher distribution, reaching target tissues at higher concentrations, avoiding diffusion to adjacent tissues, releasing therapeutic agents or drugs for specific stimuli to achieve a longer duration at a specific rate, and yielding desired effects. The phytofabrication of AgNPs is a cost-effective, one-step, environmentally friendly, and easy method that harnesses sustainable resources and naturally available components of plant extracts (PEs). In addition, it processes various catalytic activities for the degradation of various organic pollutants. For the phytofabrication of AgNPs, plant products can be used in a multifunctional manner as a reducing agent, a stabilizing agent, and a functionalizing agent. In addition, they can be used to curtail the requirements for any additional stabilizing agents and to help the reaction stages subside. Azadirachta indica, a very common and prominent medicinal plant grown throughout the Indian subcontinent, possesses free radical scavenging and other pharmaceutical properties via the regulation of proinflammatory enzymes, such as COX and TOX. It also demonstrates anticancer activities through cell-signaling pathways, modulating tumor-suppressing genes such as p53 and pTEN, transcriptional factors, angiogenesis, and apoptosis via bcl2 and bax. In addition, it possesses antibacterial activities. Phytofabricated AgNPs have been applied in the areas of drug delivery, bioimaging, biosensing, cancer treatment, cosmetics, and cell biology. Such pharmaceutical and biological activities of phytofabricated AgNPs are attributed to more than 300 phytochemicals found in Azadirachta indica, and are especially abundant in flavonoids, polyphenols, diterpenoids, triterpenoids, limonoids, tannins, coumarin, nimbolide, azadirachtin, azadirone, azadiradione, and gedunin. Parts of Azadirachta indica, including the leaves in various forms, have been used for wound healing or as a repellent. This study was aimed at examining previously biosynthesized (from Azadirachta indica) AgNPs for anticancer, wound-healing, and antimicrobial actions (through MTT reduction assay, scratch assay, and microbroth dilution methods, respectively). Additionally, apoptosis in cancer cells and the antibiofilm capabilities of AgNPs were examined through caspase-3 expression, dentine block, and crystal violet methods. We found that biogenic silver nanoparticles are capable of inducing cytotoxicity in HCT-116 colon carcinoma cells (IC50 of 744.23 µg/mL, R2: 0.94), but are ineffective against MCF-7 breast cancer cells (IC50 >> 1000 µg/mL, R2: 0.86). AgNPs (IC50 value) induced a significant increase in caspase-3 expression (a 1.5-fold increase) in HCT-116, as compared with control cells. FITC-MFI was 1936 in HCT-116-treated cells, as compared to being 4551 in cisplatin and 1297 in untreated cells. AgNPs (6.26 µg/mL and 62.5 µg/mL) induced the cellular migration (40.2% and 33.23%, respectively) of V79 Chinese hamster lung fibroblasts; however, the improvement in wound healing was not significant as it was for the controls. AgNPs (MIC of 10 µg/mL) were very effective against MDR Enterococcus faecalis in the planktonic mode as well as in the biofilm mode. AgNPs (10 µg/mL and 320 µg/mL) reduced the E. faecalis biofilm by >50% and >80%, respectively. Natural products, such as Syzygium aromaticum (clove) oil (MIC of 312.5 µg/mL) and eugenol (MIC of 625 µg/mL), showed significant antimicrobial effects against A. indica. Our findings indicate that A. indica-functionalized AgNPs are effective against cancer cells and can induce apoptosis in HCT-116 colon carcinoma cells; however, the anticancer properties of AgNPs can also be upgraded through active targeting (functionalized with enzymes, antibiotics, photosensitizers, or antibodies) in immunotherapy, photothermal therapy, and photodynamic therapy. Our findings also suggest that functionalized AgNPs could be pivotal in the development of a novel, non-cytotoxic, biocompatible therapeutic agent for infected chronic wounds, ulcers, and skin lesions involving MDR pathogens via their incorporation into scaffolds, composites, patches, microgels, or formulations for microneedles, dressings, bandages, gels, or other drug-delivery systems. Full article
(This article belongs to the Special Issue Synthesis of Novel Antimicrobial Agents)
Show Figures

Figure 1

Back to TopTop